

Welcome

- Introduction of the webinar
- Presentation of Metocean Campaign by Richard Davies (Fugro)
- Chat for questions by expert panel: Edwin Beringen (Fugro), Arve Berg (Fugro), Irene Pathirana (Fugro), Sofia Caires (Deltares) Miriam van Endt (Blix Consultancy) and Erik Holtslag (Pondera)

Netherlands Enterprise Agency

Webinar Metocean Campaign

Hollandse Kust (west) Wind Farm Zone 15 October 2020

Matté Brijder

FUGRO

Metocean Campaign for the Hollandse Kust West Wind Farm Zone

Performed by: Fugro Client: RVO

Webinar 15. October 2020: Richard Davies, Edwin Beringen, Irene Pathirana, Arve Berg (Fugro), Sofia Caires (Deltares)

Contents

Introduction

Seawatch Wind LiDAR Buoy

Quality assurance

Data Reports

HKW Measurements Summary

Operational experience

Data evaluation

Introduction to the Metocean Campaign

Purpose, project overview, observations and comparison

Purpose of the measurements

Fugro carried out a metocean measurement campaign at the Hollandse Kust (west) Offshore wind farm (OWF) to support future wind farm developers.

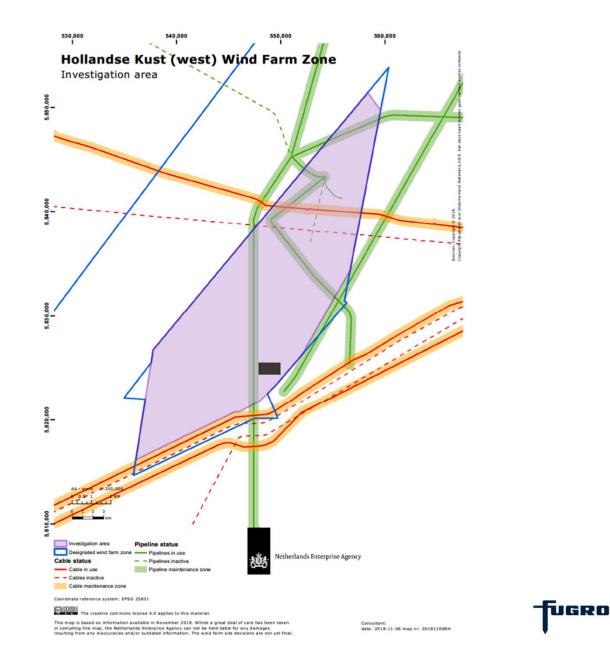
The resulting dataset should allow developers to **reduce the uncertainties in the metocean conditions** and;

Carry out more accurate calculations of the annual energy yield; Calibrate and/or validate metocean models available for the wind farm design.

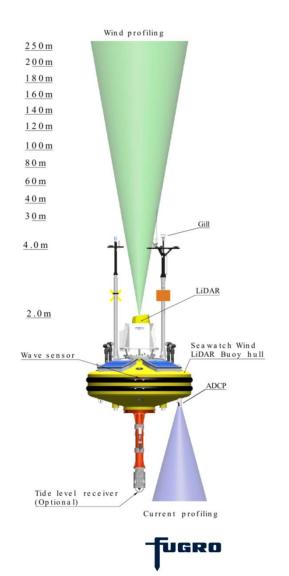
Project Location

2 Seawatch Wind LiDAR Buoys deployed in parallel

3 stations: HKWA, HKWB, HKWC


Data collected from February 2019 onwards

Buoys were deployed approximately 15 NM offshore

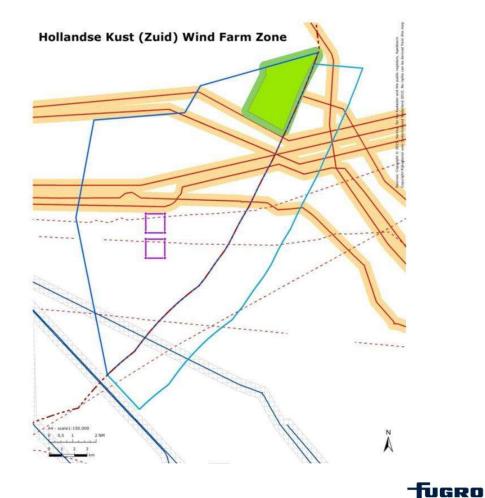

Water depths of 22 m and 30 m

Parameters observed

- - Speed
 - Direction
 - Turbulence intensity
 - Inflow angle
 - Wind shear/veer
- Wave
 - Height
 - Period
 - Direction

- Wind at 11 elevations up to 250 m Current profile down to 22 m / 30 m
 - Water temperature
 - Atmosphere
 - Pressure
 - Humidity
 - Temperature
 - Wind speed (mast top, 4m)
 - Water level or relative tide

HKZ – RVO - June 2016 – June 2018


2 SeaWatch Wind LiDAR buoys deployed

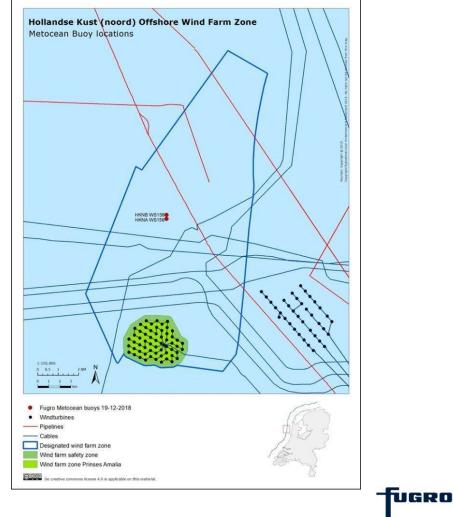
Parameters:

- Mooring at 23 m water depth
- Wave height, period and direction
- Current profile (22 m) and water temperature
- Wind speed and direction at 11 elevations
- Air pressure
- Air humidity and temperature
- Water level (tide)

Wind observations

Wind speed and direction, turbulence intensity, inflow angle and wind shear/veer

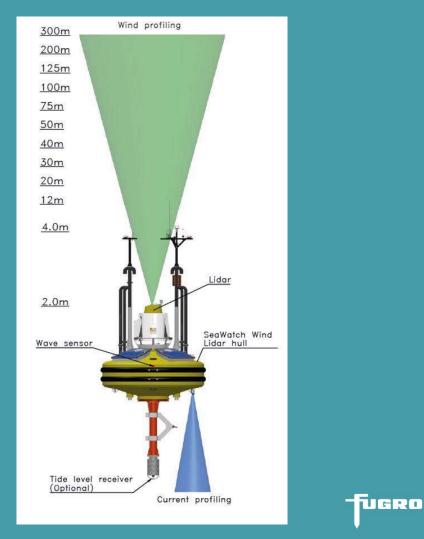
HKN – RVO - April 2017 – April 2019


2 SeaWatch Wind LiDAR buoys deployed

Parameters:

- Mooring at 23 m water depth
- Wave height, period and direction
- Current profile (22 m) and water temperature
- Wind speed and direction at 11 elevations
- Air pressure
- Air humidity and temperature
- Water level (tide)

Wind observations

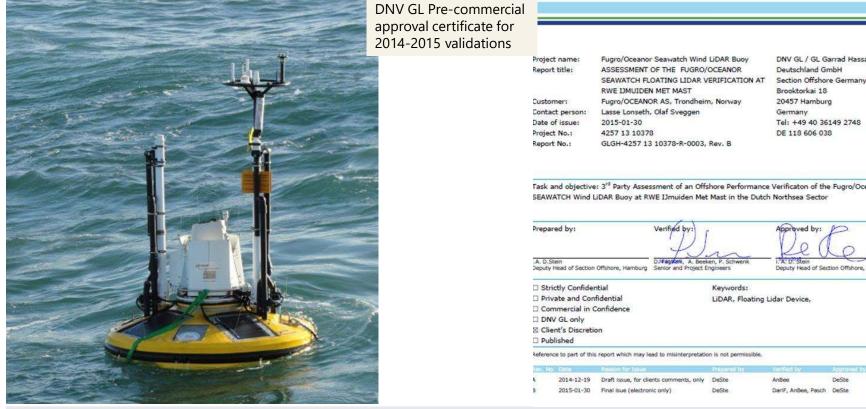

Wind speed and direction, turbulence intensity, inflow angle and wind shear/veer

Fugro SEAWATCH Wind LiDAR Buoy

Building upon proven technology:

A compact, proven measurement buoy that includes wind profile, waves, current profile, and meteorology

Replaces Conventional Met Masts


High reduction in:

- Construction time before first data
- Foundations complexities
- Difficulties to access and crew transfer (safety)
- High cost of design, installation and maintenance

fugro

SEAWATCH Wind LiDAR Buoy - Approval Pre-commercial

"An evaluation of the Fugro/Oceanor SWL Buoy floating LiDAR system was completed by comparing its measurements against data from the IEC-compliant IJmuiden met mast. Sufficient data were collected to allow an assessment in line with the Roadmap. In the IJmuiden offshore trial very encouraging results were indeed obtained. DNV GL concludes that the FO SWL Buoy system has demonstrated its capability to produce accurate wind speed and direction data across the range of sea states and meteorological conditions experienced in this trial (i.e. up to about 5.8 m significant wave height and 9.8 m maximum wave height and 10 min averaged wind speeds up to 26 m/s). Furthermore, it has recorded excellent availability throughout the 6 month period and demonstrated structural survivability in the met-ocean conditions present from early spring."

DNV GL / GL Garrad Hassan Deutschland GmbH Brooktorkai 18 20457 Hamburg Germany Tel: +49 40 36149 2748 DE 118 606 038

FUGRO

Task and objective: 3rd Party Assessment of an Offshore Performance Verificaton of the Fugro/Oceanor SEAWATCH Wind LiDAR Buoy at RWE IJmuiden Met Mast in the Dutch Northsea Sector

Prepared by: A. D.Stein Jeputy Head of Section Offshore, Hamburg			Verified by:	1	Approved by:		
			D. Fag Zani, A. Beeken, P. Schwenk Senior and Project Engineers		I.A. D. Stein Deputy Head of Section Offshore, Hamburg		
Strictly Confidential			Keywords:				
Private and Confidential			LiDAR, Floating Lidar Device,				
Co	mmercial in C	Confidence					
	V GL only						
I Cli	ent's Discreti	on					
D Pu	blished						
Refere	nce to part of this	s report which may le	ad to misinterpretation	on is not permissibl	e.		
120	o. Dete	Reason for Issue		Prepared by	Verified by	Assicated by	
4	2014-12-19	Draft issue, for clie	ants comments, only	DeSte	AnBee	DeSte	
в	2015-01-30	Final Isue (electron	tic only)	DeSte	DariF, AnBee, Pasch	DeSte	

Seawatch Wind LiDAR buoy – Sensors

PARAMETER

Wave height, period and direction:
Current profile and water temperature:
Wind speed and direction:
Wind speed and direction profile:
Air pressure:
Air humidity and temperature:
Water level (Tide):

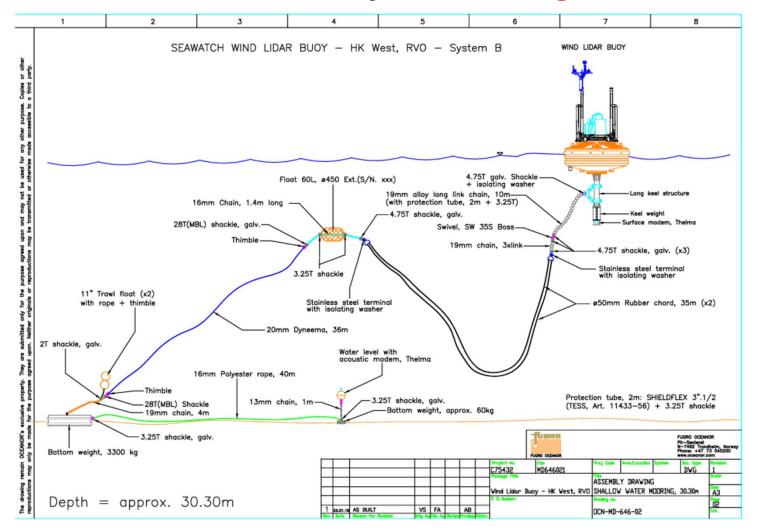
MANUFACTURER AND MODEL Fugro WaveSense 3 Nortek Aquadopp Profiler 600 kHz Gill Windsonic ZephIR 300 LiDAR Vaisala PTB330 Vaisala HMP155 Thelma Water Level Sensor

Seawatch Wind LiDAR buoy – Redundancy & backup

Power

- 4 independent fuel cells and compartments
- 3 different sources (fuel cells, solar panels, lithium batteries)
- 9 months autonomy

Equipment/Sensors


- 3 different compasses + DGPS
- 2 Met stations (1 on the LiDAR + 1 in the mast)

Data Collection

- Raw wind data (10 min average + scanning frequency/pattern of Zephir LiDAR (1 Hz)) stored internally in the LiDAR + in onboard datalogger
- Raw current data stored internally in the current meter + in onboard datalogger
- Raw wave data stored internally in the wave sensor (= onboard datalogger)
- Raw and processed wind data (10 min average + 1 Hz) stored in the datalogger
- All other data stored in the datalogger
- All 10 min data transmitted to shore in real time

Seawatch Wind LiDAR buoy – Mooring

FUGRO

Quality Assurance

Of the system and collected metocean data

Quality Assurance

Measurement System Quality

- Offshore Wind Accelerator (Carbon Trust OWA) Type Validated Pre-commercial stage system according to OWA roadmap
- Manufacturing according to ISO standard ISO9001 compliance since 1985, ISO9001:2008
- Factory calibrated sensors LiDAR onshore validated against UK met mast
- Factory Acceptance Test
- OWA Unit Validated Pre-deployment system validation min 40 measurements in each wind class

Data Validation

 Comparison with nearby similar measurements (wind and waves) performed by Deltares

Double Measurements

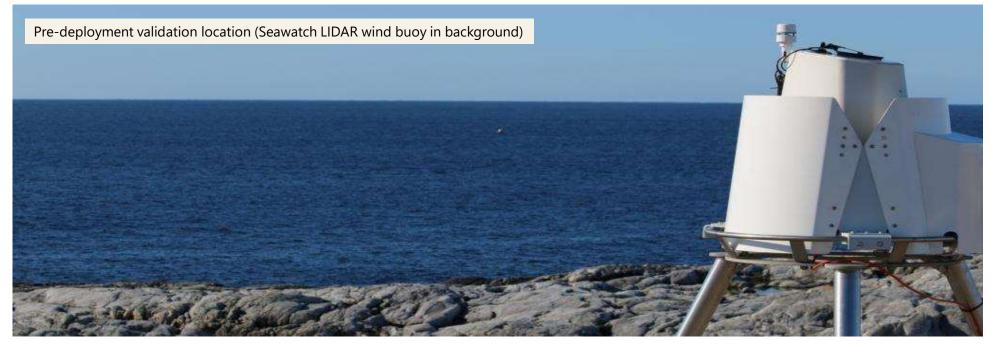
Comparison between two SWLB as one redundant system

UGRO

SeaWatch Wind LiDAR Buoy - Validation process

Pre- Commercialisation validation	LIDAR Supplier validation	Project validation	Project validation
OWA Type Validation Approval by DNV GL:	Pre-supply Approved by DNV GL:	OWA Pre-Deployment Approved by DNV GL:	Met, wave and current validations
(RWE) IJmuiden IEC- compliant met mast comparison	Pershore IEC met mast comparison, UK Each unit	Titran, Frøya 2019	Deltares independent validation reports 2019 - ongoing
2014 (5.8m Hs 9.8m Hmax)	Completed	Completed	Deltacres Enabling Delta Life
			TUGRO

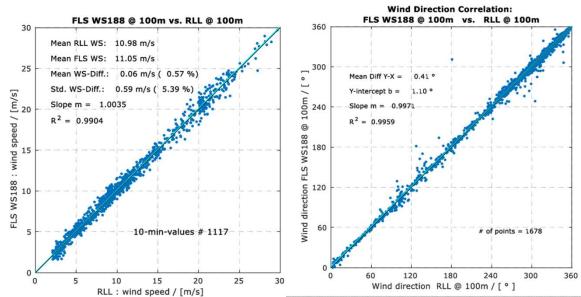
Pre/Post - deployment validation site: Titran, Frøya



Positions of SEAWATCH Wind LiDAR Buoy and Land LIDAR at the Island Frøya

Pre/Post - deployment validation – Titran, Frøya

- Pre- and post validation site approved by DNVGL
- Onshore LiDAR reference at Stabben Fort is established; standard anemometry reference masts (NTNU [Norwegian University of Science & Technology]) available
- More than ten SWLB successfully validated at site since March 2015



Wind LiDAR buoys – pre-deployment validation results

Mean Offset (OFF_{mwd}) accuracy for wind direction (WD) has been a significantly improved from Borssele, HKZ & HKN campaigns. Achieved by using a differential GPS as heading.

Buoy no	Validation period	Max WS	
WS188	03/01 - 20/01/2019	25 – 33.3 m/s	
WS187	04/01 - 21/01/2019	25 – 30.1 m/s	
WS170 *	16/06 - 11/08/2019	23 – 28.6 m/s	

* In situ validation at HKW

Correlation of LIDAR buoy and Land LIDAR for 100 m height (buoy WS188): Wind Speed (left) and Wind Direction (right)

Data reports

https://offshorewind.rvo.nl/windwaterw

Data Set types

1st year Feb 2019 – Jan 2020:

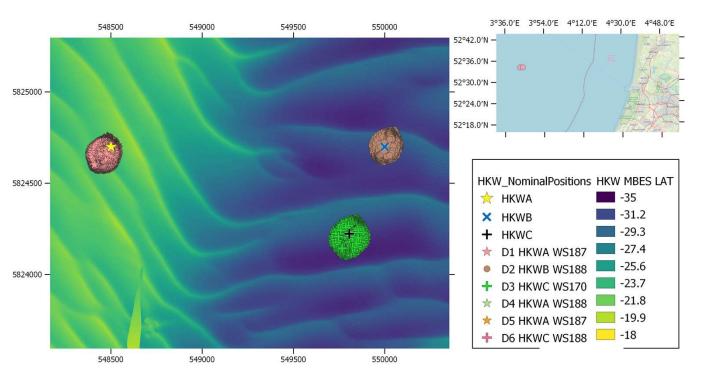
- To be published soon
- Data & descriptive report (PDF)
- Deltares validation report (PDF)
- Raw data files (Excel)

2nd year Feb 2020 – Jan 2021:

- Monthly data and descriptive reports (PDF)
- Monthly validation reports (PDF)

	Netherlands Enterprise Agency		
Home Hollandse Kust (noord) Hollandse Kust (west) Hollandse	Kust (zuid) TNW IJmuiden Ver Ancillary		
Metocean Feasibility Report	🔻 Metocean Database		
Metocean Study (Feasibility report) - DHI Metocean Study (Appendices D, E, F and EVA of the Feasibility report) - DHI	The Metocean Data Portal can be accessed through https://www.metocean-on- demand.com/. Please open this link in Google Chrome for best performance of the Data Portal.		
Validation Metocean Campaign HKW	The results outside the Hollandse Kust (noord) Wind Farm Zone (HKN WFZ)		
Explanatory memo Pre-deployment Validation WS187 and WS188 - DNV GL Pre-deployment validation report WS187 - DNV GL Pre-deployment validation report WS188 - DNV GL	provided in the Metocean Data Portal are NOT aimed to serve as input for design. Results outside the HKN WFZ are aimed to support feasibility level studies with metocean data to be expected on the IJmuiden-Ver, Ten Noorden van de Waddeneilanden and Hollandse Kust (west) Wind Farm Zones. No certification body is requested to certify the results of the Metocean Data Portal outside the HKN WFZ		

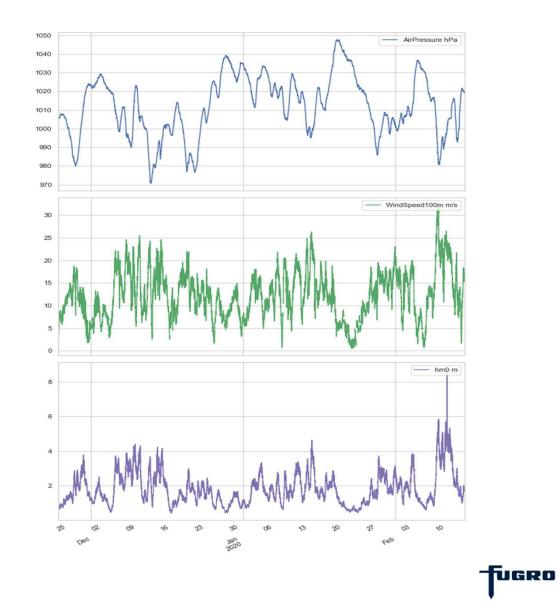
fugro


HKW Measurement Summary

Note: Year 1 report and data submission outstanding: <u>Preliminary discussion only</u>

HKW Wind Farm Zone

- Two stations HKWA and HKWB established and maintained throughout the project since 2019
- 3rd station HKWC established in June 2019
- An operational backup system kept ready on shore
- High availability ensured by swapping the operational backup system with an active offshore station
- The active buoy then serviced onshore and prepared as operational backup ('leap frogging')



HKW Wind Farm Zone – Preliminary Results

Very good data return in spite of harsh conditions at site and winter-time challenges

6 deployments during year 1

Example data from deployment 5

HKW Wind Farm Zone – RVO 2019-2021 Preliminary Results Year 1

Environmental conditions experienced at HKW Wind farm

Parameter		Value	Date
Highest Significant Wave height	m	8.7	Feb 2020
Max wave height	m	10.0	Feb 2020
Highest 10 min Average Wind speed (30 m)	m/s	28.6	Feb 2020
Highest 10 min Average Wind speed (250 m)	m/s	39.7	Feb 2020

HKW Wind Farm Zone – Preliminary Results

% Data Return (system availability wind speed & direction, waves, currents, other)

	Wind	Waves	Water Level	Currents	Air Pressure	Temperature
D1	86.0	99.8	92.5	98.1	100.0	97.6
D2	81.1	99.0	94.6	80.4	100.0	89.4
D3	98.0	100.0	55.0	83.5	100.0	97.4
D4	64.1	99.9	90.6	100.0	100.0	99.4
D5	98.4	99.6	94.0	99.5	99.6	98.2
D6	32.6	98.8	94.9	98.2	99.0	96.9

Good data return in spite of harsh conditions at site and winter-time challenges

Operational Experience

Reasons for operations

All deployed buoys had their scheduled service visits for refueling but there were a number of occasions we had to perform some emergency response operations.

Friday the 7th of February 2020 we received a **drift alert that on of our buoys was gone adrift.** The buoy was recovered in Scheveningen and brought for service. After service, the buoy was made ready for redeployment.

Operational Challenges

Vessels and their challenges

- 8 third party vessel hired
- On average vessels were on hire for 2 days
- Spot market vessel availability is not always guaranteed
- Suitability of vessel equipment was not always guaranteed
- Crew was sometimes unfamiliar with equipment and intended operations
- COVID-19 challenges

Operational Challenges

Maintenance & emergency response operations

- Weather windows were usually narrow (max. 1m wave and 20 knt windspeed)
- Fast-track mobilisation
- Fast-track familiarisation with Fugro HSSE principles
- Fast-track introduction to project specifics
- Lifting operations and guidelines
- Availability of safety equipment on the vessels
- Remote support due to COVID-19

fugro

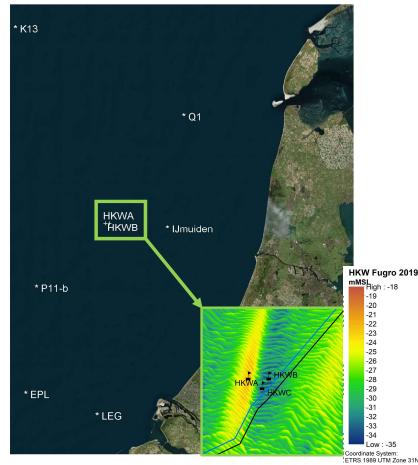
Operational challenges overcome

Results

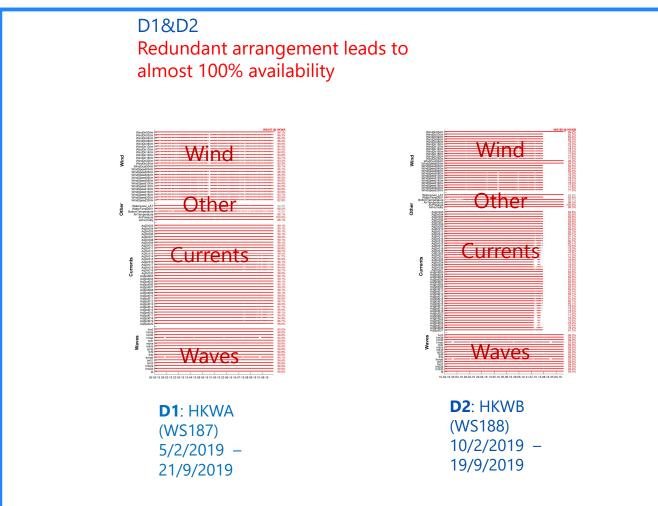
- 7 successful operational site visits
 - Suitable vessels available
 - Goals achieved
 - Safe operations: No injuries
 - No or only minor damage to equipment
- 1 unsuccessful operational site visit
 - During mobilisation LiDAR failure
- Numerous improvements on;
 - Crew safety
 - Equipment and Procedures
 - Fast-track of third party hire
 - Communication with stakeholders
 - Trained service engineers based in the Netherlands

fugro

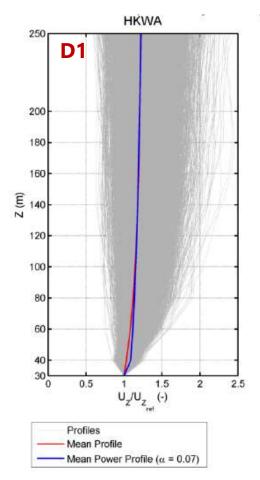
Data evaluation - Deltares

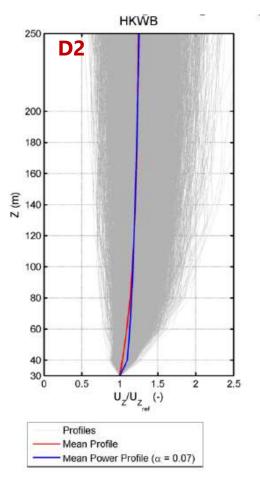

HKW – Field Data Validation: Approach

HKWA, HKWB and HKWC observations validated


Wind, waves, air and water temperature, air pressure, water levels and currents validated by intercomparing (HKWA vs HKWB or HKWC) in overlapping periods and against reliable observations from fixed North Sea stations (see map), 3D hydrodynamic model results and reanalysis (ERA5) wind and wave data.

The quantitative assessments are enhanced with qualitative assessments of general data characteristics, such as vertical profiles of the wind and current speeds.

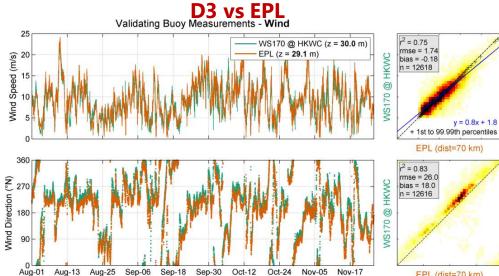

HKW – Field Data Validation: Availability



HKW – Field Data Validation - Wind

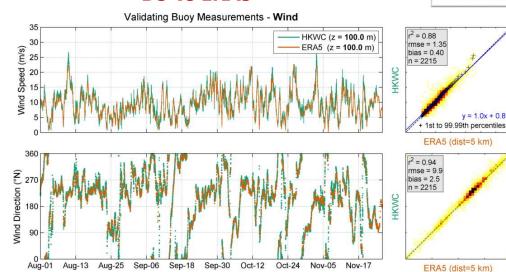
D5 vs D6

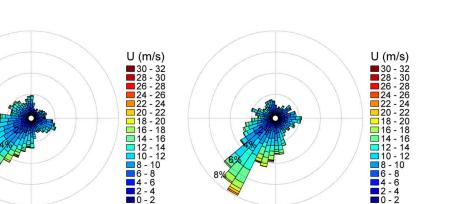
 Table 3.3: Statistical comparison between the winds from the buoys HKWA (D5) and HKWC (D6) with elevation (from 18-Dec-2019 09:20:00 until 07-Feb-2020 18:40:00).


		Wind Speed				Wind Direction		
Elev. (m)	r ² (-)	Bias (m/s)	Sym. Slope (-)	n (-)	r ² (-)	Bias (°N)	n (-)	
4	0.98	-0.04	1.00	7017	0.98	-0.5	7017	
30	0.97	0.00	1.00	1909	0.99	1.4	1909	
40	0.98	-0.00	1.00	1913	0.99	1.4	1913	
60	0.98	-0.00	1.00	1911	0.99	1.5	1911	
80	0.98	-0.01	1.00	1838	0.99	1.4	1838	
100	0.99	0.02	1.00	1839	0.99	1.4	1839	
120	0.99	0.02	1.00	1838	0.99	1.3	1838	
140	0.99	0.03	1.00	1845	0.99	1.3	1845	
160	0.99	0.02	1.00	1847	0.99	1.3	1847	
180	0.99	0.03	1.00	1839	0.99	1.2	1839	
200	0.99	0.02	1.00	1841	0.99	0.9	1841	
250	0.99	0.00	1.00	1830	0.97	0.6	1830	

Deltares

Enabling Delta Life 🚬


HKW – Field Data Validation - Wind D3 vs ERA5



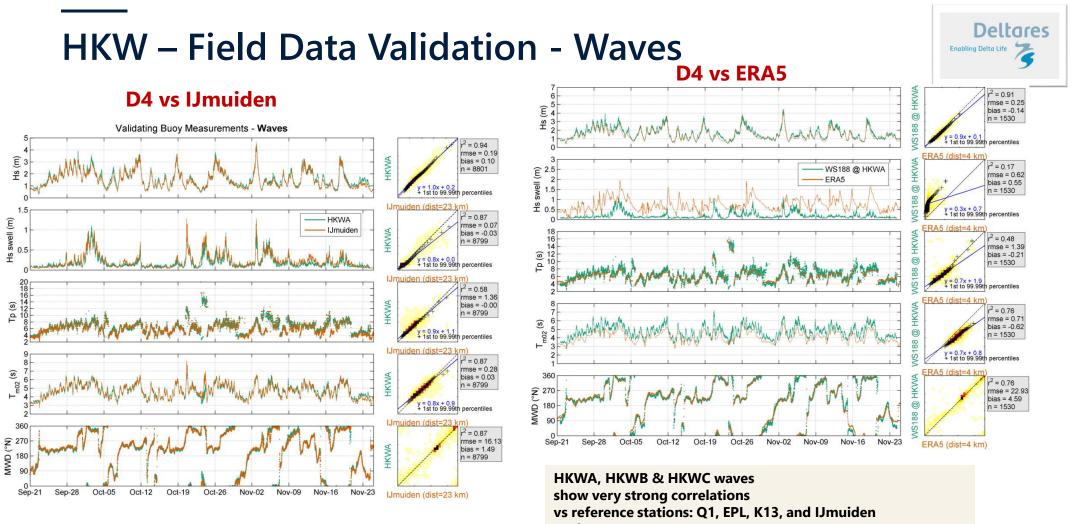
r² = 0.83 rmse = 26.0 bias = 18.0 n = 12616

EPL (dist=70 km)

y = 0.8x + 1.8

HKWA, HKWB & HKWC Wind Speed & Direction show very strong correlations

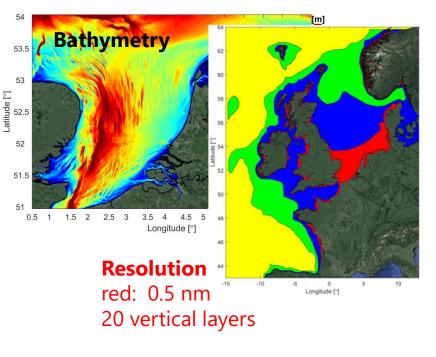
- vs reference stations: Q1, EPL, LEG, K13 (anemometer & LiDAR) and
- vs ERA5


WS170 @ HKWC (z = 30.0 m)

EPL (z = 29.1 m)

fugro

Deltares


Enabling Delta Life

And vs ERA5

FUGRO

HKW – Field Data Validation - Currents and water levels

HKWA - 1.28 m r² = 0.93 rmse = 0.09 Nater Level (m, MSL) Ε bias = 0.00 - 1.28 | 0 HKWA y = 0.90x + 0.02Validating Buoy Measurements - Currents (original) $r^2 = 0.86$ D3 WS170 @ HKWC Current Speed (m/s) 1.25 rmse = 0.09 HKWC bias = 0.02 n = 16013 0 0.75 VS170 0.5 02 y = 1.04x + 0.01Aug-01 Aug-13 Aug-25 Sep-06 Sep-18 Sep-30 Oct-12 Oct-24 Nov-05 Nov-17 3D DCSM-FM 360 r² = 0.49 Current Direction (°N) d=3m rmse = 24.24 HKWC. bias = 1.35 270 n = 16013 (8) 20 Aug-01 Aug-13 Aug-25 Sep-06 Sep-18 Sep-30 Oct-12 Oct-24 Nov-05 Nov-17 **3D DCSM-FM**

Validating Buoy Measurements - Water Level (total)

Deltares Delft3D Flexible Mesh – Dutch Continental Shelf model (DCSM-FM) run purposely for these validations

TUGRO

Closing Remarks

HKW Deltares Validation Assessment - preliminary

The overall conclusion of the validation is that the quality of the HKW data is high and the dataset trustworthy.

This makes the dataset, which is rather comprehensive, including vertical wind and current profiles and directional wave spectra, relatively useful and of interest for site study analyses.

Together we create a safe and liveable world

Thank you for your time

Fugro Team

Webinar RVO October 2020

Closing the webinar

Please fill in the questionnaire

You can watch this webinar again and download the powerpoint presentation and the list with questions and answers from: https://offshorewind.rvo.nl

Thank you for participating in this webinar

All webinars about the Hollandse Kust (west) Wind Farm Zone can be found on https://offshorewind.rvo.nl