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Subscripts
Sea Wind-sea partition of a sea state
Swell Swell partition of a sea state
Tide Tide partition of the surface elevation
Residual Surge partition of the surface elevation
Mp Most probable maximum (also denoted mode)
HKZ Hollandse Kust (zuid)
HKN Hollandse Kust (noord)
HKZWFZ Hollandse Kust (zuid) Wind Farm Zone
HKNWFZ Hollandse Kust (noord) Wind Farm Zone
HKW Hollandse Kust (west)
IV IImuiden-Ver
TNW Ten Noorden van de Waddeneilanden
SW Spectral Wave model
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Definitions
Time Times are relative to UTC
Level Levels are relative to local LAT (if not specified otherwise), however graphs are relative to MSL
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Direction Wind: °N coming from
Current: °N going to
Waves: °N coming from
Xiv 11822658_MetOceanStudy_Hollandse_Kust_(west)_Final / nafe/fld/bri/mce/mgolybr / 2019-03-12






DA

Symbols

Latin characters

c Wave celerity
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Introduction

Rijksdienst voor Ondernemend Nederland (RVO.nl) in September 2018 awarded DHI
(contract number: WOZ 2180106 — dated on September 13t 2018) to establish feasibility level
study of metocean conditions at IJmuiden-Ver, Ten Noorden van de Waddeneilanden and
Hollandse Kust (west) and the areas within these. Apart from a comprehensive report
containing the methodology and analysis, a web-based digital database was also required.

The Ministry of Economic Affairs and Climate Policy introduced a roadmap towards 4,500 MW
offshore wind power in the Netherlands. The road map sets out a schedule of tenders offering
700 MW for development each year in the period 2015 — 2019. Apart from Borssele (1,400
MW), Hollandse Kust (zuid) (1,400 MW) and Hollandse Kust (noord) (700 MW) wind farms,
three more areas are designated as wind farm zones after 2024: Hollandse Kust (west), Ten
Noorden van de Waddeneilanden and 1Jmuiden-Ver. Figure 1.1 shows a schematic
representation of these wind farm zones and the planned timetable for related tenders to be
issued.

RVO.nl requires the establishment of meteorological and oceanographic (metocean) conditions
to serve as a feasibility level study. In parallel to this, RVO had also contracted DHI to provided
detailed metocean data (and database) to serve as input for design, installation and
maintenance of wind turbines, inter-array cables, substations and their support structures at
Hollanse Kust (noord) Wind Farm Zone (HKNWFZ) [1].

The overall objective of the study undertaken by DHI and presented in this report was to provide
accurate metocean conditions (wind, wave, water level and current) for IJmuiden-Ver, Ten
Noorden van de Waddeneilanden and Hollandse Kust (west) offshore wind farms. The
metocean conditions have been established based on numerical modelling and on performing
analyses on the modelling results. A comprehensive web-based database is provided to
RVO.nl*, which enables users to access the modelling data and the analysis results through a
user-friendly interface.

This report presents feasibility level information on the meteorological and oceanographic
(metocean) conditions for IJmuiden-Ver, Ten Noorden van de Waddeneilanden and Hollandse
Kust (west) wind farm areas. For feasibility level study, no detailed bathymetry of the windfarm
zones is available and model results are not validated with field measurements in the windfarm
zone.

It is noted that data applied in this metocean study was validated against all the measurement
data at the Hollandse Kust (zuid) and Hollandse Kust (noord) Wind Farm Zone available by
August 2018.

In order to establish the metocean conditions, DHI performed high-resolution numerical
modelling covering the period 1979-2018 (+39 years) and state-of-the-art analyses, the results
of which are presented in this report.

It must be mentioned that this report contains many references to DHI’'s comprehensive study
for the Hollandse Kust (zuid) and (noord) offshore wind farms [2] (herein referred to as HKZN
study), available from

. In addition, references have been
made to DHI's study for Hollandse Kust (noord) as mentioned above [1].




https://offshorewind.rvo.nl/file/view/53715452/Report+-+Metocean+Study%2C+version+September+2017+-+DHI

https://offshorewind.rvo.nl/file/view/53715452/Report+-+Metocean+Study%2C+version+September+2017+-+DHI

https://www.metocean-on-demand.com/RVO/#/main
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Figure 1.1  The road map towards 4,500 MW offshore wind power in the Netherlands.

The green areas are the wind farms currently in development. The areas in dark green are
the already existing offshore wind farms?

2 https://offshorewind.rvo.nl/file/view/55039488/Map%3A+Wind+Farm+Zones+in+the+Netherlands
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This report is arranged as follows:
. Section 2 provides the Executive Summary

. Section 3 presents the data that were used for establishing, calibrating and validating the
numerical models such as measurements acquired from RVO.nl and from other sources,
bathymetry data, wind data and satellite measurements

* Sections 4 & 5 summarise the hydrodynamic and wave models used to establish the data
for this project and also provide details of the model set-up and model validation against
measurements

»  Sections 6 presents the analysis points within the wind farm areas that were discussed in
more detail

»  Section 7 includes analyses of wind, waves, currents and water level normal conditions

* And Section 8 contains the results of extreme metocean conditions based on J-EVA method
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Executive Summary/Samenvatting DH; EI §)

2.1

Executive Summary/Samenvatting

In English

This report provides feasibility level information on the meteorological and oceanographic
(metocean) conditions for the IJmuiden-Ver, Ten Noorden van de Waddeneilanden and
Hollandse Kust (west). The results provided here are NOT aimed to serve as input for design
and are aimed to support feasibility level studies with metocean data to be expected on these
wind farm sites. This report further contains the basis for the modelling data that was initially
established for design purposes in Hollandse Kust (noord).

DHI established dedicated high-resolution state-of-the-art numerical models (based on MIKE
Powered by DHI software package) covering the period from 1979 to 2018 to provide metocean
conditions in the Dutch North Sea area. The models were forced with corrected (by DHI)
wind/pressure field data from the Climate Forecast System Reanalysis (CFSR). An extensive
validation of the modelling results was conducted using satellite and local measurements. The
validation showed very good model performance and thus ensured accurate and high-quality
metocean conditions at the desired areas. It is however noted that the metocean data in the
wind farm sites could not be validated against measurements at these sites. Several studies on
collecting data at the wind farm sites Hollandse Kust (west), Ten Noorden van de
Waddeneilanden and 1IImuiden-Ver sites are planned or on-going.

Normal metocean conditions are described in detail and were based on the +39 years of
modelling results. Extreme conditions were established for wind, current and water levels for
return periods up to 1,000-years and for waves (significant wave height, maximum individual
wave height and maximum crest heights) for return periods up to 10,000 years using advanced
statistical methods. Joint probability of metocean conditions is also provided within this report.

A comprehensive web-based digital database is provided, which enables users to access the
modelling data and the analysis results through a user-friendly web interface. The results are
available in a large area covering Hollandse Kust (noord), Hollandse Kust (west), IJmuiden-Ver
and Ten Noorden van de Waddeneilanden and areas in between and further offshore as shown
in Figure 2.1.
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Figure 2.1 The database covered area (outer purple line) shown together with Hollandse Kust (zuid),
(noord), (west), IJmuiden-Ver and Ten Noorden van de Waddeneilanden offshore wind
farms
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The advanced extreme value analysis results were performed at all model element points
(~56,000 elements). The detailed results are discussed at one point within each of the IJmuiden-
Ver (1JV), Ten Noorden van de Waddeneilanden (TNW) and Hollandse Kust (west)(HKW) wind
farm areas in this report (see Section 6 for more details on the anlysis points). Table 2.1
summarizes the extreme value results at the analysis location at each wind farm. Table 2.2
contains the mean and maximum wind speed at the three analysis locations within the three
wind farms.

Please note that there is a considerable differences in the sea state conditions within the three
wind farms. Generally, the Ten Noorden van de Waddeneilanden experiences harsher sea
states (in terms of extreme values) compared to Hollandse Kust (west) and IJmuiden-Ver. It is
important to note that there are noticeable differences with the dominant current directions as
well as wave and wind direction to a lesser degree.

Table 2.1 Summary of the extreme values at HKW, TNW & IV

Extreme value (omni) - Return Period [Year]
Variable HKW TNW v

1 50 1 50 1 50
Wind speed, 100mMSL, 10-min [m/s] 33,5 41,7 | 336 | 415 33,8 42,0
Water level, Total, High [mLAT] 2,7 3,4 2,8 3,5 2,7 3,4
Water level, Total, Low [mLAT] -0,5 -1,0 -0,5 -1,0 -0,4 -0,9
Water level, Residual, High [m] 1,5 2,3 1,4 2,2 1,4 2,2
Water level, Residual, Low [m] -0,9 -1,5 -0,9 -1,4 -0,9 -1,4
Current Speed, Total, Depth-Averaged [m/s] 1,0 1,1 0,8 0,9 1,0 1,1
Current Speed, Residual, Depth-Averaged [m/s]| 0,5 0,9 0,6 0,9 0,6 0,9
Significant wave height, 3hr, HmO [m] 5,6 7,3 6,8 9,1 5,7 7,7
Peak wave period, Tp, ass. with HmO,3h [s] 10,2 12,2 11,6 13,8 10,6 12,8
Maximum wave height, Hmax [m] 10,4 13,9 12,6 17,2 10,6 14,5
Wave period, T, ass. with Hmax [s] 8,9 10,5 10,1 11,8 9,1 10,8
Maximum crest level, Cmax, SWL [mSWL] 6,6 9,1 7,8 11,1 6,7 9,6
Maximum crest level, Cmax, MSL [mMSL] 7,7 10,8 9,1 12,8 7.8 11,1
Maximum crest level, Cmax, LAT [mLAT] 8,6 11,6 10,1 13,8 8,7 12,1

Table 2.2 Annual statistics of wind speed [m/s] at Hollanse Kust (west), IJmuiden-Ver and Ten
Noorden van de Waddeneilanden

Location Parameter Mean Max
U1o 8.2 29.6

HKW
U100 9.8 35.2
U1o 8.3 30.2

1JV
U100 9.9 35.9
U1o 8.5 30.2

TNW
U100 10.1 35.9
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2.2

)

In Dutch

Dit rapport bevat informatie over de meteorologische en oceanografische condities voor
windgebieden IJmuiden-Ver, Ten Noorden van de Waddeneilanden en Hollandse Kust
(west). De resultaten die worden gepresenteerd in dit rapport zijn NIET bedoeld voor ontwerp;
de meteorologische en oceanografische informatie kan worden gebuikt in haalbaarheidsstudies
naar de ontwikkeling van deze windgebieden. Daarnaast bevat het rapport alle invoergegevens
die gebruikt zijn voor het simuleren van de waterbeweging (stroming en golven), alsmede de
kalibratie en validatie van de numerieke modellen die worden gebruikt om de normale en
extreme condities in de windgebieden Hollandse Kust (west), Ten Noorden van de
Waddeneilanden en IJmuiden-Ver af te leiden.

Voor de bepaling van deze condities heeft DHI een geavanceerd hydrodynamisch model
ontwikkeld met een hoge resolutie. Het model is gebaseerd op het MIKE Powered by DHI
software pakket en is gebruikt om een groot aantal meteo-oceanografische condities te
simuleren voor de periode van 1979 tot 2018. Als randvoorwaarden voor het model zijn
wind/druk velden gebruikt van de Climate Forecast System Reanalysis (CFSR) dataset van het
Amerikaanse National Centers for Environmental Prediction, USA (NCEP). Een uitgebreide
validatie van de modelresultaten is uitgevoerd met behulp van satellietgegevens en lokale
metingen. Deze validatie geeft een goede overeenkomst tussen de modelresultaten en
metingen. Resultaten konden echter niet vergeleken worden met metingen in de windgebieden
Hollandse Kust (west), Ten Noorden van de Waddeneilanden of IJmuiden-Ver. Studies om
veldgegevens te verzamelen in deze windgebieden zijn gepland of worden op dit moment
uitgevoerd.

De normale meteo-oceanografische condities zijn berekend op basis van de +39 jaar
modelresultaten. Extreme condities (met een herhalingstijd van 1.000 jaar) zijn berekend voor
wind, stroming, en waterstanden. Extreme golfcondities (met een herhalingstijd van 10.000 jaar)
zijn berekend (significante golfhoogte, maximale individuele golfhoogte en maximale
golfkamhoogte) op basis van geavanceerde statistische methoden. Dit rapport bevat ook
gegevens over de gecombineerde kansverdeling van verschillende meteo-oceanografische
condities.

Een uitgebreide digitale web-based database is opgezet, waarmee gebruikers via een
gebruiksvriendelijke web-interface toegang hebben tot alle meteo-oceanografische gegevens
van de windgebieden Hollandse Kust (noord), Hollandse Kust (west), IJmuiden Ver en Ten
Noorden van de Waddeneilanden. Ook in de gebieden rond de genoemde windgebieden zijn de
gegevens beschikbaar gemaakt, zoals aangegeven in Figuur 2.1.
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Figuur 2.1 Het gebied van de database (buitenste paarse lijn) samen met de windgebieden.

De resultaten van de geavanceerde extreme waarde-analyse zijn uitgevoerd op alle
rekenpunten (~ 56.000 elementen). De resultaten worden gerapporteerd op één punt binnen het
windgebieden Hollandse Kust (west), Ten Noorden van de Waddeneilanden en IJmuiden-Ver
(zie sectie 6). Tabel 2.1. geeft een overzicht van de extreme waarden in de 3 windgebieden voor
herhalingstijden van 1 en 50 jaar. Tabel 2.2 geeft de jaarlijks gemiddelde en maximale
windsnelheden op een hoogte van 10 en 100 m boven gemiddeld zeeniveau.

Er zijn aanzienlijke verschillen tussen de stromings- en golfcondities binnen de drie
windgebieden. Over het algemeen ervaart het windgebied Ten Noorden van de

Waddeneilanden hogere golven (in termen van extreme waarden) dan Hollandse Kust (west) en
IImuiden-Ver. Het is belangrijk op te merken dat er vooral verschillen zijn in de dominante
stroomrichtingen, de verschillen in golf- en windrichtingen tussen de 3 windgebieden zijn kleiner.

Tabel 2.1

Overzicht van extreme condities voor windgebieden Hollandse Kust (west), Ten Noorden

van de Waddeneilanden en IJmuiden-Ver.

Extreme value (omni) - Return Period [Year]
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Variable HKW TNW v
1 50 1 50 1 50
Wind speed, 100mMSL, 10-min [m/s] 33,5 41,7 33,6 41,5 33,8 42,0
Water level, Total, High [mLAT] 2,7 3,4 2,8 3,5 2,7 3,4
Water level, Total, Low [mLAT] -0,5 -1,0 -0,5 -1,0 -0,4 -0,9
Water level, Residual, High [m] 1,5 2,3 1,4 2,2 1,4 2,2
Water level, Residual, Low [m] -0,9 -1,5 -0,9 -1,4 -0,9 -1,4
Current Speed, Total, Depth-Averaged [m/s] 1,0 1,1 0,8 0,9 1,0 1,1
Current Speed, Residual, Depth-Averaged [m/s]| 0,5 0,9 0,6 0,9 0,6 0,9
Significant wave height, 3hr, HmO [m] 5,6 7,3 6,8 9,1 5,7 7,7
Peak wave period, Tp, ass. with HmO0,3h [s] 10,2 12,2 11,6 13,8 10,6 12,8
Maximum wave height, Hmax [m] 10,4 13,9 12,6 17,2 10,6 14,5
Wave period, T, ass. with Hmax [s] 8,9 10,5 10,1 11,8 9,1 10,8
Maximum crest level, Cmax, SWL [mSWL] 6,6 9,1 7,8 11,1 6,7 9,6
Maximum crest level, Cmax, MSL [mMSL] 7,7 10,8 9,1 12,8 7,8 11,1
Maximum crest level, Cmax, LAT [mLAT] 8,6 11,6 10,1 13,8 8,7 12,1
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DA

Overzicht van jaarlijks gemiddelde en maximale windsnelheden voor windgebieden

Tabel 2.2
Hollandse Kust (west), Ten Noorden van de Waddeneilanden en IIJmuiden-Ver.

Location Parameter Mean Max
Uio 8.2 29.6

HKW
U100 9.8 35.2
Uio 8.3 30.2

13V
U100 9.9 35.9
Uio 8.5 30.2

TNW
U100 10.1 35.9

The expert in WATER ENVIRONMENTS





10 11822658_MetOceanStudy_Hollandse_Kust_(west)_Final / nafe/fld/bri/mce/mgo/ybr / 2019-03-12





Data/Study Basis

3

3.1

)

Data/Study Basis

This section provides information about the various sets of measurement data provided by
RVO.nl and acquired by DHI, which were used to calibrate/validate the numerical models and
the input metocean data. It also presents the bathymetry data applied to make the high-
resolution computational mesh for the modelling process. The meteorological data (wind fields
& pressure) which were used as model forcing are also described in this section.

Bathymetry

This section provides information about the bathymetry data sources and processing applied to
establish the bathymetric basis for the hydrodynamic (HD) and wave (SW) modelling activities.

The bathymetry datasets used in the established models of this project comprised data provided
by RVO.nl covering the wind farm zones and the EMODnet data. The bathymetry data collected
by Fugro cover the Hollandse Kust (noord) (HKN) [3] and Hollandse Kust (zuid) (HKZ) areas
(see [4], [5], [6] & [7]). More details on the Fugro bathymetry data is provided in section 3.1 of

[1].

Additional high-resolution bathymetry was combined with the above-mentioned datasets. High-
resolution bathymetry and topography data are publicly available along the Dutch coast by
Rijkswaterstaat (Vaklodingen? - processed by Deltares). This bathymetric data is projected in
the UTM31N ETRS89, while the vertical datum is referred to MSL datum.

For areas other than HKN, HKZ and Dutch Coast, bathymetric data from Digital Terrain Model
(DTM) data products have been adopted from the EMODnet bathymetry portal*. This portal was
initiated by the European Commission as part of developing the European Marine Observation
and Data Network (EMODnet®). The EMODnet digital bathymetry has been produced from
bathymetric survey data and from aggregated bathymetry datasets collated from public and
private organisations. These have then been processed and quality controlled. The portal also
includes a metadata discovery service that gives information about the background survey data
used for the digital terrain model (DTM), their access restrictions, originators and distributors.
The DTM has a grid size of 0.125minute x 0.125minute and with the average water depth in
meters to LAT datum.

Data provided by RVO.nl and EMODnet datasets were converted to a MSL equivalent datum
(using the tidal levels provided in the database provided in 2016 [2]) before data were merged
and used to generate the bathymetry for the modelling activities. Figure 3.1 to Figure 3.4 show
the extent of bathymetry dataset (presented as scattered data points) provided by EMODnet and
Rijkswaterstaat (Vaklodingen) as used in establishing the computational mesh for this study.

The description of the survey and additional bathymetric data collected for this project is
summarized in Table 3.1.
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https://publicwiki.deltares.nl/display/OET/Dataset+documentation+Vaklodingen
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Bathymetry data sources applied

Table 3.1
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Figure 3.4 EMODnet bathymetry data covering the European waters. Image produced by DHI

3.2 Observations

This section provides a description of the ensemble of the metocean observations used in this
study for validation of the numerical models. A comprehensive list of the considered parameters
(e.g. wind, waves, currents and water levels) and their characteristics is set up here.

3.21 Wind

Offshore mast wind observations (wind speed and wind direction) have been mostly acquired
from the Royal Meteorological Institute of the Netherlands (KNMI)¢ and the executive agency of
the Ministry of Infrastructure and Water Management Rijkswaterstaat of the Netherlands
(referred as RWS in the next sections)’. Local wind observations collected during Fugro
measurement campaigns at the stations HKZA, HKZB, HKNA and HKNB in the framework of
the HKZ and HKN projects have been provided by RVO.nl8. Additional LiDAR wind
observations above 60m height at the stations EPL, K13a, LEG and MMIJmuiden have been
provided by the Energy research Centre of the Netherlands ECN? (via email correspondence).

6 https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens_Noordzee
7 https://waterinfo.rws.nl/#!/nav/publiek/
8 https://offshorewind.rvo.nl/windwaterzh

s https://www.windopzee.net/
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Available wind observations from previous studies [2] were updated to 2018 and new stations
were added. The new dataset provides wind observations at several heights over nearshore
and offshore areas from 1979 to present. The location of the stations and their characteristics
used in this study are shown in Figure 3.5 and Table 3.2. Figure 3.6 provides an overview of the

wind speed data availability over time (1979-2018).

Wind measurements )
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53°N 1
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KNMI 2011-2018
Rijkswaterstaat 08.2018-present
HKN 04.2017-06.2018

HKZ 05.2016-05.2017

OWEZ 07.2005-12.2010
FINO1 01.2004-03.2011
MMIJmuiden 11.2011-11.2015
IJmond KNMI 02.2001-09.2018
IJmuiden KNMI 1979-2018
Windfarms
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Figure 3.5
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Table 3.2 List of wind observations considered in this study
ETRS1989 | ETRS1989
Station UTM Zone | UTM Zone Heights MSL[m] Available period
3IN X[m] | 3INY [m]
Europlatform 542,238 5,902,126 63 91 116 141101552'\]2/311 216. 266. 191 01.01.2001-07.09.2018
(EPL) T ’ ' [EC,N] ' ' ’ 30.05.2016-31.12.2017
K14 514,803 5,896,678 10 07.12.2006-11.09.2018
546,027 5,753,353 10 [KNMI]
01.01.2001-07.09.2018
K13a 63, 91, 116, 141, %gg\ﬁgl 216, 266, 191 01.11.2016-31.03 2018
566,162 5,996,979 10 [KNMI]
01.01.2001-11.09.2018
LEG 63, 91, 116, 141, %gg\ﬁgl 216, 266, 191 1711.2014-31.12 2017
F16 608,758 6,079,292 10 01.01.2011-11.09.2018
F3 496,155 5,963,419 10 01.01.2011-11.09.2018
J6 630,090 5,942,675 10 01.01.2011-11.09.2018
L9 523,830 5,801,883 10 01.01.2011-11.09.2018
P11 577,053 5,863,764 10 01.01.2011-11.09.2018
Q1 583,948 5,838,366 10 07.08.2018-04.09.2018
HKNA 583,951 5,837,765 30,40,60,80,100,120,140,160,180,200 10.04.2017-31.07.2018
HKNB 568,791 5,795,617 30,40,60,80,100,120,140,160,180,200 10.04.2017-31.07.2018
HKZA 568,792 5,793,671 30,40,60,80,100,140,160,180,200 05.06.2016-05.06.2018
HKZB 594,100 5,829,394 30,40,60,80,100,120,140,160,180,200 05.06.2016-05.06.2018
OWEZ 656,296 5,917,486 21,70,116 01.07.2005-31.12.2010
Hoorn 529,369 | 5855476 10 26.05.1994-17.09.2018
(Tescherlling)
735,042 5,991,074 Met Mast WS 27, 58, 85, 92
MMIJmuiden (Met Met Mast WD 27, 58, 87
Mast IJmuiden) LIDAR 02.11.2011-11.03.2016
90,115,140,165,190,215,240,265,290,315
FINO1 605,643 5,813,673 33 2011-2016
IJmuiden coast 603,125 5,813,842 4.4 01.01.1979-18.09.2018
IJmond coast 542,238 5,902,126 0 30.01.2001-18.09.2018
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Figure 3.6  Wind speed data time coverage at the considered stations

3.2.2 Water level and current

Current and water level data was available from four LiDAR buoys deployed by RVO.nl. Two
buoys were located in each of HKN and HKZ Wind Farm Zones. HKZA and HKZB refer to the
buoys deployed in HKZ area, while HKNA and HKNB refer to the buoys deployed in the HKN
area. Because of the short distance separating buoys A and B in each wind farm zone, a
validation and quantification of the agreement between the buoys could be performed. The
measurements have a fixed averaging time period of 10 minutes and are available at every 2m
depth bin (for currents). Depth-averaged currents are calculated by averaging current bins
between 4m and 20m water depth. Besides the four LiDAR buoys deployed by RVO.nl at HKN
and HKZ, long-term current data at MMIJmuiden (provided by ECN) was used in this study as
well.

Regarding the water levels, long-term tidal data in the Dutch waters have been collected from
Rijkswaterstaat Data Portal'®. The data were recorded at water levels in centimetres relative to
Normaal Amsterdams Peil (NAP). Rijkswaterstaat indicates that the MSL is located 6cm above
NAP. For the purpose of calibration and validation of the HD model, the measured water level
data was converted to MSL.

10 nhttps://www.rijkswaterstaat.nl/water/waterdata-en-waterberichtgeving/index.aspx

The expert in WATER ENVIRONMENTS 17



https://www.rijkswaterstaat.nl/water/waterdata-en-waterberichtgeving/index.aspx



DA

Details of the current and water level measurement are listed in Table 3.3 and their location is
presented in Figure 3.7 to Figure 3.8. Figure 3.9 and Figure 3.10 show the time coverage of the
water level and current measurements used in this study. The measurements were used to
carry out comprehensive local hydrodynamic model (HDowr) calibration and validation process,
as described in Section 3.2.2. It is noted that data from some of the stations contain gaps and
erroneous data, which were removed during the comparison and analysis process.

[deg]

Bathymetry [m MSL]
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2- 0
-4- -2
6- -4
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-10- -8
-15--10
-20--15
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Figure 3.7  Location of current measurement stations used in the study
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Figure 3.8  Location of water level measurement stations used in the study
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Table 3.3 Characteristics of the water level and current observation stations applied in this study
ETRS89 ETRSS89
; UTM31 UTM31 . . .
Station Easting Northing Period Duration Provider Type of data
[m] [m]
04.2017 — Current, Water
HKNA 583,948 5,838,366 06.2018 313 days RVO.nl Level
04.2017 — Current, Water
HKNB 583,951 5,837,765 06.2018 201 days RVO.nl Level
04.2016 — Current, Water
HKZA 568,793 5,795,619 06.2018 1.1 years RVO.nl Level
04.2016 — Current, Water
HKZB 568,793 5,793,673 06.2018 1.5 years RVO.nl Level
MMIJmuiden 529,340 5,855,469 2011 - 2015 2.0 years ECN Current
Brouwerég‘i“’e”s‘;he 542,585 | 5735374 | 1994-2018 | 21.7 years RWS Water Level
Europlatform, EPL 518,882 5,760,829 1994 — 2018 1.0 year RWS Water Level
Eierland 620,138 5,894,882 1981 — 1983 24.0 years RWS Water Level
F16 566,164 5,996,976 2009 - 2016 5.8 years RWS Water Level
F3 610,813 6,079,819 1999 — 2006 3.0 years RWS Water Level
J6 496,709 5,963,122 2010 - 2016 5.7 years RWS Water Level
K13 514,616 5,896,433 1994 — 2018 20.3 years RWS Water Level
K14 542,241 5,902,123 2012 — 2017 5.8 years RWS Water Level
L9 630,088 5,942,671 2012 - 2017 4.8 years RWS Water Level
LEG 545,961 5,752,910 1994 - 2018 20.3 years RWS Water Level
Noordwijk 588,343 5,792,203 1994 — 2006 12.5 years RWS Water Level
Q1 577,333 5,864,584 2007 — 2017 8.8 years RWS Water Level
Vlaktevdraan 516,800 5,705,871 1994 - 2018 22.3 years RWS Water Level
Wierumergronden 695,110 5,930,990 1994 — 2018 23.9 years RWS Water Level
ljmuiden 603,085 | 5,813,701 | 2002-2018 | 14.6 years RWS Water Level
stroommeetpaal
Texel Noordzee 615,985 5,887,091 1994 - 2014 19.1 years RWS Water Level
Newhaven 292,535 5,629,702 1994 — 2014 19.0 years DHI Water Level
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Figure 3.9  Water level data time coverage at the considered stations
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Figure 3.10 Current speed data time coverage at the considered stations

An overview of the time series and scatter plot comparison between the depth-averaged
(calculated by DHI) current measurements at HKNA and HKNB (for the period used in this study
— please note that Fugro has been providing more measurement data which were not available
at the time of performing the modeling activities) are presented in Figure 3.11 to Figure 3.14.
From the comparison of the measurements between the two stations, it is observed that the
correspondence in terms of current speed is excellent, except for the period between July 18"
and August 1st, 2017, where notable discrepancies are observed (Figure 3.13). This is because
no HKNB current data at several levels were available.
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For the period between August 15t and December 15, 2017, measurements are only available
from HKNA (with some gaps between 28-08-2017 and 31-08-2017). The data could, however,
not be compared to HKNB since the HKNB current data for this period did not pass Fugro’s
quality assessment and were rejected. This had also been reported in Fugro monthly data
report [8] in its summary (page 2).

The following measurement periods were used by DHI in this study:

. HKNA: before June 11 and after September 1st, 2017 (Figure 3.11);
. HKNB: all periods except between July 18" and August 15, 2017 (Figure 3.12).
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Figure 3.12 Overview of water level and currents measurement at HKNB
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Figure 3.14  Scatter plot of observed current speed (left) and direction (right). HKNB is shown on the x-axis and HKNA
is shown on the y-axis

3.2.3 Waves

Wave observations are required to assess the quality of the numerical wave models. Similar to
the collection of wind observations, the wave dataset is based on the collection of observations
from different sources. Most of the wave data was provided by RWS (https://waterinfo.rws.nl/).
For each station, the integral spectral significant wave height parameters Hmo and associated
wave period Toz were provided for the latest measurement periods only. Request were sent to
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RWS to obtain longer time series of those wave parameters. Additional requests were sent to
obtain wave data at Eierlandse, K14, F16, F3, J6 and Q1 that are new stations considered in
this study (compared to [2]), and to update the previous datasets until 2018 at EPL, LEG and
K13a. Wave measurements from the campaign conducted by Fugro for RVO.nl between 2015
and 2018 at Borssele, HKZ and HKN were also considered in this study. The stations and their
characteristics are visualised and described in Figure 3.15 and Table 3.4. The wave data

coverage is presented in Figure 3.16.

Wave measurements (HmoO)
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Figure 3.15 Location of wave measurement stations
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Table 3.4 List of wave observations (Hmo) considered in this study

ETRS1989 ETRS1989 Water

Station UTM Zone UTM Zone depth Available period
3IN X [m] 3INY [m] [mMMSL]

Europlatform (EPL) 518,948 5,760,963 30 31.03.1989-10.10.2018
K14 542,238 5,902,126 29 25.02.2012-10.10.2018
K13a 514,803 5,896,678 29 28.04.1989-01.09.2018
LEG 546,027 5,753,353 24 31.03.1989-10.10.2018
F16 566,162 5,996,979 47 01.02.2009-10.10.2018
F3 608,758 6,079,292 46 17.12.2013-10.10.2018
J6 496,155 5,963,419 44 01.02.2009-10.10.2018
L9 630,090 5,942,675 26 25.02.2012-10.10.2018
Q1 577,053 5,863,764 28 01.02.2009-10.10.2018
HKNA 583,948 5,838,366 23 10.04.2017-31.07.2018
HKNB 583,951 5,837,765 23 10.04.2017-31.07.2018
HKZA 568,793 5,795,619 23 05.06.2016-05.06.2018
HKZB 568,793 5,793,673 23 05.06.2016-05.06.2018
Eierlandse 610,707 5,904,282 28 01.01.1980-06.11.2018
IJmuiden Stroommeetpal 603,087 5,813,697 16 31.10.2002-26.07.2018
IJmuiden Munitiestortplaats 572,328 5,822,748 25 01.04.1989-03.08.2016
FINO1 735,044 5,991,071 30 27.01.2004-03.03.2011
Borssele 1 502,405 5,728,451 32 11.06.2005-18.07.2016
Borssele 2 496,658 5,721,712 32 12.02.2016-07.07.2016
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Figure 3.16  Significant wave height (Hmo) data time coverage at the considered stations
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Atmospheric Models

The wind fields of two atmospheric models were considered as potential candidates for forcing
the numerical models (water level, current and wave models). A detailed study was conducted
on both datasets, KNW Harmonie (KNMI Wind Atlas, referred as Harmonie herein) and the
Climate Forecast System Reanalysis (CFSR).

Details of the Harmonie dataset and its validation against measurements is provided in [1]. After
comprehensive comparisons between CFSR and Harmonie (by performing wave modelling
using the two wind fields as forcing), DHI decided to use CFSR as the input for the numerical
modelings. This report only presents the results corresponding to CFSR.

The Climate Forecast System Reanalysis (CFSR)

Atmospheric data applied in this study (for forcing of the numerical hydrodynamic and wave
models and for other purposes) were adopted from the Climate Forecast System Reanalysis
(CFSR) atmospheric model established by the National Centre for Environmental Prediction
(NCEP). CFSR was designed as a global, high-resolution, coupled atmosphere-ocean-land
surface-sea ice system to provide the best estimate of the state of these coupled domains. This
model system uses synoptic data for initialisation. The atmospheric model included in the CFSR
modelling complex is GFS. Further details of CFSR are given in [9].

The data used for this study were available on an hourly basis from Januray 1%, 1979 to October
10, 2018. The 39-year data provides confidence for the calculation of extreme values. In
addition, due to its availability at a global scale, CFSR covers whatever hindcast model domain
that needs to be investigated. Moreover, DHI's previous experience using CFSR in the North
Sea has shown very good performance in terms of wind speed and direction.

The CFSR data cover the period from 1979 to 2010 (31 years), and since then the operational
re-forecast dataset (denoted CFSV2) was applied. Since CFSV2 is an operational dataset, it is
possible to use it later on to update the database in a consistent manner. The underlying model
in CFSV2 is the same as for CFSR; however, the spatial resolution of wind was increased from
0.3° to 0.2° (see Table 3.5), while the resolution of atmospheric pressure was 0.5° for the entire
period (interpolated to the same grid as the wind speed in this project). Hereafter, ‘CFSR’ will
refer to the combined CFSR and CFSV2 datasets.

CFSR output specifications

The CFSR parameters characteristics applied in this study are summarised in Table 3.6. In
CFSR, the wind speed at 10mMSL (U10) was calculated from the lowest level model wind speed
(~+20mMSL) using the surface-layer similarity theory, where the roughness length over water is
updated at each time step using the Charnock relationship [9].

The model values are instantaneous (‘snapshots’) and may be saved at arbitrary time intervals
from the model (every hour in CFSR). Hence, the model values are not inherently associated

with any time-averaging period like, for instance, synoptic measurements (typically 10-min for

wind data). However, the model values represent an area (grid cell) determined by the spatial
resolution of the forcing, model grid, etc, rather than a single point.

The model data have been referred to as a representative approximation of a 10-min average
values by some providers of meteorological data. However, the models generally produce a
smooth variation of the atmospheric parameters, and the fluctuations between each
instantaneous model grid value are usually small compared to synoptic measurements. Hence,
for practical applications such as extreme value assessment or load calculations (wind
associated with severe sea states), appropriate account for the smoothed nature of the model
data should be considered. Comparisons of wind power spectrum at various locations around
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the North Sea have shown that the CFSR data is representative of about 2-hour averages.
Section 3.3.1.2 provides an example of such analysis.

Table 3.5 Characteristics of the CFSR availability and resolutions

Data set (period) Temporal resolution [h] | Spatial resolution of wind data [°]
CFSR (1979-2010) 1 0.3
CFSV2 (2011-2018) 1 0.2

Table 3.6 Specifications of CFSR wind parameters

Abbreviation Unit Description Comment

WS; or U; m/s Wind speed at height z mMSL Representative of
2-hour averages

WDz or D °N (coming from) Wind direction at height z mMSL

Based on the considerations above, wind characteristics required for other time scales are
derived by applying ISO standard recommendations (European standard, 2005).

3.3.1.2 Temporal scale of CFSR data
Mean wind observations commonly represent 10-min averages at a single point, while
atmospheric modelled wind data represent an area and duration determined by a combination of
the applied forcing and the model grid. One may therefore expect the observations to exhibit
higher variability compared to model data. Correspondingly, the model data may be regarded
as somewhat ‘smoothed’ (in space and time) compared to the observations. Meaning that the
model data do not show the small (or even larger events like gusts) and rapid changes
compared to reality and are thus considered smooth.

In this section, the effect of ‘smoothing’ is estimated by assessing a representative averaging
period of the observations to more closely reflect the lower variability of the model. The
averaging period was assessed by comparing power spectra of the observed and modelled U1o
time series at MMIJmuiden (sampled every 10-min and converted from 90m above MSL to 10m
above MSL using the Frgya profile, see section 3.3.3.1 of [2]). The spectral analysis was based
on the period 2012-2014. A Hamming window?!! width of 1024 was applied.

The frequency power spectra of the observations (available every 10-min), 1 and 2-hour moving
average window, and the model are shown in Figure 3.17 (the maximum frequency of the
averaged time series was taken as the width of the window). The observed and modelled
spectra start to deviate for periods below about 10 hours, which is in agreement with the findings
in [10]. A good agreement between the model and the averaged observations was obtained
applying a window of 2 hours (this suggests that for a fair comparison, the measurements have
to be averaged over 2 hours). Based on DHI’s experience, a much better agreement would be
observed if the measurements were performed at 10m above MSL, and not converted from 90m
above MSL. Unfortunately at this stage, no such data was available.

11 https://www.mathworks.com/help/signal/ref/hamming.htm|
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Figure 3.17  Frequency power spectrum of Uio at MMIJmuiden

Land-sea mask

The land-sea mask of CFSR defines where the surface of the earth is interpreted as land and as
sea, respectively. Whether an element is interpreted as land or sea affects e.g. the estimated
roughness of the surface, which in turn affects the wind velocity profile. On land, the roughness
is generally higher than at sea, hence the wind speed on land is lower than at sea.

In some areas, the resolution of CFSR may be too coarse to resolve the land-sea boundary
properly. With relation to this project, since the dominant sea states travel from the North Sea,
which are considered to be resolved well with CFSR’s resolution, a very good performance is
expected from CFSR and thus also from the hydrodynamic and wave models. However, as it
was explained in section 9.1.1 of [2], CFSR is expected to be under-estimating the wind
conditions at locations close to the shoreline. Figure 3.18 and Figure 3.19 show the land-sea
mask in CFSR and CFSV2 covering the North Sea area. DHI’s experience using CFSR in the
North Sea has been very good and has proven that CFSR wind fields will result in accurate
hydrodynamic and wave conditions.
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Figure 3.18 CFSR land-sea mask (1979-2010). The land cells are shown in brown
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Figure 3.19 CFSV2 land-sea mask (2011-present). The land cells are shown in brown

3.3.1.4  Correction of CFSR data
Based on DHI's experience using CFSR, in particular close to the Dutch coast, some corrections

were deemed necessary to achieve better quality of wind speeds (in terms of mean and easterly
winds) and wave conditions close to the coast. This section describes the correction process

applied on the CFSR wind fields.
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Please note that the corrections explained in this report do not affect the results at
IJmuiden-Ver, Ten Noorden van de Waddeneilanden and Hollandse Kust (west) (as
shown in Figure 3.21).

A description of the characteristic wind profile used to extrapolate CFSR wind speeds from 10m
up to 300m (namely at 60m, 100m, 120m, 160m, 200m, 250m and 300m) is given in this
section. The CFSR data at 100m is not considered to be of high quality because of the coarser
resolution of 0.5 degree, thus extrapolation is necessary.

To assess the vertical wind profiles, the corrected CFSR (for land-sea mask) wind data have
been used. The effect of the correction of CFSR and its validation are shown afterwards in
Section 3.3.1.5.

A few quality indices (e.g. scatter plots and wind roses) described in Appendix A are used to
quantify the model performance against measurements. Please note that in all the scatter plots
presented in this report, the x-axis corresponds to the measured values and the y-axis
corresponds to the modelled values, if not mentioned otherwise. In addition, please note that in
almost all scatter plots presented in this report, the coordinates of the locations at which
comparisons/analysis were made are presented in Longitude and Latitude (on the plot’s legend).
All the tables in this report contain the coordinates in ETRS1989_UTMS31N projection.

Coastal effect

In Section 3.3.1.3, the quality of CFSR near the coast was questioned. CFSR tends to
underestimate the wind speeds along the shoreline of the HKN domain as a result of the coarse
resolution. In this study, the value of the wind speed was modified in the grid cells close to the
shore. First, a directional correction of the wind speeds was performed. The wind speeds were
corrected for 12 directions between 0° and 360° applying scaling coefficients obtained from
comparisons at the OWEZ station for the period 2005-2010. In order to account for the
influence of neighboured offshore wind farms on the OWEZ measurements, the data was
filtered to keep only undisturbed periods [11]. Additionally, a shift of cells from offshore to
nearshore was realised, but only in the domain of interest. This procedure allows for higher
wind speeds near the coast and smoother interpolation from offshore to nearshore (instead of
the relatively sudden decrease in wind speed due to coarse land/sea mask).

Figure 3.20 shows the comparisons of wind speeds between the original CFSR data and the
measured data at OWEZ. The scaling coefficients used for correction are based on the fitting
coefficients derived from the comparisons (lower right of the each plot). The main differences,
and hence the main corrections are applied for the directions 150° to 240°, that corresponds to
south eastern to south western wind directions. CFSR tends to under-estimate winds coming
from these directions. Similar coefficients were found at the HKN (2017-2018) and HKZ (2016-
2018) stations (not shown here).
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Figure 3.20 Directional comparison of the original CFSR wind speeds with the measured wind speeds at
OWEZ. Direction sectors from 0° to 330°

Next step was to crop the global CFSR wind fields to the domain of interest and interpolate the
data for the period 1979-2011 (0.3°) to 0.2° (same as the period 2011-2018). The land
correction is based on the method from the HKZN study (see section 3.3.3 of [2]).

Then, the offshore grid cells of CFSR were shifted such that a smooth wind speed gradient
towards the coast is achieved. This methodology is based on obtaining similar averaged wind
speeds to nearshore wind observation and aligning the mean wind speed to the Wind Resource
Assesment study by OLB (for RVO).

Figure 3.21 shows the differences of the 10m mean wind speed in 2017 over the space between
the corrected CFSR and the original CFSR data. The correction leads to an increase mean
wind speed near the coast (up to 1.7m/s). It must be mentioned that the CFSR wind speeds
were not corrected along those coasts that are not included in the database. In addition, no
correction was applied offshore (corrections are limited to ~80km from the coastline).
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Figure 3.21 Spatial difference of mean wind speed at 10m in 2017 (as an example) between the
corrected CFSR and the original CFSR data

Characteristic of vertical wind speed profiles

Description

As part of the study, wind fields are estimated at heights between 10m and 300m height. Most
of the wind observations and atmospheric model outputs are not provided at all levels. To get
values at all desired levels, the data needed to be extrapolated. The extrapolation based on
Frgya profile (Equation (3-1)) is one of the preferred methods as it is usually conservative
(please see section 3.3.3.2 of [2]). The Froya profile requires the wind speed at the 10m level.

The Frgya vertical wind profile is defined according the European standards [12] as described in
Equations (3-1) and (3-2).

Uw,lh(z) = Uyo (1 +Cln Z/Zr) (3-1)

C = 0.0573 (1 + 0.15U,,4)"/? (3-2)
Where U, 1,(2) is the 1-hour wind speed at the height z above mean sea level,
U, is the 1-hour wind speed at the reference elevation z,. (10m) above mean sea level,
C is a dimensionally dependent coefficient described in Equation (3-2).

Additional vertical wind speed profiles based on mean wind speed measurements at heights
between 30m and 200m were investigated in this study. Since wind information has been
recorded by floating LIDAR since 2016 within the wind farm area HKZ and HKN, an analysis of
empirical wind profiles was performed. A regression fit was applied to the mean measured wind
speeds at each measured level at the four stations HKZA, HKZB, HKNA and HKNB over the
available recording period. The resulting profiles are shown in Figure 3.22. This method has
the advantage of not being restricted to 10m wind observations and can be applied from any
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height. Wind speeds for a given height above mean sea level can be calculated by means of
Equation (3-3).

a

U22 = HZ/H1 Uzl (3'3)

Where Uz is the wind speed (in m/s) at the desired height Hz (in m)
Uz is the wind speed (in m/s) at the available level Hi (in m).

The value of the coefficient « varies from 0.07472 at the station HKNB to 0.07938 at the station
HKZA.

Empirical wind profiles
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Figure 3.22  Empirical wind profiles based on HKZA (violet line), HKZB (blue line), HKNA (green line) and
HKNB (yellow line). Mean wind speed at each level are shown in coloured circles

Validation of the wind profiles

As emphasis is given to the HKN area, DHI selected the empirical profile obtained at HKNB due
to its location and the duration of available wind data (1 year and 3 months). The empirical
profile was applied to the 10m corrected CFSR wind speed and compared to the LIiDAR data at
8 stations (HKNA, HKNB, HKZA, HKZB, OWEZ, MMIJmuiden, EPL and K13) at different heights
between 30m and 291m. A time averaging of 2 hours was applied to the measurements.

It must be noted that the recording period with the LIDARSs is shorter than for the data recorded
with the Met Masts.

The comparisons at nearshore (e.g. at HKNA, HKNB, HKZA, HKZB and OWEZ) and offshore
stations (e.g. at MMIJmuiden and K13) were used to estimate the validity of the wind profiles
over the entire domain. This validation work shows that the empirical wind profile (compared to
Fragya profile) based on HKNB measurements is better suited to reproduce the wind fields at
higher levels up to 300m in both nearshore (Figure 3.23, Figure 3.25, Figure 3.26 and Figure
3.27) and offshore (Figure 3.28 and Figure 3.30) locations. Using the empirical profile reduces
the bias, the scatter index and the RMSE (compared to Frgya profile). In addition, the empirical
wind profile captures higher wind speeds better than the Frgya profile. As a result, the empirical
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profile based on the observations at HKNB implementing a coefficient a equal to 0.07472 is
applied for the extrapolation of the wind speeds along the present metocean desk study
(including normal and extreme conditions).
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Figure 3.23 Comparison between wind speed measurements and extrapolated CFSR wind speeds using
the empirical profile (left) and the Fraya profile (right) at HKNA at 30m (top), 100m (middle)

and 200m (bottom)
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Figure 3.24 Comparison between wind speed measurements and extrapolated CFSR wind speeds using
the empirical profile (left) and the Frgya profile (right) at HKNB at 30m (top), 100m (middle)
and 200m (bottom)
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Figure 3.25 Comparison between wind speed measurements and extrapolated CFSR wind speeds using
the empirical profile (left) and the Frgya profile (right) at HKZA at 30m (top), 100m (middle)
and 200m (bottom)
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Figure 3.26 Comparison between wind speed measurements and extrapolated CFSR wind speeds using
the empirical profile (left) and the Fragya profile (right) at HKZB at 30m (top), 100m (middle)
and 200m (bottom)
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Figure 3.27 Comparison between wind speed measurements and extrapolated CFSR wind speeds using
the empirical profile (left) and the Fraya profile (right) at OWEZ at 21m (top), 70m (middle)
and 116m (bottom)
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Figure 3.28 Comparison between wind speed measurements and extrapolated CFSR wind speeds using
the empirical profile (left) and the Fraya profile (right) at MMIImuiden at 115m (top), 215m
(middle) and 290m (bottom)
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Figure 3.29 Comparison between wind speed measurements and extrapolated CFSR wind speeds using
the empirical profile (left) and the Frgya profile (right) at K13a at 116m (top), 191m (middle)

and 291m (bottom)
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Figure 3.30 Comparison between wind speed measurements and extrapolated CFSR wind speeds using
the empirical profile (left) and the Frgya profile (right) at EPL at 116m (top), 191m (middle)
and 291m (bottom)

Validation of the corrected CFSR wind fields

In this section, the CFSR wind fields corrected with the directional correction from OWEZ station
and the cell shifting near the shore (called herein as CFSR corrected) are compared and
validated against few stations (HKZA, HKNA, OWEZ, IJmuiden coast and IJmond coast).
Emphasis was given to the validation of the corrected CFSR wind fields in the HKN domain and
at the nearshore stations. The comparison results at other stations listed in Table 3.2 are shown
in the next section (Section 3.3.1.5).

The empirical profile defined in Section 3.3.1.4 is used to extrapolate wind speeds and enable
comparison at levels other than 10m.

Figure 3.31 to Figure 3.35 show the comparisons of the 10m wind speeds at the stations HKZA,
HKNA, OWEZ, 1dmuiden coast and 1Jmond coast before and after correction. At the stations
HKZA, HKNA and OWEZ, the correction leads to a decrease of the bias and the RMSE though
the fit with the original CFSR was already good.

44 11822658_MetOceanStudy Hollandse_Kust_(west)_Final / nafe/fld/bri/mce/mgol/ybr / 2019-03-12





Data/Study Basis

Figure 3.34 and Figure 3.35 show the comparisons of CFSR with coastal wind observations. At
both stations IImuiden coast and 1IJmond coast, an under-estimation of the original CFSR wind
speeds was observed which disappeared after correction.

The corrected CFSR shows lower bias and RMSE, and thus it can be concluded that the
correction leads to large improvements at the coastal stations.
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Figure 3.32 Comparisons of measured against non-corrected (left) and corrected (right) CFSR wind
speeds at 10m at the station HKNA [04.2017-07.2018]
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Figure 3.33 Comparisons of measured against non-corrected (left) and corrected (right) CFSR wind
speeds at 21m at the station OWEZ [07.2005-12.2010]
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Figure 3.34 Comparisons of measured against non-corrected (left) and corrected (right) CFSR wind
speeds at 10m at the station IJmuiden coast [01.2005-01.2018]

Idmond coast (4.52E:52.47N;10.00mMSL)
Scatter plot (2005-01-01 - 2017-12-31; Ta = 2h; dt = 1h) original
40

Idmond coast (4.52E:52.47N;10.00mMSL)
Scatter plot (2005-01-01 - 2017-12-31; T_ = 2h; dt = 1h) conrected
40 & 330

60
320 N =113,317 (13 Oyears) N =113917 (13.0years)
. MEAN = 6.28m/s (86.7%) MEAN =7.27m/s (100.3%)
35 280 BIAS = -0.97m/s (-13.3%) 35 BIAS = +0.02mis (0.3%)
240 £ AME = 1.55m/s (21.3%) AME  =1.35m/s (18.6%)
200 = | RMSE = 1.94m/s (26.8%) 0 RMSE = 1.71ms (23.6%)
£ |8l =0.23(Unbiased) 2% Sl =0.24 (Unbiased)
1 W By =079 & 5 EV =078
i g |cc =08 i cC =089
O 1208 pr  =0.81(N,=26) O PR =D.08(N =26)
o) E o)
E Bog E
o 2 o
2 w0 s =
H
z Data (linear +- 60min) Data (linear +- 60min)
1:1 Line (45%) 6 f 1:1 Line (45%)
* Quantiles (0.0 - 100.0%) 4 f § © Quantiles (0.0 - 100.0%)
- - QQ it y=0.87x-003 2 Ll - - QQ it y=0.95x+0.39
I ] 1 P (1L L e S P I ] 1
H® LR T, T )

WS [mis] - Measured WS [mis] - Measured

Figure 3.35 Comparisons of measured against non-corrected (left) and corrected (right) CFSR wind
speeds at 10m at the station IJmond coast [01.2005-01.2018]

Validation of CFSR data

A comprehensive validation of the corrected (based the directional correction from OWEZ
station and the cell shifting near the shore) CFSR wind speeds and directions against in-situ and
satellite wind observations available in the Dutch North Sea is provided in this section.

The comparison results at stations other than results in Section 3.3.1.4 are presented here. The
validations were performed for a maximum period of 13 years from 2005 to 2018 to be
consistent with the analysis realised with the Harmonie wind fields (shown in section 3.3.2.2 of
[1]). As some stations have a shorter period, the comparisons were as well performed for less
than 13 years. The stations selected for the validation are described in Table 3.2 in Section
3.2.1.

Land stations

Figure 3.36 to Figure 3.54 show the scatter and rose comparisons of the corrected CFSR wind
fields against the measurements at 10m and 100mMSL (when the data is available). The
extrapolation from 10m to higher measurement height (115mMSL at MMIJmuiden or 116mMSL
at OWEZ, EPL, LEG and K13a) or from 30mMSL to 10mMSL (HKNA, HKNB, HKZA and HKZB)
was based on the empirical wind profile described in Section 3.3.1.4. At EPL, LEG, K13a and
MMIJmuiden, the comparison at 115m and 116m is based on LiDAR data that have a shorter
recording period than the Met Masts which provided wind data at 10m.

At the station OWEZ, the full measurement period from 2005 to 2010 was considered. In order
to account for the influence of neighboured offshore wind farms, the data was filtered to keep
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Data/Study Basis DHI )

only undisturbed periods [11]. The comparison at the station Q1 is not shown as the
measurement period was only one month and hence too short for analysis.

At all stations except Hoorn, a very good agreement in wind speed between CFSR and the
observations is observed. CFSR was not corrected in the nearshore areas outside the area of
interest. Therefore, the wind speeds at the station Hoorn are over-estimated by CFSR (Figure
3.52).

CFSR performs very well offshore (without correction) though a systematic slight
underestimation can be noticed. In terms of wind direction, a good agreement is also observed
at all stations except at the stations EPL (Figure 3.36) and MMIJmuiden (Figure 3.51), where the
CFSR wind direction deviates from the measurements at 116m (and 115m). The measured
dominant wind direction is more southerly compared to the modelled dominant wind direction.
The measured and modelled dominant wind directions also differ at the coastal stations 1Jmond
coast and IImuiden coast and at the station L9. It should be noted that the CFSR wind direction
at different levels are assumed to be the same as the wind direction at 10m.
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Figure 3.36 Comparisons of measured against corrected CFSR wind speeds at 10m (top) and 116m
(bottom) at the station Europlatform (EPL); scatter (left) and wind rose (right) [01.2005-
01.2018 for 10m, 06.2016-01.2018 for 116m]
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Figure 3.37 Comparisons of measured against corrected CFSR wind speeds at 10m (top) at the station
K14, scatter (left) and wind rose (right) [01.2007-01.2018]
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Figure 3.38 Comparisons of measured against corrected CFSR wind speeds at 10m (top) and 116m
(bottom) at the station K13a; scatter (left) and wind rose (right) [01.2005-01.2018 for 10m,
11.2016-04.2018 for 116m]
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Figure 3.39 Comparisons of measured against corrected CFSR wind speeds at 10m (top) and 116m
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Figure 3.40 Comparisons of measured against corrected CFSR wind speeds at 10m at the station F16;

scatter (left) and wind rose (right) [01.2011-01.2018]
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Figure 3.41 Comparisons of measured against corrected CFSR wind speeds at 10m at the station F3;
scatter (left) and wind rose (right) [01.2011-01.2018].
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Figure 3.42 Comparisons of measured against corrected CFSR wind speeds at 10m at the station J6;
scatter (left) and wind rose (right) [01.2011-01.2018]
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Figure 3.43 Comparisons of measured against corrected CFSR wind speeds at 10m at the station L9;
scatter (left) and wind rose (right) [01.2011-01.2018]
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Figure 3.44 Comparisons of measured against corrected CFSR wind speeds at 10m at the station P11;
scatter (left) and wind rose (right) [01.2011-01.2018]
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Figure 3.45 Comparisons of measured against corrected CFSR wind speeds at 10m at the station
FINO1; scatter (left) and wind rose (right) [01.2004-01.2011]
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Figure 3.46 Comparisons of measured against corrected CFSR wind speeds at 10m (top) and 100m
(bottom) at the station HKNA, scatter (left) and wind rose (right) [04.2017-06.2018 for 10m
and 100m]
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Figure 3.47 Comparisons of measured against corrected CFSR wind speeds at 10m (top) and 100m

(bottom) at the station HKNB; scatter (left) and wind rose (right) [04.2017-06.2018]
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Figure 3.48 Comparisons of measured against corrected CFSR wind speeds at 10m (top) and 100m
(bottom) at the station HKZA; scatter (left) and wind rose (right) [06.2016-04.2018]
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Figure 3.49 Comparisons of measured against corrected CFSR wind speeds at 10m (top) and 100m
(bottom) at the station HKZB; scatter (left) and wind rose (right) [06.2016-04.2018]
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Figure 3.50 Comparisons of measured against corrected CFSR wind speeds at 10m (top) and 116m

(bottom) at the station OWEZ; scatter (left) and wind rose (right) [07.2005-12.2010]
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Figure 3.52 Comparisons of measured against corrected CFSR wind speeds at 10m at the station

Hoorn; scatter (left) and wind rose (right)
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Figure 3.54 Comparisons of measured against corrected CFSR wind speeds at 10m at the station
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Hydrodynamic Modelling

4.1

<

Hydrodynamic Modelling

Normal and extreme water level and current data for the metocean study were adopted from a
dedicated high-resolution local hydrodynamic model developed for this study. This model is
referred to as HDowr (Hydrodynamic model of the Dutch Wind Farm zones) herein. The HDpwr
was forced by boundary conditions extracted from a DHI’s high-resolution regional model
covering the North Atlantic (HDna-ba) that is briefly described in Section 4.2.

The flow modelling includes both astronomical tide and surge forced by the meteorological data
described in Section 3.2.3. The hindcast covered a period of +39 years between 1979 and 2018
and has a thirty (30) minutes temporal resolution (time steps). The model is based on DHI's
MIKE 21 Flow Model FM [13] module which includes:

. Water level;
. Depth-averaged current speed;
. Depth-averaged current direction.

More details on the regional and local HD models are given in Section 4.2 and Section 4.3,
respectively.

MIKE 21 Flow Model FM

The MIKE 21 Flow Model is a modelling system for 2D free-surface depth-integrated flows that
is developed and maintained by DHI and offered as part of MIKE Powered by DHI [13].

The model system is based on the numerical solution of the two-dimensional (2D)
incompressible Reynolds-averaged Navier-Stokes equations subject to the assumptions of
Boussinesq and of hydrostatic pressure. The model is applicable for the simulation of hydraulic
and environmental phenomena in lakes, estuaries, bays, coastal areas, and seas wherever
stratification can be neglected. The model can be used to simulate a wide range of hydraulic
and related items, including tidal exchange and currents and storm surges.

MIKE 21 Flow Model FM

The hydrodynamic (HD) module is the basic module in the MIKE 21 Flow Model FM. The HD
module simulates water level variations and flows in response to a variety of forcing functions
in lakes, estuaries, and coastal regions. The effects and facilities include:

*  Bottom shear stress

*  Wind shear stress

*  Barometric pressure gradients
*  Sources and sinks (e.qg. rivers, intake and outlets from power plants)
*  Flooding and drying

*  Momentum dispersion

«  Tidal potential

«  Coriolis force

*  Precipitation/Evaporation

* Ice coverage

*  Wave radiation stresses

The model uses a flexible mesh (FM) based on unstructured triangular or quadrangular
elements and applies a finite volume numerical solution technique [13].

The MIKE 21 Flow Model FM used for the present study was version 2017 (service pack 3).
The model takes advantage of advanced parallelisation techniques to further boost the
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computational speed.

For further details, see [13].

Regional Hydrodynamic Model (HDna-pa)

In this section, a brief introduction (already described in section 4.2 of [2]) to the regional North
Atlantic hydrodynamic model (HDna-ba) is given. The North Atlantic regional hydrodynamic
model previously developed by DHI, HDna-pa, was used to obtain boundary data for the local
hydrodynamic Dutch Wind Farm model, HDowr. The HDna-oa model presented in Figure 4.1
was based on unstructured flexible mesh with progressively increasing spatial mesh resolution
in shallow water areas. Cell sizes along the Dutch coast range from 1km? to approximately
3km? for water depths < 15-20m.

The HDna-pa model includes tide (boundaries extracted from DHI's global tide model) and surge
forced by wind and air pressure from the CFSR dataset. Furthermore, the model is optimised by
using assimilation of measured water levels. For more information on data assimilation, please
see Section 4.2.1. Figure 4.2 and Figure 4.3 show the vast number of stations (both water
levels and current) used for assimilation or validation of the HDna-pa model.

The results of HDna-oa have been applied in many projects in the North Sea, English Channel,
Baltic Sea and Inner Danish waters, and were able to well represent the water level and current
conditions at these sites.
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Figure 4.1  The North Atlantic regional hydrodynamic model (HDna-pa) model domain and bathymetry
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4.2.1

2

Assimilation

Data assimilation is a methodology that applies observed measurements in order to improve the
skill and accuracy of the flow model. In this project, we considered only assimilation of in-situ
water level data for the period after 1 January 1994 until 1 March 2018 when most station data
were available.

The observations were used to update the model such that, broadly speaking, the model was
used as an advanced interpolation and extrapolation tool. This allowed the model accuracy to
be greatly improved also at non-observed positions and for additional variables such as the
depth-averaged velocity.

The data assimilation scheme considered for this project was the Steady Kalman Filter
approach based on the so-called Ensemble Kalman Filter. A time-varying temporally smoothed
and distance regularized Ensemble Kalman Filter was used with an 8-ensemble member. The
assimilation scheme assumes uncertainty in the open water level boundary conditions and wind
forcing. The Ensemble Kalman Filter was used to construct a long-term averaged Kalman gain
matrix based for January 2005 (this period had a high coverage of assimilation data and was
considered a representative year). The Steady Kalman Filter then applies this time constant
Kalman gain matrix, which has the advantage of reducing the computational cost significantly,
while preserving good assimilation skills [14].

The data coverage of the applied assimilation stations is shown in Figure 4.2 and Figure 4.3. All
measurements were corrected such that the datum approximately represents the model datum
in order to allow proper comparison of observations and the model. The model datum was
determined by the open boundary levels and a long-term average dynamical balance from a
1-year simulation without data assimilation. Note that the measurement-model difference could
have a yearly mean variation. However, this was assumed to be insignificant.

A number of parameters need to be specified in the filter schemes. The assimilation system is
very complex; hence, the parameters were based on experience and iterations (simulation
tests). The standard deviation for most of the water level observations was in the range of 0.04
- 0.07m. The standard deviation is a measure of the (anticipated) weighting/error of the
observations. The observations were assumed to have mutually uncorrelated, unbiased
Gaussian distributions of, in this case, 0.04 - 0.07m [14]. A lower value of the standard
deviation for a measurement station implies that more trust was put on the observation data and
hence the model was pulled more towards it. The importance of the standard deviation with
respect to the local model uncertainty often relates to the sea level variability.

The HDna-ba flow model was extensively calibrated and validated for water levels and current
conditions against measurements within the domain. Figure 4.4 shows an example of the
HDna-pa water level validations (for a period of 20 years) at Europlatform (situated close to
Hollandse Kust wind farms). Figure 4.5 and Figure 4.6 show examples of the HDna-pa water
level validations (for a period of 20 years) at Texel Noordzee (north of the Hollandse Kust
(noord)) and Newhaven (to south west of Dutch Wind Farms and close to the boundary of the
local model). For the quality indices presented in the scatter plots within this report, please see
Appendix A.

The long-term validations at various stations show excellent performance of the HDna-pa model
and thus ensure that high-quality boundary conditions were obtained as input forcing to
establish the HDowr model for this study. Since the previous HKZN study [2], DHI has updated
the HDna-oa model to include assimilation until March 2018. This will result in higher accuracy of
the results at Hollandse Kust (noord) and at other Dutch wind farms.
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Figure 4.4  Validation of HDna-pa model at Europlatform for the period 1994-2014.

Results provide confidence in the quality of the model and thus the boundary conditions
were used for the local high-resolution model

Texel Noordzee, Total (4.74E;53.12N;-10.0mMSL)
Scatter plot (1994-01-01 - 2014-01-01; 1h)
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Figure 4.5  Validation of HDna-oa model at Texel Noordzee for the period 1994-2014.

Results provide confidence in the quality of the model and thus the boundary conditions
were used for the local high-resolution model
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Newhaven, Total (0.0569E;50.7819N;-7.5mMSL)
Scatter plot (1994-01-01 - 2014-01-01; 1h)
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Figure 4.6  Validation of HDna-.oa model at Newhaven for the period 1994-2014.

Results provide confidence in the quality of the model and thus the boundary conditions
were used for the local high-resolution model
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Hydrodynamic Model for Dutch Wind Farm area (HDpwr)

This section describes the establishment of the hydrodynamic (HD) data developed and used in
this project. In order to achieve high-quality results, a dedicated high-resolution local HD model
using the latest bathymetric surveys and available data listed in Section 3.1 was set up for the
Dutch Wind Farm area.

Model domain, bathymetry and resolution

The dedicated high-resolution local HD model was set up with the aim to provide the highest
quality results at the Dutch Wind Farms (Hollandse Kust (noord), Hollandse Kust (west),
IJmuiden-Ver and Ten Noorden van de Waddeneilanden).

The local model uses unstructured mesh with progressive increasing spatial resolution towards
the Dutch Wind Farm area. The model domain used for the present study is shown in Figure
4.7 and Figure 4.8 with finest resolution of about 200m at Hollandse Kust (noord) and cable
corridor-1. As for the other wind farms (Hollandse Kust (west), IJmuiden-Ver and Ten Noorden
van de Waddeneilanden) and cable corridor-2, the mesh element size was chosen to be around
400m. Outside the refined area, the mesh resolution varies from 1km to 5km (close to the
boundaries).

The model bathymetry has been generated on the basis of the bathymetric dataset described in
the preceding Section 3.1 with the vertical datum corresponding to mean sea level (MSL).

[deg]
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55.0 = Above 0
] 2- 0
54.5 - % 4- -2
] 6- -4
540 Bl 8-
] -10- -8
535 ] -15--10
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Figure 4.7  The HDpwr model coverage and bathymetry with the vertical datum corresponding to MSL
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Figure 4.8  Zoom of the final mesh used in the hindcast HDowr modelling close to Hollandse Kust
(noord), Hollandse Kust (west), IJmuiden-Ver and Ten Noorden van de Waddeneilanden

4.3.2 Model set-up and parameters

The HDowr model was defined with two (2) open boundaries. The development of the HDpwr
model for the present study relies on the boundary information from the HDna-oa model. The
downscaled model simulations for the HDowr model used the so-called ‘flather’ boundary
condition technique that includes both surface elevations and currents from the HDna-oa model.

The HDowr flow model was set up with the specifications listed in Table 3.1. The HDpwr flow
model was calibrated and validated against measured water levels and currents at stations
listed in Section 3.2.2. The results of the calibration and validation are shown in Sections 4.3.3
and 4.3.4.
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Table 4.1 Summary of the HDowr model settings applied for the production period

Setting

Value

Mesh resolution

Characteristic element size at HKN and cable corridor-1 ~ 200m, see
Figure 4.8.

Simulation period

1979-01-01 to 2018-10-01 (39+ years), 30 minutes interval

Eddy viscosity

Smagorinsky formulation with constant = 0.28

Wind forcing

CFSR dataset, Wind drag (empirical factors): Ca=1.88825-1073,
Cb=3.1-103, Wa=7m/s, Wb=25m/s (Ca, Cb, Wa, and Wb are used to
calculate the empirical drag coefficient of air)

Tidal potential

Not included

Bed resistance

Manning number, M = 35m*3/s if depth < -25m, else M = 38m3/s

Boundary conditions

From HDna-DA, see Section 4.2 or section 4.2 of [2]. Water levels and
current velocities varying in time and along boundary

Calibration and sensitivity tests

The calibration tests performed to establish the final HDowr model applied for this study are
summarised in this section. The model was executed for the 5-month period from 2017-10-1 to
2018-03-01 covering the winter season, where local measurements at Hollandse Kust (noord)
and (zuid) were available. Table 4.2 summarises the runs (different “Cases”) performed during
the calibration of the local HDpowr model.

Table 4.2 Tests performed during the calibration of the HDowr model

Case | Manning number [m3/s] Wind Friction [-] Data Assimilation
7m/s 0.001569
1 35 25m/s 0.003031 HDpwr-ba & HDbwF-no ba
7m/s 0.001569
2 40 HDbwr-pa
25m/s 0.003031
3 45 7m/s 0.001569 HD
25m/s 0.003031 PR
] 7m/s 0.001569
4 35 if depth < -25m, else 40 HDbwr-pa
25m/s 0.003031
7m/s 0.0018825
5 35 HDbwr-pa
25m/s 0.0036375
_ 7m/s 0.0018825
6 35 if depth < -25m, else 38 HDpwr-pa
25m/s 0.0031
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4.3.3.2

This study aims at selecting an appropriate resolution for the HKN domain included in the local
HD model. The selected final resolution should be high enough to capture the complex
bathymetry of the area within a reasonable computational time. Grid convergence study was
performed in order to decide upon the optimal mesh resolution, which ensures highest accuracy
and enhanced computational schemes.

Manning number, bottom friction, wind friction and data assimilation (in the regional model) were
the main parameters to assess the sensitivity of the model and their influence on the model
performance.

In this section of the report, all graphs related to water levels are presented with reference to
MSL.

Grid convergence

Comprehensice grid convergence tests were conducted within the Hollandse Kust (noord),
Hollanse Kust (west), IJmuiden-Ver and Ten Noordenvan de Waddeneilanden offshore wind
farms (with focus on Hollandse Kust (noord) as there were detailed bathymetry data available)
domain to confirm the required finest model resolution that allows an accurate description of the
conditions (not to be affected significantly by the mesh size) on site within a reasonable
computational time. More explanation is given in Section 4.3.3.1 of [1].

All'in all, a resolution of 400m was selected for Hollanse Kust (west), IJmuiden-Ver and Ten
Noordenvan de Waddeneilanden offshore wind farm based on the sensitivity results.

Data assimilation

The data assimilation applies observed measurements in order to improve the skill and accuracy
of the flow model. To include the effect of data assimilation in the local HD model, the boundary
conditions were obtained from the regional hydrodynamic model (with data assimilation
included, HDpa-na). Detailed information on the data assimilation method was given in Section
4.2.1.

The influence of data assimilation was assessed by comparing the performance of the modelled
water level and currents of HDpowr-pa With the corresponding model simulated without data
assimilation, HDowr-no pa. It was found that data assimilation improves the performance of the
model both in terms of quantile alignment and scatter index, as shown in Figure 4.9 and Figure
4.15.
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Figure 4.9  Influence of data assimilation on water level at Brouwershavensche Gat, Europlatform and K14. Left:
HDobwr-pa, right: HDowr-no pa.
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Figure 4.11 Influence of data assimilation on water level at Wierumergronden, LEG and IJmuiden Stroommeetpaal.
Left: HDowr-pa, right: HDowF-no pa.
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4.3.3.3

<

Bed resistance

Calibration tests were also conducted based on the bed resistance applied in the HDowr model.
The sensitivity analysis has been based on four (4) tests (herein referred to “CASE” — see Table
4.2) that were having different Manning numbers as listed in the following:

. CASE 1: Constant manning of 35m3/s, calibrated set-up from HKZN study [2];

< CASE 2: Constant manning of 40m3/s;

«  CASE 3: Constant manning of 45m3/s;

< CASE 4: Manning map of 35m3/s for water depth less than -25m, else 40m3/s,

For the sensitivity analysis, all four (4) models had been simulated using mesh domain with
finest resolution of about 200m and with data assimilation. For the purpose of these calibration
tests, attention was mostly put on the results at the HKN site.

In order to assess the influence of manning number towards water levels and current conditions,
comparisons between the current/flow model results have been made and presented in Figure
4.16 to Figure 4.25. Based on these plots, it was observed that the water levels and currents
across the Dutch wind farms area were sensitive to the bed resistance. By increasing the
Manning number from 35m?3/s (CASE1) up to 45m3/s (CASE3) (corresponds to a lower bed
resistance), higher current speed was observed throughout the entire domain. In addition, it
was also found that the constant increased in Manning number deteriorate the modelled water
levels performance in terms of quantile alignment (Q-Q line slope being larger than 1) and
scatter index.

Looking at the current comparisons for CASE1 to CASE3 (see Figure 4.22 and Figure 4.23),
with the goal to increase the quality of current conditions at the HKN site (at the same time
preserved high-quality model performance in other area), spatially-varying Manning was
considered. The Manning map was set to 35m*3/s for water depth less than -25m and
otherwise, it was set to 40m13/s (CASE4). From the scatter comparison presented in Figure
4.22 and Figure 4.23, some improvement in currents at HKNA was observed with the Q-Q line
slope being close to 1 and still maintaining the small bias value (close to 0), low scatter and high
correlation.

The improvements in CASE4 results shown at HKN were not in line with results at HKZ, see
Figure 4.24 and Figure 4.25. Generally, the model was found to over-predict the currents at
HKZA and HKZB, which was mainly due to the increased Manning number at the site from
35m3/s to 40m3/s. Nevertheless, this was considered not to be of very much importance since
HKZ was not part of the main objective in this study. It shall be emphasised that during the
HKZN study [1] (as also seen in CASE1L), the model showed very good agreement at both HKZA
and HKZB, where the high-resolution model was established dedicated to the site.

Overall, the Manning map approach was considered in final configuration, see Section 4.3.3.5.
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Figure 4.16 Influence of Manning number on water levels at Europlatform. Top left: Constant Manning number of

35m'3/s, Top right: 40m'?/s, bottom left: 45m3/s, and bottom right: Manning Map.
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Figure 4.17 Influence of Manning number on water levels at IJmuiden Stroommeetpaal. Top left: Constant Manning
number of 35m3/s, Top right: 40m*?/s, bottom left: 45m*3/s, and bottom right: Manning Map.
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Figure 4.23  Influence of Manning number on current speeds at HKNB. Top left: Constant Manning number of 35m*%/s,

Top right: 40m?/s, bottom left: 45m3/s, and bottom right: Manning Map.
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Wind friction

DA

Calibration tests were then conducted to select appropriate wind friction parameters for the
modelling. Two different combinations were tested as below:

. CASE 1. Friction of 0.001569 at 7m/s and 0.003031 at 25m/s, calibrated set-up from HKZN

study [2];

. CASE 5: Friction of 0.0018825 at 7m/s and 0.0036375 at 25m/s.

For the sensitivity analysis, the two (2) models had been simulated using the mesh with finest

resolution of about 200m and with data assimilation and constant Manning number of 35m3/s

was applied.

Comparisons of measured and modelled water levels and currents are presented in Figure 4.26
to Figure 4.31. Minimum changes to the modelled water levels are observed. However, it is

noticed that the changes in wind friction improves the modelled current performance in term of
lower bias and scatter index.
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Influence of wind friction on water level at IJmuiden Stroommeetpaal. Left: CASE 1, right: CASE 5.

The expert in WATER ENVIRONMENTS

81





HKNA (4 2420E;52 6887N;-23 6mMSL)
Scatter plot (2017-10-01 - 2018-03-01; T = 30min; dt = 10min)
25

WL (m) - Simulated

WL (m) - Measured

HKNA (4.2420E;52.6887N-23.6mMSL)
Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min)
11

(m/s) - Simulated

cs

N
< Qr‘b BP Q?) D&: Q"\ E)% Qg D

CS {m/s) - Measured

HKNA (4.2420E;52 6887N;-23.6mMSL)
Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min}

0 a -
R I S R
CD (*N-lo} - Measured

Figure 4.28

82

@
Murmber of data points in each 0.01 m/s bin

Mumber of data points in each 0.05 m bin

Numbar af data peints in Gach 3 °N-to bin

N 2,319 (16.1days)
WEAN =-0.17m (-48.7%)
BIAS =-0.19m (-53.1%)
AME = 0.23m (B6.8%)
RMSE = 0.27m (77.2%)
Sl =0.56 (Unbiased)
EV =079

cC 0.81

PR =0J7(N,=1)

Data (linear += 30min)
11 Line {45%)
< Quantiles (1.0 - 100.0%)
- - - - Qafit y=1.089x-0.187

N = 21,673 {150.5days)
MEAN =0.42m/s (99.1%])
BIAS =-0.00mfs (-0.9%)
AME 0.06m/s (13.8%)
RMSE =0.08m/s (17.9%])
8l =0.18 (Unbiased)
EV 0.85

cc 083
PR 08BN =1)

Data (linsar +- 30min)
101 Line (457)

¢ Quantiles (0.1 - 100.0%)
- - = - QQfit y=0.972x+0.008

21

3 (150.5days)

Data (within +- 30min)
+1 Line (45°)

11822658_MetOceanStudy_Hollandse_Kust_(west)_Final / nafe/fld/bri/mce/mgo/ybr / 2019-03-12

Scatter plot (2017-10-01 - 2018-03-01; T
25

WL (m) - Simulated

HKNA (4 2420E;52 6887N:-23.6mMSL)
30min; dt = 10min)

WL (m) - Measured

HKNA (4.2420E;52.6887N-23.6mMSL)

Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min)
11

cs

CD (*N-to) - Simulated

(m/s) - Simulated

90
60
30
[}

CS (m/s) - Measured

HKNA (4.2420E;52 6887 N;-23.6mMSL)
Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min}

o

O P PP PP PP LSS

CD ("N-to) - Measured

Influence of wind friction on water level and currents at HKNA. Left: CASE 1, right

07
164
16.1
138
115
g2

8.9

4.6

23

Murmber of data points in each 0.01 m's bin

Mumber of data points in each 0.05 m bin

Number of data points in sach 3 °N-to bin

N 2,319 (16.1days)
MEAN = -0.17m (-48.8%)
BIAS = -0.18m (-52.3%)
AME = 0.23m {B6.4%)
RMSE = 0.27m {76.5%)
Sl =0.56 {Unbiased}
EV =079

cc =081
PR =075{N = 1)

Data {linear +/~ 30min)
——— 11 Line {45%)
¢ Quantiles (1.0 - 100.0%)
- - - - Qafit y=1.087x-0.185

N = 21,673 (150.5days)
MEAN = 0.42mis (98.9%}
BIAS = -0.00mis (-1.1%)
AME = D.06m/s (13.5%)
RMSE = 0.07mis (17.4%}
8l =0.17 {Unbiased}
EV 086

cc 083
PR =08B{N =1

Data {linear +/~ 30min)
101 Line {457)

¢ Quantiles (0.1 - 100.0%)
- = = - QQfit y=0.983x+0.003

21,673 (150.5days)

Data (within +/- 30min}
1 Line (45

: CASE 5.





Hydrodynamic Modelling

Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min}
251

Scatter plot (2017-10-01 - 2018-03-01; Te = 30min; dt = 10min})
1ir

Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min}

CD (*N-to) - Simulated

Figure 4.29

The expert in WATER ENVIRONMENTS

WL {m}) - Simulated

CS {mfs) - Simulated

2

HKNB {(4.2419E;52 6833N;-23. 1mMSL)

WL {m) - Measured

HKNB (4.2419E;52.6833N;-23. 1mMSL)

N N
PR I I P SN

CS (mfs) - Measured

HKNB {4.2419E;52.6833N;-23. 1mMSL)

3

=

Number of dala poinls in each 0.05 m bin

MNumber of dala poinls in each 0.01 mis bin

Number of data pints in each 3 *N-to bin

N =12,727 (38.4cays)

MEAN = -0.04m (-9.0%)
BIAS  =-0.04m (-9.0%)
AME  =0.13m (28.8%)

RMSE =0.17m {36.6%)
S| =0.35(Unbiased)
EV =08

cC =0.96

PR =088(N =1)

Data (finear +/- 30min)
1:1 Line (45°)

Quantiles (9.1 - 100.0%)
- - - - QQfit y=1.060x-0.042

N = 12,890 (89.5days)
MEAN = 0.43m/s (103.8%)

BIAS = +0.02m/s (3.8%)
AME = 0.07més {16.1%)

RMSE = 0.08mis (19.9%)
Sl =0.20(Unbiased)
EV =084

[oled =082

PR =0ST(N =1)

Data (linear +/- 30min)
111 Line {45%)

Quantiles (0.1 - 100.0%)
- - - - Q4 fit y=0.972x+0.027

Data (within +/- 30min}

1 Line (45

HKNB (4.2419E:;52 8833N;-23 1mMMSL)

Scatter plot (2017-10-01 - 2018-03-01; Te = 30min; dt = 10min}
2.5 g

1 ~
- .
3 i
©
£ o5 g
2 S
g Gl
70 3
& < e
=05 i
o
=

N N
W e N s S K3

WL {m) - Measured

HKNB (4.2419E:52 6833N;-23. 1mM5L)

Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min}
1.1

CS {m/s) - Simulated

O P o P

CS (mis) - Measured

HKNB (4.2419E;52.6833N;-23.1mMS5L)

Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min}

N

N

%

60
54 N

= 12,727 (88.4days)
s MEAN =-0.05m (-10.0%)

2 BIAS =-0.06m (-10.0%)

£ AME  =0.14m {20.5%)
%2 RMSE = 0.17m {37.3%)
g Sl =036 (Unbiassd)

2 EV =051
*% e -om
P PR =104(N,=1)

£
12 &

é
& B

3

£

]

= Data (linear +- 30min)

1:1 Line (45°)
Quantiles (0.1 - 100.0%)
- - - - QO fit: y=1.089x-0.046

1
24
2 N =12,890 (89.5days)
20 MEAN = 0.42mis (103.6%)
18 BIAS = +0.01mis (3.6%)
6 £ AME = 0.06mis {15.8%)
2 RMSE = 0.08mis (18.6%)
2. Sl =018 {Unhiased)
105 BV =084
o 3 cc =002

E PR =100(N,=1)
6 @

£

4
4 g

3

s
ER

3

s

H Data (linear +- 30min)

1:1 Line (45°)
Quantiles (0.1 - 100.0%)
- - - - QQ fit: y=0.984x+0.022

252

196
168
140
112

84

58

28

Numbar af data peints in Gach 3 °N-to bin

Data (within +/- 30min)
+1 Line (45°)

S P PP PP PR PSSP
CD (*N-to) - Measured

CD (*N-lo} - Measured

O D PP PP PP P

Influence of wind friction on water level and currents at HKNB. Left: CASE 1, right: CASE 5.

83





Scatter plot
2.5

2

WL (m}) - Simulated
=

HKZA {4 0090E ;52 3066N;-23 7TmMSL})
(2017-10-01 - 2018-03-01; T

15
2 G

25
e Y

Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min}
1.1

RN IR R

WL {m) - Measured

HKZA (4.0090E;52.3066N;-23.7mMSL)

30min; dt = 10min}

Nurnber of dala poinls in each 0.05 m bin

N = 17,904 (124.3days)
MEAN = 0.05m (10.8%)
BIAS = +0.05m (11.0%)
AME  =0.21m (48.7%)
RMSE = 0.29m (62.0%)

Sl =051 {Unbiased)
EV 075

cc 0.88

PR AN, =1)

Data (finear +/- 30min)
1:1 Line (45°)

Quantiles (0.1 - 100.0%)
- - - - QQ fit: y=1.066x+0.050

Scatter plot
2.5

WL {m}) - Simulated
=

HKZA (4 0090E ;52 3086N;-23 7TmMSL}

(2017-10-01 - 2016-03-01; T_ = 30min; dit = 10min)

R I I

WL (m) - Measured

HKZA (4.0090E;52 3086N;-23.7mMSL}

s

a8

Scatter plot (2017-10-01 - 2018-03-01; Ta =30min; dt = 10min}
1.1

Nurmber of dala poinls in each 0.05 m bin

N =17.904 (124.3days)
MEAN = 0.06m {12.0%)
BIAS = +0.08m (12.1%)
AME = 0.22m (47.7%)
RMSE = 0.29m (63.0%)

81 = 0,62 {Unbiased)
EV 74

cc .88

PR A7 (NF =1}

Data (linear +/- 30min)
1:1 Line (45°)

Quantiles (0.1 - 100.0%)
- - -~ QO fit y=1.088x+0.056

40 45
36 N = 21,630 (150.2days) a0 N = 21,630 (150.2days)
1 2 MEAN = D.41mis (103.4%) 1 5 MEAN
BIAS +0.01mJs {3.4%)
8 _ 0 s
08 £ AME = D0.05mis {13.0%) 0.9 30 g AME .05ms [12.8%)
2 2 RMSE = 0.07m/s (16.7%) 25 2 RMSE = 0.07m/s (16.3%)
0.8 w0 = Sl =0.18 {Unhiased) a8 - S =0.16 {Unbiased)
3 3 ] 203 EV 89
w07 186 = = 07 =
3 g 2 15§ o -D'ggN =1
% 06 12 E % a6 : PR =005(N =1)
F0s 5 Fas g
£ ] £ kS
o 04 3 o 04 3
O 45 O 5 35
0.3 B 0.3 z
E H
0.2 = Data (linear +- 30min} 0.2 =z Data {linear +/- 30min)
1:1 Line (45°) 1:1 Line {45%)
041 Quantiles (0.1 - 100.0%) 0.1 1 Quantiles (0.1 - 100.0%)
¥ - - - - QQfit y=0.989x+0.018 8 - -~ - QO fit y=0.994x+0.016
0 1 0 1
O ¥ o o P oF g P 2 N o PN N P PR P S
€S (mfs) - Measured CS (m/s) - Measured
HKZA {4.0090E;52.3066N;-23.7mMSL) HKZA (4.0090E;52 3066N;-23. 7TmMSL}
Scatter plot (2017-10-01 - 2018-03-01; T_ = 30min; dt = 10min} Scalter plot (2017-10-01 - 2018-03-01; T_ = 30min; dt = 10min}
. . B T IAE 369 . —T . A 410
328 N = 21,630 (150.2days) 360 630 (150.2days)
330 a8
287 i
246 ¢ 300 27 £
205 5 270 248 ¢
Z - 205 Z
184 2 240 @
H B 164 5
123 8 E 210 5
= & 125 =
2 @
£ 180 &
e g 3 2 B
8 =z 150 8
g = z
4“5 O 120 m B
2 2
£ 90 £
z z
60
Data (within +- 30min) 30

&

S

Figure 4

84

S PP P PP
CD (*N-lo} - Measured

.30

£

+1 Line (45°)

Influence of wind friction on water level at HKZA.

11822658_MetOceanStudy_Hollandse_Kust_(west)_Final / nafe/fld/bri/mce/mgo/ybr / 2019-03-12

Q

X3

CD ("N-to} - Measured

AN ] D D AN B
L R S S S S

e

Left: CASE 1, right: CASE 5.

Data {within +/- 30min)
+1 Line (459






Hydrodynamic Modelling

HKZB {4 0088E ;52 2891N;-23 4mMSL}
Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min}
251

WL {m}) - Simulated
=)

=

15
2 /
.
25 1
N N
PN £ S P .

WL {m) - Measured

HKZB (4.0088E;52.2891N;-23.4mMSL}
Scatter plot (2017-10-01 - 2018-03-01; Te = 30min; dt = 10min})
1ir o 48

CS {mfs) - Simulated

RN RN R

[N
B I A N

CS (mfs) - Measured

HKZB {4.0086E;52.2891N;-23.4mMSL}

Scatter plot (2017-10-01 - 2018-03-01; Ta = 30min; dt = 10min}

360 %"

MowoN W %
¥ E N 8 B
o 5 a 5 &

180 -

N
o
2

(*N-to) - Simulated

D
o ©
EEE=IR-]

w
=1

SRR NS N

MNumber of dala poinls in each 0.01 mis bin Number of dala poinls in each 0.05 m bin

Number of data pints in each 3 *N-to bin

N =7.006 (48.7days)
MEAN = -0.11m (-24.0%)
BIAB  =-0.11m (-24.0%)
AME = 0.20m (42.2%)
RMSE = 0.23m {50.5%)

S =044 (Unbiased)

EV =0.86
CcC =085
PR =TOI(N =1)

Data (finear +/- 30min)
1:1 Line (45°)
Quantiles (9.1 - 100.0%)
- - - - QQfit y=1.169x-0.112

N = 21,358 (148.3days)
MEAN = 0.42mis (103.2%)
BIAS = +0.01m/s {3.2%)
AME = 0.05més {12.5%)
RMSE =0.07mis (16.6%)

S| =0.16 (Unbiased)
EV =088

[oled =0.84

PR =DBE(N =1)

Data (linear +/- 30min)
111 Line {45%)
Quantiles (0.1 - 100.0%)
- -~ - Q4 fit y=1.015x+0.007

N =21359 (148 3days)

Data (within +/- 30min}
1:1 Line (45

o b
S P PP PP PR PSSP
CD (*N-to) - Measured

Figure 4.31

4.3.3.5 Final configuration
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Influence of wind friction on current speed at HKZB. Left: CASE 1, right: CASE 5.

Based on the sensitivity tests presented in Sections 4.3.3.1 to 4.3.3.4, the final configuration
(CASES6) was selected for the hindcast modelling and production runs. CASE6 was based on
final mesh configuration as presented in Figure 4.8 with data assimilation. The model utilized a
spatially-varying Manning coefficient of 35m*3/s for water depth less than -25m otherwise
38m13/s, and combinations of wind friction of 0.0018825 at 7m/s and 0.0031 at 25m/s.

Figure 4.32 shows the scatter comparison of modelled water levels and currents against the
measurement at HKN. Case6 was seen to produce the best current results at HKNA and
HKNB. From the scatter comparison, some improvement is observed with the Q-Q line slope
being close to 1, small bias value (close to 0), low scatter and high correlation.

Hence, the model parameters based on CASE6 were assessed appropriate for the hindcast

model.
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Figure 4.32  Final Configuration, CASE 6 model performance at HKNA (left) and HKNB (right).

434 Validation

Overview of the time series comparison between the observed and modelled water levels and
currents at HKNA and HKNB are presented in Figure 4.33 and Figure 4.34, respectively. In
addition, long-term validation of the local model water levels and currents are presented in
Figure 4.35 to Figure 4.39.

Overall, the total water levels and current speeds are found to be well represented across the
HDowr model. The scatter plot shows good quantile alignments and low scatter indices and are
considered to be of high quality, which provides more confidence in the local HDowr model.

It should be mentioned that DHI considers the water levels measurements at HKZA to be more
scattered (reduced accuracy) compared to other locations. The water level measurements at
HKZB, HKNA and HKNB are of better quality, though still considered scattered. The model
comparisons at nearby long-term measurement stations prove this fact.
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HKNA (4.2420E;52 6887N;-23 6mMSL)
Time series (2017-04-10 - 2018-03-01; T_ = 30min; dt = 10min)
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Figure 4.33 Time series comparison of observed and modelled water levels and currents at HKNA
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HKNB (4 2419E;52 6833N-23 1mMSL})
Time series (2017-04-10 - 2018-03-01; T_ = 30min; dt = 10min)
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Figure 4.34 Time series comparison of observed and modelled water levels and currents at HKNB
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Figure 4.35 Scatter plot of observed and modelled water levels and currents at HKNA (left) and HKNB (right).
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Figure 4.36  Scatter plot of observed and modelled water levels and currents at HKZA (left) and HKZB (right).
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Figure 4.37  Scatter plot of observed and modelled current speed and direction at MM IImuiden.
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Figure 4.38 Scatter plots of observed and modelled total water levels at Brouwershavensche Gat, Europlatform,
Eierland, F16, F3, J6, K13 and K14.
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4.3.5

4.3.6

De-tiding of water levels and currents

The modelled water levels were subjected to a harmonic tidal analysis to separate the tidal and
non-tidal (residual) components. This “de-tiding” was conducted using the U-tide method, see
[15]. This method builds on the 10S tidal analysis method defined by the Institute of
Oceanographic Sciences as described by [16], and integrates the approaches defined in [17]
and [18].

De-tiding was performed separately for the periods with and without data assimilation. During
de-tiding, only constituents with frequency above 1/30h-! were applied, which means that larger
period constituents are instead included in the residual component. The residual water
level/current was found by subtracting the predicted tidal level/current from the total water
level/current.

Astronomical water levels (see Section 7.2.2) were derived based on 19 years of
data-assimilated hydrodynamic results, from 1999 to 2017, which constitute a full metonic cycle.

Output specification

The output of the HDowr model included water level and depth-integrated u and v-velocity
components covering the entire model area (all grid cells) at 30-min intervals. The water level
and current data were de-tided applying the I0S method (see Section 4.3.5 above) to obtain
time series of total, tidal and residual water levels and currents.

Water level and current data are considered representative of instantaneous data. The output
specifications are summarised in Table 4.3.

Table 4.3 Specifications of water level and current parameters

Abbreviation Unit Description Comment
WLtot, WLtid, WLRes m MSL Total, tidal and residual water level De-tided via I0S
CSrot, CStid, CSRes m/s Total, tidal and residual current speed Depth-integrated,

De-tided via 10S
CDrot, CDrid, CDRes °N (going to) | Total, tidal and residual current
direction

The near-seabed and near-surface current speeds are calculated based on the depth-integrated
data CSrotal, CSride, CSresidual, applying the vertical profiles presented in Section 7.3.3.
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Spectral Wave Modelling

To quantify waves for normal and extreme conditions and to provide long-term wave data, the
numerical spectral wave model from the MIKE modelling software was used [19]. This section
gives a detailed description of the model set-up, its calibration and its validation.

It should be noted that the calibration of this model was focused on the wave measurements at
Hollandse Kust (noord). In addition, the highest model resolution (~400m) is at Hollandse Kust
(noord). However, high quality results were achieved at other areas, including Hollandse Kust
(west), IJmuiden-Ver and Ten Noorden van de Waddeneilanden, based on the comparions
made at nearby measurement stations.

MIKE 21 SW Spectral Wave FM Model

MIKE 21 SW Spectral Wave Flexible Mesh (FM) model is developed, supported and maintained
by DHI. Like the other modules included in the FM series of MIKE Powered by DHI, the spectral
wave model is based on an unstructured, cell-centred finite volume method and uses an
unstructured mesh in geographical space. This approach, which has been available from DHI
now for more than a decade and which is thus fully matured, gives the maximum degree of
flexibility, and allows the model resolution to be varied and optimised according to requirements
in various parts in the model domain.

The MIKE 21 SW version 2017 SW was used in this project. A summary of the model
description and abilities is given below. Note that some features (such as diffraction or influence
of structures) were not considered in this modelling study.

MIKE 21 SW Spectral Wave FM Model

MIKE 21 SW is a third-generation spectral wind-wave model based on unstructured meshes.
The model simulates the growth, decay and transformation of wind-waves and swell waves in
offshore and coastal areas.

MIKE 21 SW includes the following physical processes

» Wave growth by wind

« Non-linear wave-wave interaction

» Dissipation due to white-capping

» Dissipation due to bottom friction

« Dissipation due to depth-induced wave breaking

» Refraction and shoaling due to depth variations

« Wave-current interaction

» Effect of time-varying water depth and currents

« Effect of ice coverage

« Diffraction

» Reflection

» Influence of structures (e.g. piers, wind turbine foundations, WEC (Wave Energy Converter),
TEC (Tidal Energy Converter))

Main computational features in MIKE 21 SW
« Source functions based on state-of-the-art 3" generation formulations

» Fully spectral and directionally decoupled parametric formulations
» In-stationary and quasi-stationary solutions
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» Effect of ice coverage

» Optimal degree of flexibility in describing the bathymetry and the ambient flow conditions
using depth-adaptive and boundary-fitted unstructured mesh

o Coupling with hydrodynamic flow model for modelling of wave-current interaction and time-
varying water depth

e Flooding and drying in connection with time-varying water levels

« Extensive range of model output parameters (e.g. wave, swell, air-sea interaction
parameters, radiation stress, spectra, etc.)

o Parallelised using OpenMP and MPI techniques

Further details can be found in the MIKE 21 SW Scientific Documentation [19].

Global Wave Model (GWM) and North Sea Wave Model (SWhns)

To force the local wave model with high-accuracy data, an existing DHI regional wave model,
SWhs, was used. Figure 5.1 shows the model domain covering the North Sea, going from a
resolution of around ~16.5km (in the North Atlantic) to about 5km in the southern North Sea and
the English Channel. As indicated in Figure 5.1, the SWns model spatial resolution was made
with focus on the Southern North Sea and specifically to provide boundary conditions to the
local model used for the HKZN project [2].

The open boundaries of the regional wave model were forced by directional wave spectra (2D
spectrum) from the DHI's Global Wave Model (described in section 5.3 of [2]).

[deg] SWNS mesh

63

62

61

60

59

58

57

56

Latitude

55

Bathymetry [m]
54
53
52
51
50

49

48 [_] Undefined Value

0 12
Longitude [deg]

Figure 5.1 Domain of the regional DHI North Sea wave model, SWns

To ensure correct propagation of waves within the North Sea, the model was calibrated and
validated against various measurements in the North Sea and close to the English Channel.
Figure 5.2 and Figure 5.3 show the stations used for calibration/validation of SWhs.

Figure 5.4 shows a sample comparison of the SWns model against measurements at K13 (taken
from Figure 5.16 of [2]). The SWns model shows zero bias and good performance especially for
the peak events and provides confidence in producing high-quality results.
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Figure 5.5 shows comparisons of the SWns model against measurements at FINO1 (located
very close to Ten Noorden van de Waddeneilanden wind farm). The results show a very good
performance, which indicate that the SWns model will be a suitable model to provide spectral
boundary conditions to local wave model (SWowr).

Additional long-term validations of SWns at Europlatform, Ekofisk (see Figure 5.2 for location),
IJmuiden munitiestortplaats and altimeters are given in section 5.4.4 of [2].
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Figure 5.5 Scatter comparison of modelled (SWhns) significant wave height against the measurements at

FINO1 for the period 2003-07-30 to 2012-01-01

The SWhs has been widely used with success in various projects in the North Sea; including
major offshore wind farm projects as well as oil/gas industry projects. The SWns model was
also used in the HKZN project. It takes advantage of some of the latest developments such as:

*  Accounting for the atmospheric stability effects
*  Accounting for air-sea density ratio (varying in time and domain)
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[deg]

»  Accounting for wind-induced current effect on the wave growth
Further details are described in sections 5.4.2.1 & 5.4.2.2 of [2].

For this project, the North Sea wave model was extended (to cover recent years) and new
boundary conditions for the local wave model were extracted.

Local Dutch Wind Farms Wave Model (SWowe)

In order to achieve high-quality results, a dedicated local wave model, SWowr, was established
for the Dutch Wind Farms area as shown in Figure 5.6. The local model was forced by spectral
boundary data (2D spectra varying in time and along the boundaries) from the regional wave
model described in Section 5.2, i.e. SWhs.

The local Dutch Wind Farms wave model (SWowr) extends from -1.5° to 9°E in longitude and
from 49.5° to 55.3°N in latitude. The domain is divided into several sub-domains, where the
resolution is increasing from offshore (4km) towards the focus areas (~400m) (Figure 5.7). The
objective of such a modelling strategy is to ensure the smooth propagation of waves into the
domain and enable high-resolution outputs in the focus areas.

The SWowr wave model was set up with the fully spectral, in-stationary formulation available in
MIKE 21 SW. This formulation is suitable for wave studies involving time-dependent wave
events and wind conditions varying rapidly in space and in time.

The frequency discretisation was 40 bins with a minimum frequency of 0.035Hz and a
logarithmic frequency increment factor of 1.089, resulting in resolved wave periods in the
interval 1.0-28.6s (0.035-0.97Hz). The directional discretisation was a 360° rose with 41 bins,
i.e. directional resolution of ~8.8°. According to DHI's experience based on performing
sensitivity tests in various projects, it was revealed that using such high (above 35) number of
bins (for both frequency and directions) would improve the results quite significantly and is a
vital key to a high-quality database.

A maximum (adaptive) computational time step of 3600 was applied, and the output time step
was 1 hour.
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Figure 5.7 Zoom in to the computational mesh and bathymetry (mMSL) around Hollandse Kust (noord),
Hollandse Kust (west) and adjacent areas - SWowr

Convergence study

As mentioned before, the calibration (and grid convergence analysis) of SWpwr was more
focused at Hollandse Kust (noord). No detailed grid convergence study was carried out
specifically at Hollandse Kust (west) or IJmuiden-Ver or Ten Noorden van de Waddeneilanden.
The wave model resolution was around 500m at the above-mentioned offshore wind farms
which based on DHI’s experience, is sufficient for feasibility level study.

For more information, please see Section 5.3.1 of [1].

Calibration

For calibrating the Dutch Offshore Wind Farms wave model (SWowr), a similar approach to the
HKZN project (described in section 5.5.2 of [2]) was taken. The calibration was based on the
largest 53 storms at K13 station for the measurement period (1989-2018). DHI selected 50
storms between 1989 and 2016 and 3 storms in 2017 to include the new observations at HKN
and HKZ stations (see Table 5.1).

After the model was calibrated based on the largest 53 storms over the domain, more focus was
put on the measurements at HKN (and to some extent HKZ). This was to ensure high-quality
results at the Hollandse Kust (noord) Wind Farm Zones based on more than one year of
measurements, while keeping the quality of the results elsewhere offshore. The calibration
process can be summarized in the following steps:

1. Calibrate the model based on the top 53 storms during the period 1989-2018

2. Check the results for the period Winter 2016 and Winter 2017 at HKN and HKZ and re-
calibrate if necessary (the plots for this step is not shown here as this was a transitional
step in order to determine the necessity and possible solutions for the next step)

3. Calibrate against the largest 20 storms measured at HKZ and HKN

In this section, some of the results/highlights corresponding to the above steps are presented.
Only the significant wave height comparisons are shown in this section.
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The calibration procedure was initiated based on the configuration and experiences achieved
during the HKZN project (see section 5.5.2 of [2]). As itis shown in section 5.5.3 of [2], the
previous model was able to produce very high-quality results over the entire domain. The main
goal in this project (apart from having higher resolution and local bathymetry at HKN and
extending the models to 2018) was to extend the results to cover the export cable corridors and
reduce the bias and improve the quality even further if possible.

The first calibration tests (herein referred to “CASE” — see Table 5.2) were based on the HKZN
mesh and domain (not extended for this project). As the calibration was on-going during the
same time as other tasks such as choosing the final wind fields and grid convergence, the first 4
cases are not discussed here. From “CASES5”, a new mesh was used (covering the final domain
and a resolution of ~600m (not final) around Hollandse Kust (noord) and the export cable
corridors. Based on the results of each CASE, the set-up was changed (usually only one
parameter was changed to assess the effects, but sometimes a few were changed based on the
modeller’'s experience) for the next CASE and simulations were performed.

The main parameters used for tuning the model to produce the best possible results were seen
to be bottom friction, the wind input and white-capping. Each simulation had 1 day as warm-up
and covered until 1 day after the peak of the storm.

As summarized in Table 5.2, the bottom friction and white-capping parameter Cadis was changed
during the calibration. The values were defined as “varying in domain and constant in time”.
Other small changes/modifications were present during the calibration such as updating some of
the measurement data, which was not considered important in the calibration process and thus
not explained here in detalils.
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Table 5.1 List of the largest 53 storms based on K13 measurements and used for calibration (values
are based on the final model simulations at HKW — see Section 6)
HKW
index [ Date at the peak of the storm HmO T02 Tp PWD MWD

1 '1990-12-12 18:00:00' 7.76 9.1 12.6 325 332
2 '2006-11-01 06:00:00' 6.85 8.9 12.7 334 339
3 '1996-02-19 07:00:00' 5.42 7.7 10.9 18 5

4 '2001-12-28 17:00:00' 5.63 7.4 10.2 307 304
5 '1990-01-25 22:00:00' 6.50 7.4 9.7 246 260
6 '2013-12-05 23:00:00' 5.87 7.9 11.0 316 318
7 '1995-01-02 06:00:00' 6.25 8.5 12.2 334 338
8 '2007-11-09 08:00:00' 6.09 8.3 11.7 325 329
9 '2002-10-27 15:00:00' 6.24 7.2 9.6 237 251
10 '2003-12-21 12:00:00' 5.82 8.0 11.2 325 329
11 '2007-01-18 18:00:00' 5.92 7.0 9.3 290 271
12 '1990-02-26 17:00:00' 5.50 6.9 9.1 299 279
13 '2009-12-17 17:00:00' 3.00 5.9 10.1 18 11
14 '2011-12-09 04:00:00' 4.51 6.6 8.7 299 284
15 '2011-12-07 19:00:00' 5.46 7.1 9.6 307 301
16 '2009-10-16 17:00:00' 4.55 7.2 10.3 351 357
17 '2003-12-15 00:00:00' 5.72 8.1 11.3 334 335
18 '2000-03-04 16:00:00' 4.45 6.9 9.7 325 324
19 '1993-11-14 19:00:00' 6.29 7.7 10.4 316 328
20 '2016-03-28 13:00:00' 5.06 6.7 9.4 237 226
21 '1993-12-09 12:00:00' 5.81 7.1 9.6 299 286
22 '1995-01-12 06:00:00' 6.09 7.9 11.0 334 341
23 '1998-01-05 03:00:00' 5.52 6.9 9.2 246 257
24 '2008-11-21 09:00:00' 5.28 7.2 9.6 325 324
25 '2008-03-01 09:00:00' 5.13 6.9 9.4 307 296
26 '1999-11-06 12:00:00' 5.96 7.6 10.6 299 296
27 '2016-11-06 21:00:00' 3.50 6.7 10.2 18 8

28 '1991-01-06 09:00:00' 5.71 7.0 9.3 237 253
29 '1994-01-28 10:00:00' 6.03 7.8 10.7 307 312
30 '2005-11-25 03:00:00' 6.61 7.9 11.0 307 314
31 '1993-02-21 08:00:00' 6.63 8.6 12.1 325 333
32 '2014-02-15 09:00:00' 4.89 6.7 9.2 228 222
33 '2012-11-25 12:00:00' 4.97 6.6 9.1 228 231
34 '2010-11-11 16:00:00' 4.95 6.4 8.8 228 214
35 '2013-12-24 06:00:00' 5.33 6.7 9.4 228 215
36 '2000-12-13 06:00:00' 5.10 6.7 9.4 237 233
37 '2006-02-09 16:00:00' 5.20 7.7 11.4 334 341
38 '2004-02-08 19:00:00' 5.76 7.4 10.3 307 316
39 '2013-10-10 17:00:00' 4.61 7.0 9.9 342 344
40 '2005-12-17 11:00:00' 5.58 8.0 11.6 334 337
41 '2008-03-12 15:00:00' 4.90 6.7 8.8 290 285
42 '2012-01-04 00:00:00' 4.26 6.3 8.2 290 269
43 '2008-01-31 14:00:00' 5.45 6.9 9.5 237 223
44 '2015-03-31 12:00:00' 4.88 6.8 9.1 307 299
45 '2014-10-22 00:00:00' 5.64 7.5 10.2 316 319
46 '2012-01-05 22:00:00' 5.87 7.8 10.8 316 322
47 '2001-11-08 16:00:00' 4.99 7.2 9.7 342 347
48 '2002-02-26 12:00:00' 5.01 6.6 9.0 237 233
49 '1991-10-19 16:00:00' 5.23 7.8 11.5 334 341
50 '2017-10-29 04:00:00' 5.04 7.3 9.8 325 330
51 '2015-11-18 03:00:00' 4.72 6.6 8.6 299 277
52 '2017-12-08 18:00:00' 4.89 7.1 9.6 316 315
53 '2017-09-13 11:00:00' 4.69 6.5 8.6 290 265
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Table 5.2 Different CASES (configurations) performed during the calibration of the local wave model
for storms
Bottom Other descriptions
CASE friction Charnock | Cuis CFSR
5 0.004 21 Original Same as HKZN - a7 _frequenmes and
48 directions
6 2.1 Original Bottom friction changed in the domain
New mesh (higher resolution at study
7 2.1 Original areas and export corridor) + Density
Ratio map
8 2.1 Original Bottom friction changed in the domain
Slightly different meshes to optimize
9 2.1
the runs
10 2.1 Bottom friction changed in the domain
11 2.1 Bottom friction changed in the domain
12 2.1 Bottom friction changed in the domain
0.009 002 Cdis (whit ing) changed in th
-UU9- ) is (white-capping) changed in the
13 0.004 19-21 domain
14 1.9-2.1 Bottom friction changed in the domain
Corrected and _ _
15 19-2.1 | Shifted CFSR | Changing the number of frequencies to
40 and directions to 41
! Running only for the top 20 storms
16 1.9-2.1 measured at HKZ and HKN
17 1.9-2.1 Bottom friction and quls changed in
the domain
18 2.1 Cdis back to constant
19 2.1 Bottom friction changed in the domain
20 2.1 Bottom friction changed in the domain

As it was explained in Sections 3.3.1.3 and 3.3.1.4, the results were expected to be under-
estimated close to the coastline. From CASE9 onwards, the shifted corrected CFSR was used
to force the wave model to fix the issue of under-estimation around the coast. The
measurements at IJmuiden Stroommeetpaal were used to assess the results. Figure 5.8 shows
the comparison of CASES8 and CASES9 results at IJmuiden Stroommeetpaal. Using the
corrected shifted CFSR (CASE9) resulted in much lower bias and RMSE compared to CASES.
Results at other stations were not changed (thus not shown here).
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Figure 5.8 Scatter comparison of Hmo between the modelled CASES (top) and CASE9 (bottom) and
measurements at IJmuiden Stroommeetpaal

From CASES to CASE15, more focus was put on the offshore stations as much longer
measurements were available. However, most of the changes from CASES5 to CASE15 were
mainly designed to improve the results at HKZ and HKN. This was seen to be a difficult task as
there were not so many measured storms amongst the largest 53 storms. Figure 5.9 shows the
comparison of Hmo between the measurements and modelled results (CASES & CASE15) at
Europlatform. The statistical scores indicate that the bias has been improved (almost 0 in
CASEL15).
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Europlatform (3.28E;52.00N;-29.65mMSL)
Scatter plot (1989-04-01 - 2018-10-01)

8.5 o 6
sl N = 2,340 (97.5days)
. 5 MEAN = 3.19m (98.1%)
: ] BIAS =-0.06m (-1.9%)
r » £ AME = 0.25m (7.6%)
o 65f P4 14 % | RMSE =0.31m (9.6%)
o6t Ak 9 sl = 0.09 (Unbiased)
8 55| 5 2 EV =092
o | . g |cc =098
L 2 PR =1.02(N =1)
go 4.5 ®
£
o 4 2 8
E 35} =
he=
._.% 3 - _5
T 251 g
2f 5
15k = Data (linear +/- 60min)
1l a0 1:1 Line (45°)
o5t . ©  Quantiles (0.0 - 100.0%)
: . - - - - QQfit: y=1.06x-0.26
ol o 1
O M@ V8 B0 R0 96 o b A6 B0
Hmo [m] - Rijkswaterstaat
Europlatform (3.28E;52.00N;-29.65mMSL)
85 Scatter plot (1989-04-01 - 2018-10-01) 7
gl N = 2,360 (98.3days)
e 16 MEAN = 3.27m (99.7%)
: ) BIAS =-0.01m (-0.3%)
r y 15 £ AME = 0.24m (7.2%)
o 85f £ RMSE =0.31m (9.3%)
T 6l 148 ] = 0.09 (Unbiased)
[0] 5 —
@ 550 % EV =001
S gl . & |cc =09
w 32 PR =1.06(N_=1)
£45 » £
o i)
235F 2z
c | °
£ 3 5
E 25 5]
I o
2f 5
15k = Data (linear +/- 60min)
1k 1:1 Line (45°)
05k °  Quantiles (0.0 - 100.0%)
: 1 - - - - QQfit: y=1.07x-0.25
Y Y (0 T U N N N I I A
0P NP Tgh 2,0 %5 9.0 0.0 A0 D0

HmU [m] - Rijkswaterstaat

Figure 5.9 Scatter comparison of Hmo between the measurements and the modelled CASES5 (top) and
CASE15 (bottom) at Europlatform

Figure 5.10 shows the comparison of Hmo between the measurements and modelled results
(CASES5 & CASEL5) at LEG. The statistical scores indicate that the bias has changed from a
negative value to a positive value, indicating that the model is over-estimating the Hmo values
slightly compared to the measurements. Positive bias was preferable for the modeller due to
conservatism. Nevertheless, the final results (to be discussed in the next chapter) have bias
very close to zero.
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Figure 5.10 Scatter comparison of Hmo between the measurements and the modelled CASES5 (top) and
CASE15 (bottom) at LEG

Figure 5.11 shows the comparison of Hmo between the measurements and modelled results
(CASES & CASE15) at HKZB. Major improvement were achieved from CASES towards
CASE15 by changing the bottom friction, introducing density ratios and perhaps using better
wind input.
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Figure 5.11  Scatter comparison of Hmo between the measurements and the modelled CASES5 (top) and
CASEL15 (bottom) at HKZB

After CASE15 (from CASE16 onwards), all the focus was put on the results at HKN and HKZ
using the local measurements performed by Fugro (whilst the results at other offshore stations
should have been kept to an acceptable degree). Figure 5.12 shows the results for CASE16
and CASE20 against the measurements at HKZB. Statistical scores indicate improved bias and
RMSE from CASE16 to CASE20. Similar behaviour is seen in Figure 5.13 at HKNB.
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Results were of very high quality in CASE20 and considered satisfactory, and therefore,
CASE20 was chosen to be the final configuration and was used for the production of +39 years

of data.
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Figure 5.12  Scatter comparison of Hmo between the measurements and the modelled CASE16 (top) and
CASE20 (bottom) at HKZB
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Figure 5.13  Scatter comparison of Hmo between the measurements and the modelled CASE16 (top) and
CASE20 (bottom) at HKNB

From CASE14 to CASEL15, the number of frequencies and directions were reduced from 47 to
41 and from 48 to 40, respectively. The purpose was to achieve better simulation run times and
reduce the size of the spectral data by ~30% (~2 TB). Figure 5.14 shows the scatter
comparison of significant wave height (Hmo) and peak wave direction (Tp) between CASE14 and
CASE15 at Europlatform and HKNA. Results show no difference meaning that using slightly
lower number of frequencies and directions compared to the previous HKZN set-up has no
effect on the results.

11822658_MetOceanStudy_Hollandse_Kust_(west)_Final / nafe/fld/bri/mce/mgo/ybr / 2019-03-12





Spectral Wave Modelling

=14

HmO [m] - SWDWF Case

Tp [s] - SW - Case=14

N oW ko O N ® © O

Europlatform (3.28E;52.00N;-29.65mMSL)
Scatter plot (1989-04-01 - 2018-10-01)

S0 NG q,qf; PSRN O:O;_; © 5 '\,\ﬁ_a @ o
Hm0 [m] - SWDWIF Case=15

Europlatform (3.28E;52.00N;-29.65mMSL)
Scatter plot (1989-04-01 - 2018-10-01)

Nk H 0 A D 0,0 N LD R e
Tp [s]- SWDWF Case=15

35
31.5
28

4245

21
17.5

35

Number of data peints in each 0.05 m bin

576
51.2
44.8
38.4
32

25.6

19.2

12.8

1.0107

N = 2,458 (102.4days)
MEAN = 3.30m (100.1%)

BIAS = +0.00m (0.1%)
AME = 0.00m (0.1%)
RMSE =0.01m (0.2%)
Sl =0.00 (Unbiased)
EV =100

cCc  =1.00

PR =1.00(Np=1)

Data (linear +/- 60min)
1:1 Line (45°)

°  Quantiles (0.0 - 100.0%)
- -~ - QQ fit: y=1.00x-0.00

N = 2,458 (102.4days)
MEAN =7.95s (100.0%)
BIAS =+0.00s (0.0%)
4 AME  =0.00s (0.0%)
3 RMSE =0.00s (0.0%)
i S| =0.00 (Unbiased)
4 EV =100
gcc  =1.00
2pr =100 (Np=1)
=
2
@
3
‘s
-
£
E]
Data (linear +/- 60min)
1:1 Line (45°)
°  Quantiles (0.0 - 100.0%)
- - - - QQ fit y=1.00x+0.00

=14

HmO [m] - SWDWF Case

Tp [s] - SW - Case=14

N oW ko O N ® © O

DA

HKNA (4.24E;52.69N;-23.40mMSL)
Scatter plot (2017-04-01 - 2018-07-01)

OB NG Te D0 kB B 6 B b AL BH
Hmo [m] - SWDWF Case=15

HKNA (4.24E;52.69N;-23.40mMSL)
Scatter plot (2017-04-01 - 2018-07-01)

Sk H e A D 9,0 N D WD
Tp [s] - SWDWF Case=15

Number of data points in each 0.05 m bin

Number of data points in each 0.1 s bin

N =138 (5.8days)
MEAN =3.52m (100.1%)
BIAS =+0.00m (0.1%)
AME =0.01m (0.2%)
RMSE =0.01m (0.2%)

SI =0.00 (Unbiased)
Ev  =1.00
cc  =1.00

PR =1.00(Np=1)

+ Data (linear +/- 60min)
— 1:1 Line (45°)

= Quantiles (0.0 - 100.0%)
- - - - QaQ fit: y=1.00x-0.00

N =138 (5.8days)
MEAN = 8.58s (100.0%)

BIAS = +0.00s (0.0%)
AME  =0.00s (0.0%)
RMSE = 0.00s (0.0%)
SI =0.00 (Unbiased)
Ev  =1.00

cc  =1.00

PR =1.00(Np=1)

Data (linear +/- 60min)
1:1 Line (45°)

°  Quantiles (0.0 - 100.0%)
- - - - QQfit: y=1.00x+0.00

Figure 5.14  Scatter comparison of Hmo (Top) and Tp (Bottom) between CASE14 (y-axis) and CASE15 (x-axis) at Europlatform (Left) and HKNA (Right)
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Final validation and configuration of SWopwr

The SWowr local wave model production configuration is presented in Table 5.3.

In order to perform all the required simulations, a super-computing cluster was used. The
SWowr simulations were divided into four parts for each year (40 x 4 = 160 simulations) and
pushed to the cluster at the same time. Each simulation used 72 cores and took ~24 hours to
be finished.

Table 5.3 Final SWowr local wave model set-up parameters

Setting Value

Mesh resolution See Section 5.3.1

Simulation period 1979-01-01 — 2018-10-01— 1-hourly output

Basic equations Fully spectral in-stationary

40 frequencies (1.03-28.57s (0.035-0.973Hz) logarithmic frequency increment

Discretisation factor of 1.089), 41 directions

Time step (adaptive)

0.01-3600s with a maximum time-step factor of 32

Water level

HDowr 2D (temporally and spatially-varying)

Current conditions

HDobwr 2D (temporally and spatially-varying)

Wind forcing

CFSR data (corrected and shifted — see Section 3.3.1.4), Charnock 0.02
(uncoupled) — Corrected to included atmospheric stability effects

Air/water density ratio

Varying in time and domain calculated from CFSR

Energy transfer

Include quadruplet-wave interaction (no tirads)

Wave breaking

Included, Specified Gamma, y=0.8, a= 1 [20]

Bottom friction

Nikuradse, kn = 0.009-0.004m (varying in domain)

White-capping

Formulation: [21], Cdis=2.1, DELTAudis =0.4

Boundary conditions

2D spectra varying in time and along line; from SWns

Each integral parameter is given for the total sea state and for swell and wind-sea components
respectively. The wave parameters (listed in Table 5.4) were saved at all elements and are
provided in the database. Sea and swell conditions were partitioned using the already existing
definition in MIKE 21 SW [19] as follows.

The wind-sea/swell partitioning method is based on a wave-age criterion where the swell
components are defined as those components fulfilling:

UlO
Tcos(@ -6,) <0.83
Where Uy is the wind speed at 10m above MSL, c is the phase speed, and 6 and 6w are the

wave propagation and wind direction respectively.
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Latitude

Table 5.4 Integral spectral wave parameters
Name Abbrev. Unit
Significant wave height Hmo M
Peak wave period Tp S
Mean wave period Tox S
Zero-crossing wave period To2 S
Peak wave direction PWD Radian N (coming from)
Mean wave direction MWD °N (coming from)
Direction standard deviation DSD deg.

SW DWF domain and bathymetry
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The directional-frequency spectra were saved within a 1km grid inside the wind farm zones and
within a 5km grid in other areas that will be provided in the database. Figure 5.15 and Figure
5.16 show the grid definition.
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Figure 5.15 The spectral data output grid - 5km grid offshore and 1km grid within the wind farm zones
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Figure 5.16 A zoomed in image of the spectral output grid - 5km grid offshore and 1km grid within the wind farm zones

Figure 5.17 to Figure 5.23 show the time series and scatter comparison of modelled significant
wave heights against the measurements at K13a, Europlatform, Eierlandse, F3, IJmuiden
Stroommeetpaal, LEG & FINO1, respectively. The model shows excellent agreement with the
measurements at all stations.

On average, the model shows zero bias and scatter index below 20% (as low as 13% offshore).
The peak ratio (capability of the model in reproducing extreme sea states) is very close to 1.0,
and the RMSE is lower than 25cm.
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Figure 5.17 Time series and scatter comparison of modelled (SWhkzn) significant wave height against the
measurements at K13a for the period 1989-01-01 to 2016-09-01
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Figure 5.18 Time series and scatter comparison of modelled (SWHkzn) significant wave height against the
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Figure 5.19 Time series and scatter comparison of modelled (SWowr) significant wave height against the
measurements at Eierlandse for the period 1989-08-01 to 2018-09-01
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Figure 5.20 Time series and scatter comparison of modelled (SWowr) significant wave height against the

measurements at F3 for the period 2014-01-01 to 2018-10-01
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Figure 5.21 Time series and scatter comparison of modelled (SWowr) significant wave height against the
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Figure 5.22 Time series and scatter comparison of modelled (SWowr) significant wave height against the
measurements at LEG for the period 1989-04-01 to 2018-10-01
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Figure 5.23 Time series and scatter comparison of modelled (SWowr) significant wave height against the
measurements at FINOL1 for the period 2004-01-01 to 2011-03-01

Figure 5.24 to Figure 5.28 show the time series and scatter comparison of modelled significant
wave height against the measurements at HKNA, HKNB, HKZB, HKZA and Borsselel
respectively. The comparisons show the high-quality of the modelled results in reproducing both
normal and extreme conditions. The results has slightly higher bias (~4cm) compared to the
offshore and long-term measurements which could be due to the very limited period of data
availability. Nevertheless, the model was tuned to have slight positive bias in order to be on the
conservative side. This small positive bias is neglectable and has no influence on the overall
results.
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Figure 5.24 Time series and scatter comparison of modelled (SWowr) significant wave height against the
measurements at HKNA for the period 2017-04-01 to 2018-07-01
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Figure 5.25 Time series and scatter comparison of modelled (SWowr) significant wave height against th
measurements at HKNB for the period 2017-04-01 to 2018-07-01
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Figure 5.26  Time series and scatter comparison of modelled (SWowr) significant wave height against the
measurements at HKZB for the period 2016-06-04 to 2018-06-01
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Figure 5.27 Time series and scatter comparison of modelled (SWowr) significant wave height against the
measurements at HKZA for the period 2016-06-04 to 2018-06-01
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Figure 5.28 Time series and scatter comparison of modelled (SWpowr) significant wave height against the
measurements at Borsselel for the period 2015-06-11 to 2017-03-01

Figure 5.29 to Figure 5.33 show the time series and scatter comparison of Toz between the wave
model (SWpwr) and the measurements at HKZB, HKNB, Europlatform & K13 (for Hmo above
0.5m). The To2 comparisons are very sensitive to the frequency range resolved by the model
and measured by the buoy. The wave buoy is measuring the surface elevation with 2Hz

(0.5 seconds). Based on DHI's experience, the buoys are usually not capable of measuring
waves with periods shorter than ~2.0 seconds (i.e. cut-off frequency equal to 0.6Hz). Thus for
the below comparisons, the modelled results were not considered for the periods shorter than
~2.0 seconds (or 0.6 Hz). In general, the model shows a very good performance with zero bias.
It must be noted that such comparisons are very sensitive to the frequency range accounted.
The results will be different if, for example, the total part of spectrum was considered (see Figure
5.33 as an example).
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period 2016-06-01 to 2018-06-01 — For Hmo > 0.5m and frequencies between 0-0.6Hz
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Figure 5.30 Time series and scatter comparison of modelled (SWpowr) To2 against the measurements at
HKNB for the period 2017-04-01 to 2018-07-01 - For Hmo > 0.5m and frequencies between

0-0.6Hz
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Europlatform (3.28E;52.00N;-29.65mMSL)
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Figure 5.31 Time series and scatter comparison of modelled (SWowr) Toz against the measurements at
HKZA for the period 2010-01-01 to 2016-10-01 - For Hmo > 0.5m and frequencies between

0-0.6Hz
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Figure 5.32 Time series and scatter comparison of modelled (SWpowr) To2 against the measurements at
K13 for the period 2010-01-04 to 2016-10-01 - For Hmo > 0.5m and frequencies between

0-0.6Hz

11822658_MetOceanStudy_Hollandse_Kust_(west)_Final / nafe/fld/bri/mce/mgo/ybr / 2019-03-12





Spectral Wave Modelling Dlﬁ

HKNB (4.24E;52.68N;-23.00mMSL)
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Figure 5.33  Scatter comparison of modelled (SWowr) Toz against the measurements at HKNB for the
period 2017-04-01 to 2018-07-01 — Total part of the spectrum has been taken into the
comparison - For Hmo > 0.5m

For Tp, since the measurements come with 10-minute time steps, and the wave model has a
one hourly time step, averaging the measurement peak wave period is not correct. The correct
method is to take the raw data for every hour and derive the spectral information. Although this
approach was not used (due to time limitations), DHI’'s comparisons at HKNB (and other stations
— see Figure 5.34) showed good performance. Therefore, the modelled data can be used with
confidence. It has to be noted that the peak wave period for wave heights lower than 1.5m were
taken out of the comparisons.
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Figure 5.34  Scatter comparison of modelled (SWowr) Tp against the measurements at HKNB for the
period 2017-04-01 to 2018-07-01 — For Hmo > 1.5m and frequencies between 0-0.6Hz

Figure 5.35 to Figure 5.37 show the wave rose comparisons between the wave model and
measurements at HKZB, HKNB and Borsselel respectively. The model reproduces the mean
wave direction with high quality. It appears that the frequency of northerly waves are somewhat
under-estimated by the model compared to the measurements. Looking at the time series
comparison in Figure 5.38, it appears that around June 2018, the measurements suggest that
the majority of the waves are coming from 330°-360°, whilst the model is reproducing waves
coming mostly from 0°-30°. DHI has not looked into this further at this stage.
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Figure 5.35 Wave rose comparison between the modelled and measured data at HKZB for the period
2016-06-01 to 2018-06-01
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Figure 5.36 Wave rose comparison between the modelled and measured data at HKNB for the period
2017-04-01 to 2018-07-01
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Figure 5.37 Wave rose comparison between the modelled and measured data at Borsselel for the
period 2016-06-01 to 2016-07-01
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Figure 5.38 Time series comparison of modelled and measured MWD at HKNB

Comparisons with the HKZN Model data

DHI produced high-resolution data (~600m) for Hollandse Kust (noord) in 2016 [2] (extended in
2017). Description of the wave model (SWHkzn) can be found in section 5.5 of [2]. In summary,
the following main differences exist between SWrkzn and SWowr:

1. SWowr covers the extra period from 2017-04-01 to 2018-10-01 compared to SWhkzn
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SWowr uses local bathymetry data and higher resolution of ~400m at Hollandse Kust
(noord) compared to ~600m in SWhkzn

SWowr has a larger domain

SWowr uses corrected/shifted CFSR

SWowr uses lower frequency (7) and directional (8) discretization compared to SWhkzn
SWowr is more comprehensively calibrated against the local measurements at Hollandse
Kust (noord) and (zuid)

N

o0k w

Figure 5.39 shows the scatter plot comparison of Hmo vs. Tp between SWpwr and SWhkzn at
HKN (the analysis location in the HKZN study — see section 7 of [2]). Both dataset look very
similar, although SWswr contains 18 months of extra data.

HKN Location (from HKZN study)

e New Model -SW - 1979-2018
e Old Model - SW, . - 1979-2017

30

Tp [sec]

HmO [m]

Figure 5.39  Scatter comparison of Hmo vs. Tp between SWowr (green) and SWhkzn

There were around 17 time steps (from ~348,000) corresponding to 0.005% of the entire dataset
that had very large peak wave periods (~29 seconds for SWowr and 31 seconds for SWrkzn) as
also shown in Figure 5.39. DHI looked in more details into a few of these events. Figure 5.40
shows the 2D spectrum at HKN, EPL and F3 location for one of such events on 1984-12-27
04:00. The spectrum shows a complicated sea state with long swell coming from north and
wind-sea coming from south west. Model shows very long swells from the north and their period
gets longer and longer as they propagate towards Hollandse Kust (noord). Figure 5.41 shows
an example of the frequency spectrum corresponding to the 2D spectrum at HKN location
shown in Figure 5.40. As it can be seen, the majority of the energy corresponds to the wind-sea
part (with shorter period — and more area under the wave spectrum); however, the largest peak
wave period belongs to the swell part (with the peak energy) and thus, the model reports such
high peak wave periods. Same behaviour was seen in both SWhkzn and SWowr with slightly
different peak wave periods as shown in Figure 5.39. This difference is due to the cut-off
frequency of the models, one set at 29 seconds and the other at 31 seconds.
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DHI did not inspect more into such events as they are considered not to affect the results. Such
events appear to be model artefacts.

27.12.1588 040000, Time sp: 2196 00 2220 27-12-1984 04.00.00, Teme sho: 2116, 2220

2121984 040000, T i 211642220

Figure 5.40 Directional-Frequency spectrum at HKN (left), EPL (middle) and F3 (right) for the event on
1984-12-27 04:00 — Results are from SWpwr model
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Figure 5.41 Frequency spectrum at HKN location based on SWpwr data on 1984-12-27 04:00
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6 Analysis Points

Following the scope of work of this study, three (3) points were selected to present the analysis
of normal and extreme conditions in the report. The selection of the points was based on the
variation of the median annual maximum significant wave height within the Hollandse Kust
(west), IImuiden-Ver and Ten Noorden van de Waddeneilanden areas. The locations of the
three points were discussed and agreed with RVO.nl. Details about these points are presented
in Figure 6.1, Figure 6.2 and Table 6.1. Please note that the spatial variation of extreme values
(as well as the modelling data) can be obtained from the web-based database.

Latitude

Figure 6.1

Latitude

Figure 6.2
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[ ] Undefined Value
3.1 3.2 33 34 3.5 36 3.7 3.8 3.9 40 41

Longitude [deg]

Location of the points selected for the analysis of extreme and normal conditions at
Hollandse Kust (west) and IJmuiden-Ver (along with annual median maximum Hmo) — More
distinct variation is seen at IJmuiden-Ver compare to Hollandse Kust (west).

Median Annual Max based on HmO [m]

Median Annual Max [m]

I Above 7.2
74-72
7.0-71
6.9-7.0
6.8-6.9
6.7-6.8
6.6-6.7
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[_] Undefined Value

5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10
Longitude [deg]

Location of the points selected for the analysis of extreme and normal conditions at Ten
Noorden van de Waddeneilanden (along with annual median maximum Hmo)
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Table 6.1

Coordinates of the analysis points at Hollandse Kust (west), IJmuiden-Ver & Ten Noorden
van de Waddeneilanden

HKW 552,086 5,843,308 3.771450 52.737132 25.5 24.7
(N\Y 547,085 5,865,482 3.700593 52.936914 24.8 23.8
TNW 684,289 5,993,209 5.815456 54.054107 36.4 35.5
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7.1

7.1.1

Normal Metocean Conditions

A number of analyses were conducted on the established metocean data to describe the
operational conditions within the project sites. The analyses were conducted at the three
selected analysis locations — see Section 6, and were based on the modelled metocean data
covering the period 1979-2018 (39.7 years). The exact period used for the normal conditions
analysis starts from 1979-01-15 00:00 in order to remove the model warm-up period and ends at
2018-09-30 23:00 (indicated hereafter as period 1979-01-15 to 2018-10-01).

The analyses were conducted for 12 directional bins of 30 degrees (centred at 0°N, 30°N ...).
Unless otherwise stated, graphical results are shown for annual results only in this main part of
the report, while the monthly or directional results are presented in Appendix D (HKW), E (1JV)
and F (TNW). The tables corresponding to all the figures presented in this section are available
in Excel format.

Wind

The normal wind conditions at the three analysis points are described below. The analyses
were based on CFSR wind data for the period 1979-01-15 to 2018-10-01. CFSR wind data is
provided on an hourly base, but the values are representative of 2-hour averaged values as
described in Section 3.3.1.2. Wind statistics representative of the mean wind speed at different
altitudes (10m, 60m, 100m, 120m, 160m and 200m above MSL) are provided. An empirical
wind profile was applied to obtain the wind speeds at heights higher than 10mMSL from the
CFSR 10m wind speed. This methodology is described in Section 3.3.1.4.

Time series and annual statistics

Time series and statistics of wind speeds at the three analysis points are shown in Table 7.1
and Figure 7.1. The average 100m wind speed is 9.8m/s at HKW, 9.9m/s at IJV and 10.1m/s at
TNW.

Table 7.1 Annual statistics of wind speed [m/s] at HKW

Parameter Number of data points Mean Min Max STD
Uio 348096 8.2 0.0 29.6 4.0
Uso 348096 9.4 0.0 33.9 4.6
U100 348096 9.8 0.0 35.2 4.7
U120 348096 9.9 0.0 35.7 4.8
U160 348096 10.1 0.0 36.5 4.9
U200 348096 10.3 0.0 37.1 5.0
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Table 7.2 Annual statistics of wind speed [m/s] at 1JV

Parameter Number of data points Mean Min Max STD
Uio 348096 8.3 0.0 30.2 4.0
Uso 348096 9.5 0.0 34.6 4.6
Uioo 348096 9.9 0.0 35.9 4.8
U120 348096 10.0 0.0 36.4 4.8
Uieo 348096 10.2 0.0 37.2 4.9
U200 348096 10.4 0.0 37.8 5.0

Table 7.3 Annual statistics of wind speed [m/s] at TNW

Parameter Number of data points Mean Min Max STD
Uio 348096 8.5 0.0 30.2 4.0
Uso 348096 9.8 0.0 34.6 4.5
U100 348096 10.1 0.0 35.9 4.7
Ui20 348096 10.3 0.0 36.4 4.8
Uieo 348096 10.5 0.0 37.2 4.9
U200 348096 10.7 0.0 37.8 5.0
HKW (3.77E;52.74N;25.50mMSL) N MEAN  MIN MAX  STD NAN
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Figure 7.1 Time series of wind speeds Uio and Uioo at the three analysis points
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7.1.2 Wind roses and wind speed-direction occurrence tables

Average annual wind roses at the three analysis locations for 100m altitude are presented in
Figure 7.2 to Figure 7.4. They show a predominance of south-westerly winds compared to other
wind directions. At TNW, the percentage of occurrence of north westerly winds are more
compared to the other two analysis points.

Corresponding frequency of occurrence tables are provided in Table 7.4 to Table 7.6. Annual
wind roses and tables for other altitudes as well as monthly roses and tables for all altitudes are
provided in Appendices D-F.

HKW (3.77E;52.74N;25.50mMSL)
Rose plot (1979-01-15 - 2018-10-01) All

CFSRy e

N = 348096
U, oo [Ms]

WD [°N]

[ >=20 (2.85%)
[J18-20
[CJ1e-18
14-16
J12-14
J10-12
R
Bs-8
M-
<4 (10.11%)

Figure 7.2 Average annual wind rose at HKW for an altitude of 100mMSL
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IJV (3.70E;52.94N;24.80mMSL)
Rose plot (1979-01-15 - 2018-10-01) All
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Figure 7.3 Average annual wind rose at IJV for an altitude of 100mMSL

TNW (5.82E;54.05N;36.40mMSL)
Rose plot (1979-01-15 - 2018-10-01) All
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Figure 7.4  Average annual wind rose at TNW for an altitude of 2700mMSL
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Table 7.4 Occurrence table of Uico wind speed and direction at HKW

WD

©N) 0 30 60 90 120 150 180 210 240 270 300 330 Total
[0-2[ 0.207 | 0.196 | 0.195 | 0.168 | 0.185 | 0.192 | 0.190 | 0.221 | 0.213 | 0.207 | 0.221 | 0.231 2.43
[2-4] 0.666 | 0.621 | 0.611 | 0.556 | 0.540 | 0.567 | 0.586 | 0.658 | 0.746 | 0.736 | 0.712 | 0.684 | 7.68
[4-6] 1.059 | 1.045 | 0.989 | 0.960 | 0.885 | 0.866 | 0.931 | 1.220 | 1.384 | 1.244 | 1.170 | 1.069 | 12.82
[6-8[ 1.258 | 1.311 | 1.261 | 1.272 | 1.102 | 0.977 | 1.174 | 1.764 | 1.822 | 1.525 | 1.377 | 1.294 | 16.14
[8-10[ 1.241 | 1.289 | 1.240 | 1.249 | 1.003 | 0.916 | 1.150 | 2.043 | 2.291 | 1.813 | 1.480 | 1.311 | 17.03
[10-12[ | 0.924 | 0.914 | 1.053 | 0.910 | 0.698 | 0.689 | 0.989 | 2.044 | 2.299 | 1.696 | 1.380 | 1.164 | 14.76
[12-14] | 0.610 | 0.494 | 0.560 | 0.553 | 0.473 | 0.412 | 0.763 | 1.680 | 1.986 | 1.439 | 1.004 | 0.858 | 10.83
[14-16[ | 0.314 | 0.205 | 0.282 | 0.384 | 0.289 | 0.228 | 0.557 | 1.312 | 1.645 | 1.032 | 0.730 | 0.582 7.56
[16-18[ | 0.172 | 0.108 | 0.097 | 0.215 | 0.113 | 0.119 | 0.381 | 1.016 | 1.087 | 0.773 | 0.443 | 0.342 | 4.87
[18-20[ | 0.088 | 0.056 | 0.052 | 0.111 | 0.029 | 0.052 | 0.217 | 0.665 | 0.763 | 0.534 | 0.290 | 0.177 3.04
[20-22[ | 0.032 | 0.014 | 0.018 | 0.030 | 0.016 | 0.014 | 0.125 | 0.413 | 0.416 | 0.291 | 0.156 | 0.094 1.62
[22-24] | 0.011 | 0.004 | 0.008 | 0.005 | 0.003 | 0.004 | 0.056 | 0.197 | 0.192 | 0.150 | 0.068 | 0.047 0.74
[24-26] | 0.006 | 0.001 | 0.002 0.001 | 0.002 | 0.024 | 0.096 | 0.062 | 0.065 | 0.038 | 0.016 | 0.31
[26-28[ 0.006 | 0.036 | 0.023 | 0.027 | 0.013 | 0.002 0.11
[28-30[ 0.003 | 0.016 | 0.010 | 0.011 | 0.002 | 0.002 0.05
[30-32[ 0.006 | 0.003 | 0.005 | 0.001 | 0.001 0.02
[32-34] 0.001 0.001 | 0.002 0.00
[34-36[ 0.001 0.00
[36-38]

Total 6.59 6.26 6.37 6.41| 534 | 504 | 7.15]| 13.39 | 1494 | 11.55| 9.09 7.87 | 100.0

The expert in WATER ENVIRONMENTS

143






DA

Table 7.5 Occurrence table of U100 wind speed and direction at IV

WD

©N) 0 30 60 90 120 150 180 210 240 270 300 330 Total

[0-2] 0.200 | 0.195 | 0.184 | 0.160 | 0.179 | 0.187 | 0.191 | 0.194 | 0.196 | 0.202 | 0.215 | 0.213 2.32

[2-4] 0.630 | 0.621 | 0.592 | 0.534 | 0.521 | 0.556 | 0.585 | 0.666 | 0.737 | 0.699 | 0.690 | 0.660 7.49

[4-6] 1.001 | 1.005 | 0.959 | 0.920 | 0.831 | 0.842 | 0.944 | 1.217 | 1.348 | 1.190 | 1.135 | 1.047 | 12.44

[6-8[ 1231 | 1.224 | 1.234 | 1.213 | 1.037 | 0.952 | 1.212 | 1.792 | 1.724 | 1.561 | 1.394 | 1.296 | 15.87

[8-10[ 1235 | 1.209 | 1.197 | 1.228 | 1.010 | 0.882 | 1.115 | 2.127 | 2.166 | 1.854 | 1.500 | 1.307 | 16.83

[10-12[ | 0.921 | 0.897 | 1.072 | 0.942 | 0.707 | 0.705 | 0.987 | 2.081 | 2.232 | 1.747 | 1.397 | 1.190 | 14.88

[12-14] | 0.622 | 0.501 | 0.625 | 0.573 | 0.504 | 0.447 | 0.787 | 1.750 | 1.977 | 1.502 | 1.061 | 0.870 | 11.22

[14-16] | 0.330 | 0.205 | 0.307 | 0.411 | 0.313 | 0.248 | 0.539 | 1.333 | 1.637 | 1.067 | 0.736 | 0.612 7.74

[16-18[ | 0.184 | 0.115 | 0.113 | 0.229 | 0.142 | 0.132 | 0.412 | 1.038 | 1.079 | 0.797 | 0.458 | 0.361 5.06

[18-20[ | 0.088 | 0.060 | 0.057 | 0.127 | 0.041 | 0.062 | 0.235 | 0.695 | 0.758 | 0.546 | 0.286 | 0.185 3.14

[20-22[ | 0.039 | 0.016 | 0.025 | 0.045 | 0.016 | 0.020 | 0.136 | 0.437 | 0.419 | 0.300 | 0.166 | 0.094 1.71

[22-24[ | 0.012 | 0.005 | 0.011 | 0.008 | 0.008 | 0.005 | 0.063 | 0.223 | 0.187 | 0.154 | 0.072 | 0.049 0.80

[24-26[ | 0.005 | 0.002 | 0.003 | 0.001 | 0.001 | 0.002 | 0.032 | 0.104 | 0.055 | 0.068 | 0.037 | 0.017 | 0.33

[26-28] 0.009 | 0.045 | 0.023 | 0.026 | 0.012 | 0.003 | 0.12
[28-30] 0.003 | 0.016 | 0.010 | 0.010 | 0.003 | 0.001 | 0.04
[30-32] 0.001 | 0.007 | 0.004 | 0.006 | 0.001 | 0.001 | 0.02
[32-34] 0.001 | 0.001 | 0.001 | 0.002 0.01
[34-36] 0.001 0.00
[36-38]

Total 6.50 | 6.05| 6.38| 6.39| 531| 504 | 7.25| 1373 | 1455 | 11.73 | 9.16 | 7.91 | 100.0
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Table 7.6 Occurrence table of Uioo wind speed and direction at TNW
WD
©N) 30 60 90 120 150 180 210 240 270 300 330 Total
[0-2] 0.152 | 0.155 | 0.169 | 0.182 | 0.177 | 0.166 | 0.151 | 0.161 | 0.167 | 0.185 | 0.182 | 0.168 2.01
[2-4] 0.532 | 0.480 | 0.494 | 0.496 | 0.499 | 0.493 | 0.521 | 0.588 | 0.618 | 0.625 | 0.615 | 0.583 6.55
[4-6] 0.940 | 0.803 | 0.860 | 0.865 | 0.833 | 0.815 | 0.866 | 0.992 | 1.130 | 1.149 | 1.142 | 1.062 | 11.46
[6-8[ 1.085 | 0.912 | 1.029 | 1.165 | 1.132 | 1.069 | 1.151 | 1.456 | 1.674 | 1.774 | 1.571 | 1.448 | 15.47
[8-10[ 1.006 | 0.836 | 0.995 | 1.370 | 1.269 | 1.050 | 1.241 | 1.742 | 2.176 | 1.958 | 1.703 | 1.532 | 16.88
[10-12[ | 0.778 | 0.597 | 0.799 | 1.183 | 1.104 | 0.906 | 1.085 | 1.767 | 2.238 | 2.031 | 1.627 | 1.406 | 15.52
[12-14[ | 0.536 | 0.333 | 0.515 | 0.867 | 0.876 | 0.594 | 0.846 | 1.424 | 1.912 | 1.702 | 1.311 | 1.134 | 12.05
[14-16[ | 0.336 | 0.171 | 0.276 | 0.527 | 0.621 | 0.355 | 0.603 | 1.129 | 1.480 | 1.304 | 0.925 | 0.748 8.48
[16-18[ | 0.142 | 0.094 | 0.125 | 0.316 | 0.370 | 0.194 | 0.368 | 0.796 | 1.023 | 0.849 | 0.571 | 0.431 5.28
[18-20[ | 0.067 | 0.048 | 0.072 | 0.184 | 0.193 | 0.076 | 0.213 | 0.505 | 0.716 | 0.568 | 0.357 | 0.257 3.26
[20-22[ | 0.031 | 0.014 | 0.026 | 0.110 | 0.055 | 0.026 | 0.117 | 0.307 | 0.405 | 0.344 | 0.198 | 0.136 1.77
[22-24] | 0.013 | 0.006 | 0.006 | 0.032 | 0.021 | 0.009 | 0.050 | 0.153 | 0.192 | 0.179 | 0.087 | 0.049 0.80
[24-26] | 0.003 | 0.001 | 0.007 | 0.004 | 0.001 | 0.003 | 0.020 | 0.069 | 0.065 | 0.080 | 0.043 | 0.016 0.31
[26-28] 0.003 0.006 | 0.024 | 0.030 | 0.036 | 0.016 | 0.005 0.12
[28-30[ 0.003 | 0.007 | 0.011 | 0.009 | 0.009 | 0.002 0.04
[30-32] 0.002 | 0.004 | 0.003 | 0.003 | 0.002 0.01
[32-34] 0.002 | 0.001 0.00
[34-36[ 0.001 0.00
[36-38]
Total 5.62 4.45 5.38 7.30 7.15 5.76 7.24 | 11.13 | 13.84 | 12.80 | 10.36 8.98 | 100.0
7.2 Water Levels
The normal water level conditions at the three analysis locations are described below. The
analyses are based on the modelled data for the period 1979-01-15 to 2018-10-01, as described
in Section 4.3, with a temporal resolution of 30 minutes.
Absolute values are reported relative to mean sea level (MSL) and to lowest astronomical tide
(LAT); however, all graphs present the results referenced to MSL only. The distance MSL-LAT
extracted from the model results was applied afterwards to convert levels relative to MSL at
equivalent levels referenced to LAT, see Section 7.2.2.
7.2.1 Time series and annual statistics

Time series and mean annual statistics of water levels at the three analysis locations are shown
in Figure 7.5 and Table 7.7 to Table 7.9. These table and figure include the total water levels as
well as the tidal and residual components. The tidal and residual components were separated
using the method stated in Section 4.3.5.
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Table 7.7 Annual statistics of water levels at HKW

Parameter Number of data points Mean Min Max STD
Wlot [MMSL] | 696191 0.0 -1.8 25 0.4
Wit [NLAT] 696191 0.9 -1.0 3.4 0.4
WLid [MMSL] 696191 0.0 -0.9 0.9 0.4
Wlig [MLAT] 696191 0.9 0.0 1.8 0.4
WLres [M] 696191 0.0 -1.8 2.3 0.3

Table 7.8 Annual statistics of water levels at 1JV

Parameter Number of data points Mean Min Max STD
WLt [MMSL] 696191 0.0 -1.8 2.4 0.4
WLt [MLAT] 696191 1.0 -0.9 3.4 0.4
WLid [MMSL] 696191 0.0 -1.0 0.9 0.4
WlLid [MLAT] 696191 1.0 0.0 1.8 0.4
WLres [M] 696191 0.0 -1.7 2.2 0.3

Table 7.9 Annual statistics of water levels at TNW

Parameter Number of data points Mean Min Max STD
WLt [MMSL] 696191 0.0 -2.0 25 0.5
WLt [NLAT] 696191 1.0 -1.0 3.4 15
WLid [MMSL] 696191 0.0 -1.0 0.9 0.4
WLid [MLAT] 696191 1.0 0.0 1.8 1.4
Wires [m] 696191 0.0 -1.4 2.2 0.3
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Figure 7.5  Time series of water levels at the three analysis locations

7.2.2 Astronomical water levels

The astronomical values of WL presented in Table 7.10 were derived from the modelled tidal
water levels time series at the three analysis locations as follows:

*  HAT: maximum predicted WL

. MHWS: average of the two successive high waters reached during the 24 hours when the
tidal range is at its greatest (spring tide)

. MHNW: average of the two successive high waters reached during the 24 hours when the
tidal range is at its lowest (neap tide)

*  MSL: mean predicted WL

*  MLWN: average of the two successive low waters reached during the 24 hours when the
tidal range is at its lowest (neap tide)

+  MLWS: average of the two successive low waters reached during the 24 hours when the
tidal range is at its greatest (spring tide)

*  LAT: minimum predicted WL

Astronomical water levels were derived based on 19 years of data-assimilated hydrodynamic
results, from 1999 to 2017, which constitute a full metonic cycle.
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Table 7.10

Astronomical tide levels at the three analysis locations

Location

Parameter | HAT MHWS MHWN MSL MLWN MLWS LAT

HKW

mMSL 0.7 0.5 0.3 0.0 -0.3 -0.7 -0.9
mLAT 1.6 1.4 1.2 0.9 0.5 0.2 0.0

(NAY)

mMSL 0.8 0.6 0.4 0.0 -0.5 -0.8 -1.0
mLAT 1.8 1.6 14 1.0 0.5 0.2 0.0

TNW

mMSL 0.7 0.5 0.3 0.0 -0.4 -0.8 -1.0
MLAT 1.7 1.4 1.2 1.0 0.6 0.2 0.0
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Climate change considerations (sea level rise)

As a consequence of global warming, sea levels could rise over the next decades. Main
reasons, e.g. melting of glaciers and ice or expansion of water due to warming, were discussed
intensively in numerous publications over recent years.

The latest report from the UN Intergovernmental Panel on Climate Change (IPCC), the fifth
assessment report on climate change, AR5, indicates a likely range of sea level rise by year
2100 between 0.3m and 1.0m relatively to the period 1986-2005 (see Figure 7.6). The main
contributions to this very likely sea level rise are ocean warming and increased loss of mass
from glaciers and ice sheets [22]. The likely range of sea level rise is indicated for various
representative concentration pathways (RCP), which correspond to various scenarios/
trajectories of greenhouse gas emissions and concentration (as well as other pollutant and land
use). Each RCP scenario is labelled according to the radiative forcing in 2100 relative to 1750
(in W/m2). RCP2.6 is a stringent mitigation scenario where greenhouse emissions are gradually
decreased during the 21t century. On the contrary, RCP8.5 corresponds to a very high
greenhouse gas emisssions scenario (i.e. no efforts to lower emissions).

Relative regional changes in sea level rise compared to the global mean, as estimated in the
ARS report, are shown in Figure 7.7. This figure shows that sea level rise around the project
site is expected to be within £10% of the global mean value.

IPCC ARS5 findings have also been adapted to the situation in the Netherlands in KNMI’'14
scenarios [23], as well as to the UK via the UK climate projections 2018 (UKCP18, [24]).
KNMI’14 provides estimates of the mean sea level along the North Sea Coast of the
Netherlands for four different climate scenarios, corresponding to two global temperature
increases (“G” moderate and “W” warm) and two changes in air circulation pattern. The four
scenarios cover the likely climate changes in the Netherlands. The UKCP18 projections provide
data around the UK coastline, for the same scenarios as the IPCC (RCP2.6, 4.5 and 8.5).
Results have been extracted at grid point E1.75°; N52.83°, closest grid point along the UK
coastline to the project area. The estimates from both these sources have been combined into
Figure 7.8, despite slightly different reference periods for the calculation of the sea level
anomaly.

Disregarding the reference period, KNMI sea level rise estimates are in line with the IPCC AR5
estimates, while the UKCP18 estimates are slightly more conservative (approximately +5% on
median estimate and +18% on 95% estimate for the 2100 horizon).

Assuming the wind farms (Hollandse Kust (wes), IJmuiden-Ver and Ten Noorden van de
Waddeneilanden) to be in operation no later than 2025 and until 2050, by 2050 the likely range
of global sea level rise is estimated to be 0.15 to 0.33m. Hence, it is recommended to apply a
0.3m contribution from sea level rise by 2050. This corresponds to the upper bound of KNMI'14
moderate climate scenario.
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It should also be mentioned that climate changes may also result in an increase of storm events
(frequency and intensity) in the future. Stronger wind speeds could result in larger wave heights
and higher surge events.

It should be noted that normal and extreme value analyses in this report were based on hindcast
data, which considered past storm events, but which did not take into account any future
changes due to climate changes. The recommended value for sea-level rise should therefore
be added when relevant, for example, to the astronomical tide and extreme crest levels. It is
also noted that currents (including changes to large-scale oceanic currents) are not addressed

in this study.
Global mean sea level rise
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1 . . . . I ‘ , , 2081-2100
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Figure 7.6 Projected mean global sea-level rise until 2100 relative to 1986-2005 from IPCC AR5 [22].
Time series of projections and a measure of uncertainty (shaded areas) are shown for
scenarios RCP2.6 (blue) and RCP8.5 (red), thereby showing the likely range of sea-level
rise. The number of models used per scenario is indicated. The vertical bars on the right
show the uncertainties averaged over the period 2081-2100, with mean values indicated as
horizontal lines

10
-10
-30
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Figure 7.7  Percentage of the deviation of the ensemble mean regional relative sea level change between 1986-2005
and 2081-2100 from the global mean value.

90°E 180° 90°W

The figure was computed for RCP4.5 but to first order is representative for all RCPs. Source: [25]. Project
location is indicated by a green circle, indicating that the relative regional changes around the Netherlands
are expected to be within £10% of the global sea level rise.
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2015
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Year
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Mean sea level anomaly for 2007 to 2100 from UK Climate Projections 2018 [24] (lines corresponding to
the 5, 50 and 95 percentiles, relative to 1981-2000) and from KNMI [23] (squares and triangles
corresponding to the lower and upper bound of the 90% probability range, relative to 1995, “G” for
moderate and “W” for warm scenario).

Currents

The normal current conditions at the three analysis locations are described below. These
analyses are based on the modelled data for the period 1979-01-15 to 2018-10-01, as described
in Section 4.3. The temporal resolution of the modelled currents is 30 minutes.

Modelled depth-integrated currents were transformed to equivalent currents at various water
depths (5, 25, 50 and 75% of the water column as well as near surface) as described in Section
7.3.3, based on a linear fits developed based on available current observations. Near-surface
currents were derived at 1m below the surface.

Unless stated otherwise, the values and graphs presented in this section correspond to depth-
integrated currents.

Time series and annual statistics

Time series and mean annual statistics of currents at the three analysis locations are shown in
Figure 7.9, and Table 7.11 to Table 7.13 for all required depths. Residual currents are small on
average. However, their maximum intensity is comparable to intensity of maximum tidal
currents.
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Table 7.11  Annual statistics of current speeds at different depths at HKW. Applied vertical profiles are

detailed in Section 7.3.3

Depth Parameter Number_ of Mean Min Max STD
data points

CStotdepthiint [m/s] | 696191 0.4 0.0 1.1 0.2
PPN | CSugepnim [mis] | 696191 | 0.4 0.0 0.9 0.2
integrated

CSres depth-int [/s] | 696191 0.1 0.0 0.8 0.1

CStotsurf [M/S] 696191 0.6 0.0 1.4 0.2
Near- CSid,surf [M/S] 696191 0.5 0.0 1.2 0.2
surface

CSres,surf [M/S] 696191 0.1 0.0 1.1 0.1
7506 of | CStot75% [M/s] 696191 0.5 0.0 1.3 0.2
water CSiid,75% [m/s] 696191 0.5 0.0 11 0.2
column CSres,75% [M/s] 696191 0.1 0.0 1.0 0.1
50% of CStot,SO% [m/S] 696191 0.5 0.0 1.2 0.2
water CStid,SO% [m/s] 696191 05 OO 10 02
column CSres,50% [M/s] 696191 0.1 0.0 0.8 0.1
25% Of CStOt,ZS% [m/s] 696191 0.4 0.0 1.0 0.2
water CStid,25% [m/s] 696191 0.4 0.0 0.8 0.2
column CSres,25% [M/s] 696191 0.1 0.0 0.7 0.1
5% Of CStOt,S% [m/s] 696191 0.2 0.0 0.5 0.1
water CStid5% [M/s] 696191 0.2 0.0 0.4 0.1
column CSres 5% [M/S] 696191 0.0 0.0 0.4 0.0
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Table 7.12  Annual statistics of current speeds at different depths at 1JV. Applied vertical profiles are
detailed in Section 7.3.3

Depth Parameter ::trg ziri:t]; Mean Min Max STD
CStot,depth-int [m/s] | 696191 0.4 0.0 1.1 0.2
:?:epgt:ited CStid,depth-int [M/s] | 696191 0.4 0.0 0.8 0.2
CSres,depth-int [M/s] | 696191 0.1 0.0 0.8 0.1
CStot,surf [M/S] 696191 0.5 0.0 1.4 0.2
Near- CSa,surt [m/s] 696191 0.5 0.0 11 0.2
surface
CSres,surt [M/S] 696191 0.1 0.0 1.2 0.1
75% of CStot,75% [M/S] 696191 0.5 0.0 1.3 0.2
water CSia.75% [M/s] 696191 0.5 0.0 1.0 0.2
column | CSes 750 [M/s] 696191 0.1 0.0 1.0 0.1
50% of | CStotsos [M/s] 696191 0.5 0.0 1.2 0.2
water CStas0% [M/s] 696191 0.4 0.0 0.9 0.2
column | CSeqson [m/s] | 696191 0.1 0.0 0.9 01
250 of CStot,25% [M/s] 696191 0.4 0.0 1.0 0.1
water CSta.25% [M/s] 696191 0.4 0.0 0.8 0.1
column | CSyeq sy [mis] | 696191 0.1 0.0 0.7 01
505 of CStot5% [M/S] 696191 0.2 0.0 05 0.1
water CStias% [M/s] 696191 0.2 0.0 0.4 0.1
column | CSyeq 56 [ms] 696191 0.0 0.0 0.4 0.0
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Table 7.13
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Annual statistics of current speeds at different depths at TNW. Applied vertical profiles are
detailed in Section 7.3.3

Depth Parameter S:t:ziri:tfs Mean Min Max STD
CStotdepth-int [M/s] | 696191 0.3 0.0 1.0 0.1
:?f: ;:\te o | CStacemmn [mis) | 696191 0.3 0.0 06 01
CSres depthint [m/s] | 696191 0.1 0.0 1.0 0.1
CStotsurf [M/s] 696191 0.4 0.0 1.3 0.2
Near- CSudeur [M/s] | 696191 0.3 0.0 08 02
surface
CSres,surf [M/S] 696191 0.1 0.0 1.4 0.1
75% of CStot,75% [M/s] 696191 0.3 0.0 1.1 0.2
water CStia,75% [M/s] 696191 0.3 0.0 0.7 0.2
column | CSyeq 750 [m/s] 696191 0.1 0.0 1.2 0.1
50% of CStot,50% [M/s] 696191 0.3 0.0 1.1 0.1
water CStid 500 [M/S] 696191 0.3 0.0 0.6 0.1
column | CSyeq 505 [m/s] 696191 0.1 0.0 1.0 0.1
25% of CStot,25% [M/s] 696191 0.3 0.0 0.9 0.1
water CSitid.25% [M/s] 696191 0.2 0.0 0.5 0.1
column CSres,25% [M/s] 696191 0.1 0.0 0.8 0.1
505 of CStot,5% [M/s] 696191 0.1 0.0 0.5 0.1
water CSitid,5% [M/S] 696191 0.1 0.0 0.3 0.1
column CSres5% [M/s] 696191 0.0 0.0 0.5 0.0
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Figure 7.9
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Time series of depth-integrated total, tidal and residual current speeds at the three analysis locations

Current roses and current speed-direction occurrence tables

Mean annual current roses and joint-occurrence tables for the three analysis locations are
presented in Figure 7.10 and Table 7.14 for total, tidal and residual depth-integrated currents.
The current roses show the dominance of the tidal currents flowing along an NNE — SSW axis at
HKW and 13V, and along a E-W axis at TNW. The residual currents (often weak) occur in
similar directions. It is noted that flood currents (going towards northeast at HKW and 13V,
towards east at TNW) are usually stronger than ebb currents.

Roses and tables for different depths and monthly roses are provided in Appendices D-F.
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Figure 7.10 Depth-integrated current rose (going to) at HKW (top: total currents, bottom left: tidal currents, bottom right
residual currents)
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Figure 7.11 Depth-integrated current rose (going to) at I3V (top: total currents, bottom left: tidal currents, bottom right

residual currents)
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Figure 7.12 Depth-integrated current rose (going to) at TNW (top: total currents, bottom left: tidal currents, bottom right

residual currents)
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Table 7.14  Joint occurrence tables of current speed and direction for total depth-integrated currents at HKW (top), 1JV
(middle) and TNW (bottom)

HKW (3.77E;52.74N:25.50mMSL)
Frequency of Occurrence [%] (1979-01-15 - 2018-10-01) All

CS st deptnint, [M/S]- HD e
[0-04] [04-02] [020.3[ [0.3-04] [0.405 [0506[ [0607 [0.708[ [0.8-08] [0.94[ [-44[ [1.442] [1.243] Total  Accum
[215-345] 0535 100.000
w | [2e5315] 0821 3304
Dg [255-285] 1313 s8243
T | eesasy 4277 w310
EI' [195-225] 028 s2ed
| pes-nen 10085 81805
E | r1as-mes 2375 51540
53 [105-135 1812 42185
= | 5108 1.727 45,3154
g§ (4575 2385 4482
O | ey WETE 41837
[15-15] 2782 2782
Total 2183 11188 13002 1472 18588 2008 13308 4543 0577 0.087 0007 - - 100,000
Accum 3183 14372 27374 42086 60854 S0.962 94272 98918 9988 59983 100000 100.000  100.000 -
WV (3.70E:;52 84 N; 24 80mMSL)
Frequency of Occurrence [%:] (1979-01-15 - 2018-10-01) All
CS o1,deptnint. M/s1- HDpyye
[0-04] [04-02 [020.3 [0.3-04[ [0.405 [0506 ([0.607 [0.708[ [0.8-08] [0.94] [-44[ [1.4412] [1243 Total  Accum
[215-345] - - - - 1913 100.000
w | [285315] - - 1827 88087
E —— R - - - 3112 sEa8t
g [225-255( - - - - T01E 33048
EI‘ [195-225] ) et (e e - B B - 21913 8803
L. | res-1se Y 2.700 --- - B B - 10.905 84.111
E [135-185] . ; -- - - . - - - 5079 53208
B | rostag - - 3384 4827
E— [75-105] - - - - 3227 44733
g | o i [ose NOSNE NGoaE IS OGN NN T
O lvee  DESSMNSE s SSel ces e em v DOSORSSRNEEN - - o o
e Com e omr (e o eom | - S e e
Totsl 1.022 B3 iBEET 2213 2IEM 13448 5134 2453 0388 0.052 0008 - - 100.000 -
Accum 1,032 5028 24833 45308 69519 88.988 G702 99555 99939 59934 100000 100.000  100.000
TNW (5.82E;54.06M;36 40mMSL)
Frequency of Occurrence [%] (1979-01-15 - 2018-10-01) All
CS o1 deptn int. [M/S] - HD gy
[0-04] [04-02] [020.3[ [0.3-04] [0.405 [0506[ [060.7 [0.708[ (0809 [094[ [-41[ [1.442[ [1.243] Total  Accum
[215-245] - 1835 100.000
w | [2e5315] - 744 38034
DE [285-285] - - - 33408 90420
I | ezsasy - - - 2572 B0
EI‘ [195-225] - B B 0743 53440
2. | (es-195 - - - 0.520 52696
E | rases - B B nEst 5218
E% [105-125 - - - 2872 51475
% | e8] - - - 40 85T 48757
D§ (4575 - - - 5217 8140
O | e - - - 1822 2323
[-15-15] - - - 1.301 1.301
Total - B B 100.000
Accum 100000 100000 100.000
7.3.3 Characteristic current velocity profiles

Characteristic current velocity profiles were established based on the measured data at the four
locations HKN, HKNB, HKZA and HKZB. Details are described in Section 8.3.4 of [1]. In the
absence of observations at the locations of interest for this study, the approach is considered to
be conservative.
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7.4 Waves

The wave statistics were based on +39 years of modelled wave data (Jan 1979 - Sept 2018) as
described in Section 5.3.3. Only the total part of the spectrum (sea + swell) was considered
here if not mentioned otherwise. Only omni-directional (or annual) results at the three locations
are shown in this section (see Table 6.1). The full results (directional and monthly) of the normal
wave conditions at the three anlaysis locations are provided in Appendix D-F.

7.4.1 Time series and annual statistics

Time series and mean annual statistics of significant wave height, peak and zero-crossing wave
periods are presented in Figure 7.13 to Figure 7.15. The mean modelled significant wave height
is 1.39m, 1.44m, and 1.58m at HKW, 13V, and TNW, respecticvely for the +39 years of
modelling period. The TNW point is exposed to larger waves in the North Sea compared to
HKW and IJV. The maximum modelled Hmo for the period 1979-2018 at TNW exceeds 9.0m.
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Figure 7.13 Time series and statistics of significant wave height, peak and zero-crossing wave periods at HKW location
for the period from 1979-01-01 to 2018-09-30
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Figure 7.14 Time series and statistics of significant wave height, peak and zero-crossing wave periods at 1JV location
for the period from 1979-01-01 to 2018-09-30
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Figure 7.15 Time series and statistics of significant wave height, peak and zero-crossing wave periods at TNW location
for the period from 1979-01-01 to 2018-09-30
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7.4.2 Wave roses

DA

Figure 7.16 to Figure 7.18 present the mean annual wave roses and Figure 7.19 to Figure 7.21
present the frequency of occurrence tables of Hmo and PWD. Equivalent plots for wind-sea and

swell waves and for monthly subsets are provided within Appendix D-F.
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Figure 7.16  Wave rose at HKW for the period from 1979-01-15 to 2018-09-30
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Figure 7.17 Wave rose at IJV for the period from 1979-01-15 to 2018-09-30
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Figure 7.18 Wave rose at TNW for the period from 1979-01-15 to 2018-09-30
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Figure 7.19 Frequency of occurrence of significant wave height against peak wave direction at HKW location for the period from 1979-01-15 to 2018-09-30.

Outlying high Tp values are model artifacts (Section 5.4)
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Figure 7.20  Frequency of occurrence of significant wave height against peak wave direction at 13V location for the period from 1979-01-15 to 2018-09-30.

Outlying high Tp values are model artifacts (Section 5.4)
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Figure 7.21  Frequency of occurrence of significant wave height against peak wave direction at TNW location for the period from 1979-01-15 to 2018-09-30.
Outlying high Tp values are model artifacts (Section 5.4)
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Scatter plots of joint occurrences

Significant wave height vs. mean and peak wave period

Scatter plots and joint occurrence tables of Hmo vs. Tp and Hmo vs. To2 at HKW, 13V and TNW for
omni-directional total sea-state conditions are shown in Figure 7.22 to Figure 7.24 and Figure
7.25 to Figure 7.27, respectively. Equivalent plots for wind-sea and swell conditions and for
monthly and directional subsets are provided in Appendix D-F.

For waves above 2.5-3m, there is a strong correlation between wave height and wave period,
but for waves below 2.5m the correlation is weaker and influenced by the occurrence of swell
(propagating from the Atlantic Ocean through the English Channel or the North Sea), see Figure
7.22 (top).

The scatter diagrams show that a small number of large values for Tp are outlying. These are
attributed to model artifacts as discussed in Section 5.4 of this report.

The scatter diagrams also show that the standard deviation around the mean value in each Hmo
bin is a bit larger for waves below 2.5m because of the existence of swell conditions.
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Figure 7.22  Scatter diagrams of omnidirectional Hmo vs. Tp (top) and Toz (below) at HKW for total sea-
state. Outlying high Tp values are model artifacts (Section 5.4)
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Figure 7.23  Scatter diagrams of omnidirectional Hmo vs. Tp (top) and Toz (below) at 13V for total sea-state.
Outlying high T, values are model artifacts (Section 5.4)

168 11822658_MetOceanStudy_Hollandse_Kust_(west)_Final / nafe/fld/bri/mce/mgo/ybr / 2019-03-12





Normal Metocean Conditions ﬁ
DHI

TNW (5.82E;54.05N;36.42mMSL)
Scatter (1979-01-15 - 2018-09-30) All

30
275} . Data points (N = 348096)
s Mean +/- 2 x std. dev. binned by Hmo
251 - Least-Square fit: T_ = 4.797xH478
. P mo £
Q
225 =
3
20 IS
L S
2175 g
= £
P15 =
— [o]
) o
e 12.5 @ §
10 "é
2
75 5,
5
25
O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
Hino (M1 - SWowe
TNW (5.82E;54.05N;36.42mMSL)
Scatter (1979-01-15 - 2018-09-30) All
15 1600
1400
14 - *  Data points (N = 348096) 1200
13t Mean +/- 2 x std. dev. binned by H 1000
mo 800
. _ 0.490
12 b Least-Square fit: T02 = 3.304me0 500 _E
- £
" 400 0
10 [S]
[T o
;E 9 200 §
c
n B8 ?
1 £
@ 7 8
— S
5 ‘G
3
4 E
3 =
2
.
0 Il 1 1 1 1 1 Il 1 1 1 1 1 Il 1 1 1 1 Il 1 1
QQG; '\,\Gp ‘l,qu fbrbfa b‘bﬁ) bbfa 6%{3 ’\,\<_:> ‘b‘bﬂp Cbc;a Q

Hoo M- SWpe

Figure 7.24  Scatter diagrams of omnidirectional Hmo vs. Tp (top) and Toz (below) at TNW for total sea-
state. Outlying high T, values are model artifacts (Section 5.4)
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Figure 7.25 Joint occurrence tables of omnidirectional Hmo vs. Tp (top) and Toz (below) at HKW for total sea-state. Outlying high Tp values are model

artifacts (Section 5.4)
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Figure 7.26  Joint occurrence tables of omnidirectional Hmo vs. Tp (top) and Toz (below) at 1JV for total sea-state. Outlying high Tp values are model artifacts
(Section 5.4)
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Figure 7.27  Joint occurrence tables of omnidirectional Hmo vs. Ty (top) and Toz (below) at TNW for total sea-state. Outlying high T, values are model artifacts

(Section 5.4)
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7.4.3.2  Significant wave height vs. mean and peak wave direction

DA

Scatter diagrams and joint occurrence tables and scatter plots of Hmo vs. MWD and Hmo Vs.
PWD at HKW, IJV and TNW for total sea-state conditions are shown in Figure 7.28 to Figure
7.30 and Figure 7.31 to Figure 7.33, respectively. Equivalent plots for wind-sea and swell

conditions and for monthly subsets are provided in Appendix D-F.
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Figure 7.28  Scatter diagram of Hmo vs. MWD (top) and PWD (bottom) at HKW for total sea-state
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Figure 7.29  Scatter diagram of Hmo vs. MWD (top) and PWD (bottom) at I3V for total sea-state
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Figure 7.30  Scatter diagram of Hmo vs. MWD (top) and PWD (bottom) at TNW for total sea-state
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Figure 7.31

Joint occurrence tables of Hmo vs. MWD (top) and PWD (bottom) at HKW for total sea-state
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Figure 7.32  Joint occurrence tables of Hmo vs. MWD (top) and PWD (bottom) at I3V for total sea-state
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Figure 7.33  Joint occurrence tables of Hmo vs. MWD (top) and PWD (bottom) at TNW for total sea-state
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7.4.3.3 Peak wave period vs. mean and peak wave direction
Scatter diagrams and joint occurrence tables of Tp vs. MWD and Tp vs. PWD at HKW, 13V and
TNW for total sea-state conditions are shown in Figure 7.34 to Figure 7.36 and Figure 7.37 to
Figure 7.39, respectively. Equivalent plots for wind-sea and swell conditions and for monthly
subsets are provided in Appendix D-F.
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Figure 7.34  Scatter diagram of Te vs. MWD (top) and PWD (bottom) at HKW for total sea-state
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Figure 7.35 Scatter diagram of Tp vs. MWD (top) and PWD (bottom) at IJV for total sea-state
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Figure 7.36  Scatter diagram of Tep vs. MWD (top) and PWD (bottom) at TNW for total sea-state
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Figure 7.37  Joint occurrence tables of Hmo vs. MWD (top) and PWD (bottom) at HKW for total sea-state
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Figure 7.38 Joint occurrence tables of Hmo vs. MWD (top) and PWD (bottom) at 13V for total sea-state
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Figure 7.39  Joint occurrence tables of Hmo vs. MWD (top) and PWD (bottom) at TNW for total sea-state
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7.4.4

Normal sea-state (NSS) parameters

Normal Sea State (NSS) conditions characterise the combinations of sea-state parameters that
may be used when calculating ultimate and fatigue loads. In the following analysis, a series of
NSS conditioned on the peak wave direction (PWD) are considered.

The methodology employed to derive the NSS parameters was as follows:

1.

2.

For each directional sector (PWD), the significant wave height (Hmo) were discretised into
bins of 0.5m (from 1-7.5m).

The peak wave period associated with the expected Hmo values from step 2 was
determined. The range of Te values was characterised by calculating the value
corresponding to 5%, 50%, 95% of the data.

The JONSWAP Gamma parameter associated with the expected Hmo and Tr values step 2
was determined. The range in JONSWAP Gamma values was characterised by calculating
the value corresponding to 5%, 50%, 95% of the data.

The DSD associated with the expected Hs and Tp values step 2 was determined. The
range in JONSWAP Gamma values was characterised by calculating the value
corresponding to 5%, 50%, 95% of the data.

The NSS conditions for HKW, I3V and TNW are provided in Table 7.15 to Table 7.17
respectively.
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Table 7.15 Normal sea-states parameters for HKW: Hsnss, Tp,nss, JONSWAP
Gamma, and DSD conditioned on U1oo

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y DSD [°]

[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%
1 3.4 5.1 125 | 1.0 1.0 2.4 270 [381 |64.0
15 4.4 5.6 115 | 1.0 1.1 2.8 26.8 | 348 |59.2
2 5.2 6.2 11.0 1.0 1.3 3.2 26.3 33.1 51.0
2.5 5.9 6.7 9.6 1.0 1.6 3.0 25.8 31.7 44.1
3 6.6 7.3 9.1 1.0 1.8 3.0 25.6 | 30.6 | 40.0
35 7.2 7.8 9.3 1.0 1.9 2.9 257 | 299 |374

Al A 7.7 8.3 9.8 1.0 2.0 3.0 260 | 295 |353
4.5 8.1 8.7 10.3 1.0 2.1 3.1 26.4 29.8 34.6
5 8.5 9.4 11.0 1.0 1.9 3.2 26.8 30.1 34.1
5.5 8.9 10.0 11.6 1.0 1.7 3.4 27.4 30.2 33.3
6 9.2 106 | 120 |11 1.7 35 278 | 309 |333
6.5 9.6 112|130 |10 1.4 3.8 279 | 309 |334
7 11.0 12.4 13.3 1.0 1.2 2.0 28.5 30.9 32.5
7.5 12.2 12.6 13.0 1.1 1.4 1.6 30.9 31.9 32.9
8 126 [130 [131 |12 1.3 15 31.7 [ 323 | 326
1 4.0 7.2 121 | 1.0 1.0 1.4 254 | 339 |649
15 4.9 8.1 122 | 1.0 1.0 1.6 269 |[321 |621
2 5.7 8.4 13.2 1.0 1.0 1.7 27.2 31.2 53.1
2.5 6.4 8.1 12.2 1.0 1.0 1.8 26.6 30.4 39.1
3 7.1 8.5 107 | 1.0 1.0 18 266 |301 |351
35 7.8 9.2 106 | 1.0 1.0 18 27.4 | 303 |350

0 A 8.3 9.5 108 | 1.0 1.1 1.9 277 | 303 | 342
4.5 8.8 9.9 11.2 1.0 1.2 1.9 28.2 30.1 33.1
5 9.4 10.4 11.7 1.0 1.2 1.9 27.8 30.0 32.6
5.5 103 [ 113 [134 |10 1.1 1.4 286 |314 |327
6 112|115 [138 |10 1.2 1.2 306 |320 |337
6.5 11.4 13.8 13.9 1.0 1.0 1.4 31.5 32.2 32.2
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.4 5.3 11.8 | 1.0 1.0 2.4 262 | 356 | 648
15 4.4 5.6 9.5 1.0 1.1 2.8 26.0 | 329 |543
2 5.1 6.2 9.2 1.0 1.2 3.4 25.9 32.5 45.4
2.5 5.7 7.0 9.4 1.0 1.3 3.7 25.6 31.9 42.6
3 6.2 7.8 9.5 1.0 1.2 3.9 257 | 307 | 39.3
3.5 7.1 8.3 9.6 1.0 1.4 3.0 257 | 295 |37.8

30 14 8.2 8.9 102 | 1.0 1.4 2.0 260 | 286 |37.1
45 8.9 9.6 11.0 | 1.0 1.3 1.8 267 | 299 |352
5 9.8 104 | 109 |10 1.2 15 287 |303 |333
5.5 101|106 |110 |12 1.3 15 283 | 207 | 320
6 - - - - - - - - -
6.5 : - - - - : : : :
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
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Normal Metocean Conditions

Table 7.15 Normal sea-states parameters for HKW: Hsnss, Tp,nss, JONSWAP

Gamma, and DSD conditioned on U1

DA

PWD
[°N]

Hs,nss
[m]

Tenss [S]

JONSWAP Gamma, y

DSD []

5%

50%

95%

5%

50%

95%

5%

50%

95%

60

1

3.1

3.8

4.7

1.0

1.8

3.0

28.5

37.0

53.9

15

4.1

4.5

5.1

1.6

2.4

3.7

30.0

37.0

51.4

2

4.9

5.2

5.6

2.4

3.0

4.2

32.5

36.3

49.4

25

54

5.7

6.0

3.0

3.7

4.4

34.1

37.6

45.9

3

5.9

6.1

6.3

3.7

4.2

4.8

36.3

38.4

40.0

3.5

6.3

6.5

6.8

4.5

4.7

5.4

37.7

39.0

41.2

4

4.5

5

55

6

6.5

7

7.5

8

90

1

3.7

10.2

1.0

2.1

3.3

33.2

39.7

55.7

15

4.5

4.9

1.9

2.7

3.6

33.0

38.0

53.5

2

5.2

55

2.7

3.3

4.0

33.5

37.4

48.9

25

5.6

5.8

3.4

3.9

4.4

36.3

38.2

41.3

3

6.1

6.3

4.0

4.4

4.9

37.2

38.3

41.3

35

6.3

6.4

5.0

5.1

5.3

36.8

37.0

37.3

4

4.5

5

55

6

6.5

7

7.5

8

120

1

3.7

12.0

1.0

2.1

3.3

32.5

42.5

62.1

15

4.5

9.4

1.0

2.7

4.0

32.1

39.9

62.0

2

5.1

5.4

2.6

3.3

4.5

32.4

37.5

59.3

25

5.6

6.0

3.2

3.9

4.7

32.1

38.3

46.1

3

6.2

6.3

3.7

4.6

4.9

34.1

374

39.9

3.5

6.5

6.5

4.7

5.0

5.2

37.2

374

37.7

4

4.5

5

55

6

6.5

7

7.5

8
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Table 7.15 Normal sea-states parameters for HKW: Hsnss, Tp,nss, JONSWAP
Gamma, and DSD conditioned on U1oo

PWD | Hsnss | TPNss [s] JONSWAP Gamma,y | DSD [°]
[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%

1 3.2 3.8 13.9 1.0 1.9 3.2 31.8 43.4 67.3
1.5 4.1 4.6 8.5 1.0 2.5 3.5 30.7 38.8 65.8
2 4.8 5.2 5.6 2.3 3.1 4.1 30.9 37.0 61.1
2.5 5.3 5.7 6.1 2.9 3.4 4.5 30.7 35.2 51.8
3 5.8 6.2 6.6 3.6 4.0 5.8 32.4 36.5 66.2
3.5 6.3 6.6 6.7 4.0 4.4 5.1 34.1 37.3 38.6

150 4 - - - : : - - - -
4.5 - - - - - - - - -
5 - - - - - - - - -
5.5 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.2 4.0 12.8 1.0 1.6 3.0 31.6 44.9 71.3
1.5 4.2 4.8 10.4 1.0 2.0 3.4 30.2 39.0 70.1
2 4.9 5.4 6.0 1.7 2.4 3.7 31.0 36.5 65.3
2.5 5.6 6.1 6.4 2.1 2.7 4.0 31.2 35.6 52.8
3 6.2 6.5 6.8 2.4 3.1 4.2 31.1 35.6 59.5
3.5 6.8 6.9 7.2 3.1 3.3 4.1 31.9 33.9 36.5

180 4 7.4 7.4 7.4 3.7 3.7 3.7 35.4 35.4 35.4
45 - - - - - - - - -
5 - - - - - - - - -
55 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.5 4.7 12.1 1.0 1.0 2.3 29.2 43.5 65.8
1.5 45 5.3 8.1 1.0 1.2 2.5 26.9 37.2 61.6
2 5.2 6.0 7.1 1.0 1.5 2.8 25.7 33.5 56.4
2.5 5.9 6.5 7.2 1.1 1.8 2.9 25.5 31.5 49.5
3 6.5 7.0 7.6 1.4 2.1 3.1 25.4 30.9 44.9
3.5 7.0 7.4 8.0 1.6 2.3 3.2 25.5 30.4 39.7

210 4 7.4 7.9 8.4 1.9 2.6 3.5 26.3 30.6 35.1
4.5 7.9 8.4 8.8 2.1 2.6 3.9 27.9 31.0 33.0
5 - - - - - - - - -
5.5 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
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Normal Metocean Conditions

Table 7.15 Normal sea-states parameters for HKW: Hsnss, Tp,nss, JONSWAP

Gamma, and DSD conditioned on U1

DA

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y DSD [°]

[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%
1 3.4 4.5 105 | 1.0 1.0 2.3 274 | 385 | 608
15 4.5 5.2 6.4 1.0 1.3 25 261 | 341 |556
2 5.3 6.0 6.8 1.0 15 2.6 25.4 | 318 |501
2.5 6.0 6.6 7.2 1.2 1.8 2.7 25.3 30.4 44.4
3 6.6 7.2 7.7 1.3 2.0 2.8 25.2 29.1 40.0
3.5 7.2 7.6 8.1 15 2.1 2.9 255 | 283 | 369

240 14 7.6 8.0 8.6 1.7 2.3 3.1 257 | 278 | 348
4.5 8.0 8.5 8.9 1.9 2.4 3.3 26.1 27.8 34.1
5 8.5 8.8 9.3 2.0 2.6 35 26.6 | 279 | 338
5.5 8.7 9.2 9.6 2.3 2.8 3.8 27.0 | 285 | 330
6 9.1 95 9.9 25 3.1 3.8 272 | 291 | 337
6.5 9.6 9.7 101 | 26 35 4.0 275 | 306 | 337
7 - - - - - - - - -
75 - ; ; : : : : : -
8 - - - - - - - - -
1 3.2 4.0 110 | 1.0 1.6 3.0 306 | 393 |53.0
15 4.2 4.8 5.6 11 1.9 3.3 20.7 | 370 |50.2
2 4.9 5.5 6.2 1.3 2.2 3.8 20.0 | 367 | 48.0
25 5.5 6.2 6.7 1.6 25 4.3 28.7 | 359 |495
3 6.2 6.7 7.3 2.0 2.7 3.9 294 | 347 | 464
35 6.8 7.3 7.8 1.9 2.8 4.2 28.4 | 340 | 46.0

970 14 7.3 7.9 8.1 2.2 2.8 3.8 251 | 322 | 401
4.5 7.9 8.1 8.3 2.8 3.2 3.7 28.4 31.4 33.3
5 8.2 8.5 8.9 2.8 3.6 3.7 26.7 | 334 | 337
55 8.8 8.9 9.2 3.1 3.2 3.6 300 |319 |321
6 8.9 8.9 8.9 4.6 4.6 4.6 328 | 328 | 328
6.5 - ; ; ; ; ; : : -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.5 4.7 13.5 1.0 1.0 2.1 30.0 39.1 50.5
1.5 4.6 5.4 7.8 1.0 1.2 2.2 29.0 36.8 47.0
2 5.4 6.1 7.6 1.0 1.4 2.3 28.5 35.3 44.3
2.5 6.1 6.7 8.0 1.0 1.6 2.5 28.1 34.6 42.1
3 6.7 7.3 8.5 1.0 18 2.7 279 | 336 | 404
35 7.2 7.8 8.8 11 1.9 2.8 281 |331 | 384

300 |4 7.6 8.2 9.1 1.3 2.0 3.0 279 | 321 | 365
45 8.1 8.7 95 1.3 2.1 3.2 283 | 316 |355
5 8.5 9.1 102 |13 2.3 3.3 283 | 314 | 346
55 8.9 95 105 | 1.4 25 3.7 283 | 314 | 342
6 9.2 9.7 109 |15 2.7 3.8 276|313 | 346
6.5 9.4 100 | 110 |17 2.9 3.9 270 | 320 | 339
7 110 | 110 [110 |19 2.0 2.0 285 | 287 | 290
7.5 - - - - - - - - -
8 - - - - - - - - -
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Table 7.15 Normal sea-states parameters for HKW: Hsnss, Tp,nss, JONSWAP
Gamma, and DSD conditioned on U1oo

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y DSD [°]

[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%
1 3.9 6.5 152 | 1.0 1.0 1.6 276 | 371 | 608
15 4.8 7.1 129 | 1.0 1.0 1.7 274 | 343 |555
2 5.7 7.4 13.1 1.0 1.0 1.7 27.3 32.3 47.8
2.5 6.5 7.8 12.4 1.0 1.0 1.8 27.1 30.9 40.9
3 7.2 8.1 10.8 1.0 1.1 1.8 27.0 29.9 36.4
35 7.7 8.6 100 | 1.0 1.2 1.9 272 | 298 | 336

330 14 8.3 9.2 103 | 1.0 1.2 2.0 274 | 207 | 327
4.5 8.7 9.6 10.8 1.0 1.3 2.1 27.8 29.9 32.5
5 9.1 10.2 11.2 1.0 1.3 2.3 28.3 30.2 32.3
5.5 9.5 10.6 11.8 1.0 1.4 2.3 28.5 30.2 32.6
6 103 [109 [121 |10 1.4 1.9 291 | 309 |328
6.5 102 117 [129 |10 1.3 2.7 206 | 307 |321
7 11.8 12.7 13.3 1.0 1.1 1.6 30.4 31.1 32.6
7.5 12.2 12.6 13.0 1.1 1.4 1.6 30.9 31.9 32.9
8.0 126 | 130 |131 |12 1.3 15 31.7 [ 323 | 326
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Normal Metocean Conditions

Table 7.16 Normal sea-states parameters for IJV: Hsnss, Tr,nss, JONSWAP

Gamma, and DSD conditioned on U1

DA

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y DSD [°]

[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%
1 3.5 5.2 134 | 1.0 1.0 2.3 274 | 391 | 654
15 4.4 5.7 118 | 1.0 1.0 2.6 271 | 356 | 610
2 5.2 6.2 11.9 1.0 1.3 2.9 26.9 34.0 54.8
2.5 5.9 6.7 10.6 1.0 1.5 3.0 26.7 32.9 47.4
3 6.6 7.3 9.8 1.0 17 3.0 26.8 | 319 | 426
3.5 7.2 7.8 9.7 1.0 1.9 2.9 270 | 312 | 393

Al LA 7.7 8.3 101 | 1.0 2.0 3.0 275 | 308 | 370
45 8.1 8.8 105 | 1.0 2.0 3.1 278 | 308 | 356
5 8.6 9.4 11.1 1.0 1.9 3.2 28.5 31.2 35.2
55 8.9 10.1 11.8 1.0 1.6 3.4 29.0 31.2 34.4
6 9.3 108 | 123 | 1.0 1.6 35 29.4 | 320 | 347
6.5 9.7 114 [132 |10 1.4 35 308 | 329 | 346
7 10.0 12.4 14.1 1.0 1.2 3.6 29.9 33.0 34.4
7.5 12.2 13.4 14.0 1.0 1.0 1.6 32.4 32.8 33.4
8 128 | 131 [133 |12 1.3 15 33.8 | 340 | 342
1 4.1 7.2 108 | 1.0 1.0 1.3 252 |339 |654
15 5.0 7.9 116 | 1.0 1.0 15 26.4 | 320 |6l4
2 5.8 8.3 12.3 1.0 1.0 1.6 27.2 31.2 53.7
25 6.5 8.2 120 | 1.0 1.0 1.8 26.8 | 307 | 387
3 7.2 8.5 107 | 1.0 1.0 1.9 26.8 | 300 | 353
35 7.8 9.3 109 | 1.0 1.0 1.9 26.8 | 303 | 359

N 8.2 95 107 | 1.0 11 2.1 276 | 300 | 349
4.5 8.8 9.7 10.9 1.0 1.2 2.0 27.8 29.7 33.6
5 9.5 10.1 11.1 1.0 1.3 1.8 28.5 29.9 32.9
55 9.6 105 | 119 | 1.0 1.4 2.0 277 | 307 | 346
6 105 | 110 [112 |13 1.4 18 283 | 303 | 336
6.5 115 | 115 | 115 |13 1.3 1.3 340 | 340 | 340
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.5 5.5 128 | 1.0 1.0 2.0 26.4 | 349 | 638
1.5 4.5 5.8 10.9 1.0 1.0 2.4 26.2 32.9 54.4
2 5.3 6.5 11.1 1.0 1.1 2.5 25.9 31.9 47.7
2.5 6.0 7.1 10.0 1.0 1.2 2.7 25.4 31.0 42.1
3 6.8 7.9 95 1.0 1.2 2.2 26.0 | 305 | 404
35 7.6 8.3 9.3 1.0 1.4 2.1 263 | 296 | 36.6

20 | 8.0 8.7 95 11 15 2.3 271 | 29.4 | 36.0
45 8.7 9.2 9.8 11 1.6 1.9 27.4 | 293 | 344
5 9.3 9.9 108 | 1.1 15 2.0 204 | 302 | 363
55 10.1 10.5 11.0 1.2 1.4 1.6 29.7 31.1 33.5
6 105 |109 |112 |13 15 17 206 | 309 | 323
6.5 - : ; : : : : : -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
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Table 7.16 Normal sea-states parameters for IJV: Hsnss, Tr.nss, JONSWAP
Gamma, and DSD conditioned on U1oo

PWD | Hsnss | TPNss [s] JONSWAP Gamma,y | DSD [°]
[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%

1 3.3 4.3 14.6 1.0 1.1 2.6 28.2 40.9 69.6
1.5 4.3 4.9 10.8 1.0 1.8 3.0 27.0 36.6 59.8
2 5.0 5.5 6.8 1.0 2.4 3.4 26.7 35.1 50.1
2.5 5.6 6.1 7.1 1.3 2.7 3.6 29.5 35.2 42.1
3 6.2 6.6 7.9 1.1 3.0 4.0 30.8 35.9 39.3
3.5 6.7 7.6 8.8 1.1 2.1 4.2 30.2 34.8 38.1

60 4 7.2 7.9 10.4 1.0 2.4 4.1 30.0 36.2 38.9
4.5 10.4 10.6 10.9 1.0 1.0 1.0 34.8 34.9 35.5
5 11.0 11.1 11.1 1.0 1.0 1.1 34.3 35.1 35.3
5.5 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.1 3.8 10.2 1.0 1.9 3.3 32.6 39.8 55.1
1.5 4.1 4.6 5.1 1.7 2.4 3.6 32.7 37.9 54.7
2 5.0 5.3 5.6 2.3 2.9 3.8 33.1 36.7 47.8
2.5 55 5.7 6.0 3.0 3.4 3.9 32.9 37.0 44.0
3 6.1 6.2 6.4 3.5 3.8 4.2 36.5 37.7 38.9
3.5 6.5 6.7 6.9 4.1 4.4 4.7 36.6 37.7 38.2

90 - - - - - - - - -
45 - - - - - - - - -
5 - - - - - - - - -
55 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.1 3.8 12.2 1.0 2.0 3.5 33.2 42.9 61.7
1.5 4.1 4.6 10.4 1.0 2.5 3.9 32.8 40.5 61.6
2 4.8 5.3 5.6 2.3 3.0 4.2 33.1 37.7 58.0
2.5 5.4 5.7 6.1 2.9 3.4 4.3 33.3 37.9 51.5
3 5.7 6.2 6.5 3.4 4.0 5.4 34.7 38.0 53.5
3.5 6.6 6.7 6.8 4.1 4.3 4.5 35.9 37.7 38.0

120 - - - - - - - - -
45 - - - - - - - - -
5 - - - - - - - - -
5.5 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
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Normal Metocean Conditions

Table 7.16 Normal sea-states parameters for IJV: Hsnss, Tp,nss, JONSWAP

Gamma, and DSD conditioned on U1

DA

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y | DSD [°]
[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%

1 3.2 3.9 15.4 1.0 1.7 3.1 32.6 44.7 66.5
1.5 4.2 4.7 10.3 1.0 2.2 3.4 31.4 40.3 66.5
2 4.9 5.3 5.8 1.7 2.7 3.9 31.6 37.8 64.3
2.5 5.5 5.8 6.2 2.6 3.1 4.1 31.4 35.3 63.4
3 6.1 6.3 6.7 3.0 3.7 5.1 32.8 35.0 67.6
3.5 6.5 6.7 6.9 3.7 4.1 4.4 35.3 37.9 41.2

150 4 - - - - - - - - s
45 - - - - - - - - -
5 - - - - - - - - -
5.5 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
75 - - - - - - - - -
8 - - - - - - - - -
1 3.2 4.1 14.6 1.0 1.4 2.9 32.3 47.3 71.7
1.5 4.2 4.8 10.8 1.0 1.9 3.2 30.4 39.7 70.0
2 5.0 5.6 6.3 1.2 2.1 3.5 30.7 37.0 66.6
2.5 5.7 6.2 6.7 1.6 2.4 3.4 30.8 34.4 54.5
3 6.3 6.7 7.2 1.9 2.6 3.5 30.8 33.7 445
3.5 6.8 7.2 7.7 2.0 2.8 3.8 30.9 32.6 66.5

180 4 7.3 7.8 8.2 2.1 2.7 3.7 30.8 32.2 35.1
4.5 7.7 8.1 8.2 3.0 3.1 3.8 31.5 32.5 34.4
5 8.3 8.3 8.3 3.3 3.3 3.3 31.8 31.8 31.8
55 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.5 4.7 12.2 1.0 1.0 2.1 29.7 44.2 67.0
1.5 4.5 5.4 9.2 1.0 1.2 2.3 27.3 37.6 62.2
2 5.3 6.1 7.2 1.0 1.4 2.5 26.4 34.2 57.8
2.5 6.0 6.6 7.4 1.1 1.7 2.8 26.4 31.7 50.8
3 6.6 7.1 7.8 1.3 1.9 2.9 26.4 30.4 45.3
35 7.1 7.6 8.0 1.6 2.1 3.0 26.6 29.5 39.7

210 4 7.5 8.0 8.5 1.9 2.4 3.3 27.1 29.8 36.3
4.5 7.9 8.3 8.7 2.1 2.7 3.4 27.6 29.7 33.7
5 8.2 8.7 9.0 2.3 2.9 3.9 27.9 29.2 31.7
55 8.8 9.0 9.2 2.7 2.9 3.8 29.0 29.6 31.6
6 9.4 9.5 9.6 3.0 3.0 3.2 29.4 29.7 30.2
6.5 9.7 9.7 9.7 3.4 3.4 3.4 30.9 30.9 30.9
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
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Table 7.16 Normal sea-states parameters for IJV: Hsnss, Tr.nss, JONSWAP
Gamma, and DSD conditioned on U1oo

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y DSD [°]

[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%
1 3.4 4.3 11.3 | 1.0 1.1 2.6 275 | 394 |624
15 4.4 5.1 7.1 1.0 15 2.8 265 | 349 |586
2 5.2 5.8 6.7 1.0 1.7 2.9 26.0 33.2 54.6
2.5 5.9 6.6 7.3 1.1 1.8 3.0 26.2 32.8 48.9
3 6.6 7.2 7.8 1.3 2.0 2.9 26.5 31.7 42.9
35 7.1 7.6 8.2 15 2.1 3.0 270 | 304 | 405

a0 14 7.6 8.1 8.6 1.7 2.3 3.1 274 | 295 | 36.9
4.5 8.0 8.5 8.9 1.9 2.5 3.2 27.7 29.5 35.7
5 8.4 8.8 9.3 2.1 2.7 3.6 283 | 296 | 350
5.5 8.8 9.2 9.6 2.3 2.8 3.8 29.1 30.2 35.1
6 9.2 9.4 9.7 2.5 3.3 3.6 299 |307 | 346
6.5 95 9.9 101 | 25 3.0 3.7 299 [313 |355
7 9.7 9.7 9.7 4.2 4.2 4.2 34.3 34.3 34.3
75 ; - - - - : : : :
8 - - - - - - - - -
1 3.2 4.1 150 | 1.0 1.4 3.0 311 | 407 | 55.0
15 4.3 4.9 6.8 1.0 1.7 3.1 2908 |382 |505
2 5.0 5.7 6.6 1.1 2.0 3.5 29.4 37.4 49.7
2.5 5.7 6.3 7.1 1.3 2.1 3.6 29.4 36.6 48.8
3 6.3 6.9 7.7 1.4 2.3 3.4 31.2 [ 364 | 461
35 6.9 7.4 8.1 15 2.5 3.4 202 | 351 |441

R 7.4 7.9 8.3 2.0 2.6 3.7 200 |352 | 456
4.5 8.0 8.2 8.6 2.3 3.0 3.4 281 [ 342 | 365
5 8.4 8.6 8.8 2.7 3.2 3.6 33.2 [ 343 | 376
5.5 8.6 8.8 9.3 2.6 3.5 4.0 275 | 336 | 347
6 8.8 9.5 9.5 2.9 3.3 4.3 305 |[338 |354
6.5 ; - - - - ; : : :
7 100 [ 100 |100 |36 3.6 3.6 342 | 342 | 342
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.6 4.7 139 | 1.0 1.0 2.1 300 |39.7 |526
1.5 4.6 5.5 10.2 1.0 1.1 2.2 29.0 37.4 49.2
2 5.4 6.1 7.4 1.0 1.4 2.3 28.4 35.9 46.8
2.5 6.1 6.7 7.8 1.0 1.6 2.5 28.1 35.0 44.7
3 6.7 7.3 8.5 1.0 1.7 2.7 278|339 | 422
3.5 7.2 7.8 8.7 1.1 1.9 2.8 280 [330 |39.9

300 |4 7.7 8.3 9.1 1.3 2.0 2.9 280 |[320 |378
45 8.1 8.7 9.4 1.4 2.1 3.1 279 | 314 |362
5 8.6 9.2 101 | 1.4 2.2 3.2 283 |316 |36.0
5.5 8.9 9.5 105 | 15 2.4 3.3 269 | 305 | 346
6 9.2 9.9 107 | 16 2.6 3.6 270 | 305 | 354
6.5 9.3 101|111 |15 2.7 4.0 280 |[322 |347
7 103 [ 106 |110 |20 2.5 2.9 289 | 298 |306
7.5 - - - - - - - - -
8 - - - - - - - - -
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Normal Metocean Conditions

Table 7.16 Normal sea-states parameters for IJV: Hsnss, Tp,nss, JONSWAP

Gamma, and DSD conditioned on U1

DA

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y | DSD [°]
[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%
1 4.0 7.0 16.1 1.0 1.0 1.5 28.5 39.5 64.4
1.5 4.9 7.8 13.6 1.0 1.0 1.6 28.2 35.7 62.1
2 5.7 8.0 13.7 1.0 1.0 1.7 28.0 33.8 54.8
2.5 6.5 8.1 14.0 1.0 1.0 1.7 27.8 32.7 46.6
3 7.1 8.3 12.0 1.0 1.0 1.9 27.8 31.4 39.5
3.5 7.8 8.8 11.2 1.0 1.1 1.8 28.1 31.2 36.3
330 4 8.4 9.3 10.9 1.0 1.1 1.9 28.2 31.3 35.0
4.5 8.7 9.7 11.1 1.0 1.2 2.0 28.7 31.5 34.7
5 9.2 10.3 11.5 1.0 1.2 2.1 29.6 32.0 34.7
55 9.6 10.7 11.9 1.0 1.3 2.1 29.9 32.1 34.3
6 10.3 11.1 12.6 1.0 1.3 1.9 30.6 32.7 34.7
6.5 10.9 11.7 13.4 1.0 1.2 1.8 31.1 33.2 34.6
7 11.4 12.6 14.1 1.0 1.1 1.6 31.6 33.0 34.7
7.5 12.2 13.4 14.0 1.0 1.0 1.6 32.4 32.8 33.4
8.0 12.8 13.1 13.3 1.2 1.3 1.5 33.8 34.0 34.2
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Table 7.17 Normal sea-states parameters for TNW: Hsnss, Tr,nss, JONSWAP
Gamma, and DSD conditioned on U1oo

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y DSD [°]

[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%
1 3.4 5.4 14.6 | 1.0 1.0 2.4 25.4 | 380 |644
15 4.4 6.0 124 | 1.0 1.0 2.7 247 | 342 |585
2 5.2 6.5 12.1 1.0 1.1 3.0 24.9 32.0 51.1
2.5 5.9 7.1 11.1 1.0 1.2 3.0 24.7 30.5 45.2
3 6.6 7.7 10.9 1.0 1.3 2.8 24.3 29.2 41.2
35 7.3 8.2 103 | 1.0 15 2.6 238 | 281 |37.3

Al A 7.9 8.6 104 | 1.0 1.6 2.6 236 | 272 | 346
4.5 8.4 9.1 11.0 1.0 1.7 2.5 23.5 26.7 32.3
5 8.9 9.6 11.4 1.0 1.7 2.6 23.4 26.2 30.7
5.5 9.3 10.1 11.7 1.0 1.7 2.6 23.3 26.0 30.3
6 9.7 105 | 123 |10 1.7 2.7 232 | 258 | 294
6.5 102 111 [130 |10 1.6 2.6 231 | 256 | 29.0
7 10.5 11.6 14.1 1.0 1.6 2.6 22.8 25.5 28.3
7.5 11.0 12.5 14.0 1.0 1.3 2.6 22.7 25.3 27.9
8 112 [130 [150 |10 1.3 2.9 232 | 255 | 217
1 3.7 6.4 109 | 1.0 1.0 2.0 225 |351 |638
15 4.6 7.1 101 | 1.0 1.0 2.1 222 | 302 |587
2 5.7 7.3 9.4 1.0 1.0 1.8 23.8 28.7 44.7
2.5 6.5 7.8 9.6 1.0 1.0 1.8 24.0 27.7 37.5
3 7.2 8.1 9.9 1.0 1.1 18 236 | 267 | 355
35 7.7 8.6 101 | 1.0 1.2 2.0 232 | 261 | 343

0 A 8.2 9.0 103 | 1.0 1.3 2.0 228 | 266 | 334
4.5 8.8 9.5 10.7 1.0 1.4 2.0 23.2 25.7 33.5
5 9.1 9.6 11.1 1.0 1.6 2.5 22.9 25.6 31.9
5.5 9.3 102 | 114 |11 1.6 2.4 227 | 243 | 306
6 9.9 11.1 11.8 1.1 1.4 2.4 22.6 24.3 31.7
6.5 10.5 11.0 11.7 1.2 1.7 2.1 23.5 23.8 24.2
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.4 4.7 119 | 1.0 1.0 2.4 280 |[353 |582
1.5 45 5.4 6.7 1.0 1.2 2.4 27.2 32.9 44 .4
2 5.4 6.1 7.0 1.0 1.4 2.4 27.4 31.6 43.5
2.5 6.1 6.6 7.4 1.1 1.6 2.6 26.5 31.1 41.9
3 6.7 7.3 7.9 1.2 1.8 2.8 26.8 | 311 | 442
3.5 7.2 7.7 8.1 15 2.0 3.1 26.7 | 308 | 406

30 14 7.7 8.1 8.6 1.7 2.1 2.9 272 | 293 | 322
45 8.2 8.5 8.6 2.0 2.4 2.6 281 | 284 | 290
5 8.7 9.0 9.3 2.2 2.7 3.2 204 |303 |312
5.5 8.9 9.3 9.6 2.4 2.7 3.2 205 |305 |311
6 9.4 9.5 9.5 2.9 3.0 3.1 209 [301 | 306
6.5 : - - - - : : : :
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
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Normal Metocean Conditions

Table 7.17 Normal sea-states parameters for TNW: Hsnss, Tr.nss, JONSWAP

Gamma, and DSD conditioned on U1

DA

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y | DSD [°]
[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%

1 3.4 4.4 10.3 1.0 1.1 2.3 27.4 36.2 56.6
1.5 4.4 5.2 6.2 1.0 1.3 2.3 26.7 32.8 48.6
2 5.3 5.9 6.6 1.1 1.6 2.4 26.0 30.8 43.4
2.5 6.1 6.6 6.9 1.3 1.8 2.5 25.9 29.4 39.4
3 6.7 7.1 7.4 1.6 2.1 2.7 25.8 28.7 36.8
3.5 7.2 7.4 7.9 2.0 2.4 2.8 25.8 27.6 35.0

60 4 7.6 7.9 8.1 2.2 2.6 2.9 25.9 27.4 31.0
4.5 8.0 8.2 8.6 2.4 2.8 3.2 26.2 27.1 30.3
5 8.6 8.6 8.9 2.7 3.0 3.2 26.8 27.5 30.6
55 9.1 9.2 9.3 2.7 2.8 2.8 30.8 30.8 31.0
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.3 4.3 14.8 1.0 1.2 2.4 29.4 41.6 64.3
1.5 4.4 5.1 6.2 1.0 1.5 2.5 27.9 35.5 56.5
2 5.2 5.7 6.3 1.2 1.8 2.6 27.2 32.5 49.3
2.5 5.9 6.4 6.8 1.4 2.0 2.8 26.4 30.3 43.7
3 6.5 6.9 7.3 1.8 2.2 2.9 26.3 29.2 36.4
3.5 7.1 7.4 7.7 2.1 2.5 3.0 26.0 28.1 32.9

90 4 7.6 7.8 8.0 2.4 2.7 3.1 25.8 27.1 30.4
4.5 7.9 8.1 8.4 2.3 2.9 3.2 26.3 27.3 28.8
5 - - - - - - - - -
55 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.1 3.8 14.3 1.0 1.9 3.3 31.7 44.1 64.6
1.5 4.1 4.6 5.2 1.5 2.3 3.5 31.3 40.1 60.0
2 4.9 5.3 5.7 2.0 2.8 3.9 32.0 38.8 60.2
2.5 5.5 5.8 6.2 2.3 3.1 4.3 32.1 38.5 57.9
3 6.0 6.3 6.6 2.8 3.8 4.4 32.3 37.6 51.1
35 6.3 6.7 6.8 3.6 4.0 5.0 32.9 35.9 54.0

120 - - - - - - - - -
45 - - - - - - - - -
5 - - - - - - - - -
55 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
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Table 7.17 Normal sea-states parameters for TNW: Hsnss, Tr,nss, JONSWAP
Gamma, and DSD conditioned on U1oo

PWD | Hsnss | TPNss [s] JONSWAP Gamma,y | DSD [°]
[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%

1 3.1 3.7 16.0 1.0 2.2 3.7 34.1 46.5 66.0
1.5 4.1 4.5 5.1 1.7 2.7 3.9 33.7 44.4 62.7
2 4.8 5.2 5.5 2.4 3.2 4.2 34.4 42.5 59.2
2.5 5.4 5.7 6.1 2.8 3.6 5.0 33.1 42.1 61.3
3 5.9 6.2 6.5 3.4 4.2 5.3 33.3 39.9 55.7
3.5 6.3 6.5 6.7 4.1 4.6 5.1 32.6 37.1 39.7

150 4 - - - : : - - - -
4.5 - - - - - - - - -
5 - - - - - - - - -
5.5 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.1 3.8 15.9 1.0 2.3 3.7 34.9 48.1 64.3
1.5 4.1 4.5 4.9 1.9 2.8 3.9 34.8 43.6 61.3
2 4.8 5.2 5.5 2.6 3.3 4.1 34.3 40.7 58.0
2.5 5.4 5.7 6.0 3.1 3.8 4.7 35.4 39.6 57.1
3 5.8 6.2 6.4 3.7 4.3 5.4 36.0 39.3 58.4
3.5 6.4 6.6 6.8 4.1 4.6 5.0 35.6 38.8 46.8

180 4 6.8 6.9 7.1 4.7 5.0 5.2 35.1 37.6 38.9
45 - - - - - - - - -
5 - - - - - - - - -
55 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
1 3.2 4.7 14.4 1.0 1.0 2.9 29.7 43.8 66.6
1.5 4.2 4.9 10.9 1.0 1.8 3.3 28.4 41.9 59.3
2 4.9 5.5 6.8 1.0 2.4 3.9 29.1 41.4 57.9
2.5 5.4 6.2 7.4 1.0 2.5 4.7 32.7 41.9 56.0
3 5.9 6.4 7.3 1.6 3.4 5.1 35.2 41.2 54.4
3.5 6.4 6.8 7.5 2.6 4.0 4.9 36.2 45.7 55.3

210 4 7.0 7.0 7.0 5.1 5.2 5.3 37.7 39.7 41.6
45 - - - - - - - - -
5 - - - - - - - - -
5.5 - - - - - - - - -
6 - - - - - - - - -
6.5 - - - - - - - - -
7 - - - - - - - - -
7.5 - - - - - - - - -
8 - - - - - - - - -
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Normal Metocean Conditions

Table 7.17 Normal sea-states parameters for TNW: Hsnss, Tp,nss, JONSWAP

Gamma, and DSD conditioned on U1

DA

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y DSD [°]

[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%
1 3.5 5.0 135 | 1.0 1.0 2.4 26.6 | 39.2 | 63.2
15 4.4 5.6 75 1.0 11 2.7 258 | 353 | 54.2
2 5.2 6.3 7.7 1.0 1.2 3.0 24.8 33.2 49.3
25 5.9 7.0 8.0 1.0 1.3 3.1 243 | 316 | 455
3 6.6 7.5 8.3 1.0 1.5 3.0 23.7 29.6 42.7
3.5 7.2 8.0 8.7 11 1.6 2.9 233 | 279 | 395

240 14 7.8 8.5 9.1 1.3 1.8 2.7 231 | 26.4 | 370
45 8.4 8.8 9.4 1.4 1.9 2.6 232 | 259 | 335
5 8.8 9.3 9.7 1.6 2.0 2.7 23.2 25.5 31.7
55 9.2 9.6 10.1 1.7 2.2 2.9 23.3 25.4 33.2
6 9.5 100 | 103 |19 2.3 3.0 234 | 252 | 322
6.5 9.6 102 | 107 |19 25 3.3 237 | 261 | 30.0
7 102 | 103 [106 |25 3.1 3.4 235 | 255 | 26.0
7.5 10.9 11.0 11.1 2.6 2.7 2.8 23.5 23.8 24.1
8 - - - - - - - - -
1 3.5 4.9 139 | 1.0 1.0 2.1 281 |356 |501
15 4.6 5.7 7.2 1.0 1.0 2.1 279 | 337 | 454
2 5.5 6.4 7.4 1.0 1.1 2.2 27.3 32.4 41.6
2.5 6.2 7.1 8.0 1.0 1.3 2.2 26.6 31.1 39.7
3 6.8 7.6 8.5 1.0 1.4 2.4 26.1 | 300 | 380
35 7.4 8.0 8.7 11 1.6 2.4 256 | 293 | 36.6

970 14 8.0 8.6 9.2 1.3 1.7 25 252 | 282 | 344
4.5 8.4 8.9 9.5 1.4 1.9 2.5 24.8 27.6 32.7
5 8.8 9.3 9.9 1.5 2.0 2.7 24.6 27.1 32.1
55 9.2 9.7 102 |16 2.1 2.7 250 | 26.8 | 30.6
6 9.5 101 | 105 | 1.8 2.2 3.0 247 | 266 | 28.8
6.5 9.9 10.4 10.9 1.9 2.3 2.9 24.7 26.6 28.7
7 10.4 10.9 11.2 1.9 2.2 3.1 24.5 26.0 27.5
7.5 10.4 11.1 11.5 2.1 2.4 3.4 24.4 26.1 28.2
8 107|112 117 |21 2.9 3.4 245 | 252 | 26.0
1 3.7 5.4 13.2 1.0 1.0 1.7 27.2 34.5 52.8
1.5 4.7 6.1 7.8 1.0 1.0 1.8 27.5 32.9 43.5
2 5.7 6.6 8.0 1.0 1.0 1.9 27.2 31.4 40.2
2.5 6.4 7.3 8.4 1.0 1.1 1.9 26.6 30.0 37.1
3 7.1 7.9 8.9 1.0 1.2 1.9 259 | 203 | 354
35 7.7 8.4 9.2 1.0 1.3 2.0 255 | 287 | 330

300 |4 8.2 8.8 9.6 11 15 2.1 252 | 279 | 321
45 8.7 9.3 100 | 1.1 15 2.2 247 | 2717 | 309
5 9.2 9.6 103 | 1.2 17 2.2 245 | 271 | 300
55 9.6 101|107 |13 17 2.3 246 | 270 | 300
6 100 | 104 |111 |13 18 2.3 245 | 269 | 294
6.5 103 | 108 [11.3 |14 1.9 25 247 | 268 | 29.2
7 106|112 [119 |14 1.9 2.6 250 | 267 | 284
7.5 11.0 11.3 11.7 1.8 2.2 2.4 24.2 27.3 27.8
8 111|115 [120 |18 2.6 2.9 25.4 | 262 | 28.0
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Table 7.17 Normal sea-states parameters for TNW: Hsnss, Tr,nss, JONSWAP
Gamma, and DSD conditioned on U1oo

PWD | Hsnss | TPNss [s] JONSWAP Gamma, y DSD [°]

[°N] | [m] 5% 50% | 95% | 5% 50% | 95% | 5% 50% | 95%
1 3.9 8.2 16.2 | 1.0 1.0 15 241 | 379 |683
15 4.8 8.3 145 | 1.0 1.0 1.8 230 [334 |654
2 5.6 8.2 13.9 1.0 1.0 1.9 23.7 31.2 57.9
2.5 6.5 8.4 14.1 1.0 1.0 1.9 24.2 29.5 48.4
3 7.2 8.6 14.2 1.0 1.0 1.8 24.3 28.5 42.2
35 7.9 9.1 123 | 1.0 1.0 1.8 237 | 270 |357

330 14 8.4 9.5 123 | 1.0 1.1 1.9 234 | 26.4 | 335
4.5 8.9 10.0 12.4 1.0 1.1 1.8 23.3 25.7 31.6
5 9.5 10.4 12.1 1.0 1.2 1.8 23.1 25.0 29.5
5.5 10.0 10.9 12.1 1.0 1.2 1.7 23.0 24.6 28.4
6 104 [113 [130 |10 1.2 1.9 228 | 247 | 283
6.5 108 [11.9 [136 |10 1.2 18 230 | 242 | 281
7 11.3 12.3 14.3 1.0 1.2 1.8 22.6 25.0 28.4
7.5 11.4 12.9 14.1 1.0 1.2 2.0 22.6 24.9 27.9
8.0 118 [131 [153 |10 1.2 2.0 230 |252 |27.3
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Extreme Metocean Conditions

A number of analyses were conducted to estimate the extreme metocean conditions within the
project site. The extreme analyses are reported at the three (3) selected locations — see Section
6. The extreme conditions were based on the model data presented in Sections 3.3, 4 and 5.

All analyses were conducted for 12 directional bins of 30 degrees (centered at 0°N, 30°N...).
Monthly extremes were also performed and results are provided in relevant sections. The
directional and monthly extremes have not been scaled to preserve the targeted unconditional
(omni) non-exceedance probability, as agreed with RVO & DNV-GL. This means that while a
specific directional/monthly extreme has an annual non-exceedance probability (or return
period) as specified, an arbitrary directional/monthly extreme will be exceeded more often.
Scaling must therefore be considered if the directional extremes are used for design.

The extreme wave conditions were considered for the total spectrum only for selected
parameters (Hmo, Hmax and Cmax). The data covered the period from 1979-10-01 to 2018-10-01
(39.0 years).

Wind data for heights larger than 10m were obtained from the 10mMSL CFSR dataset applying
the profiles derived from observations (see Section 3.3.1.4).

The absolute values of heights are referring to the local LAT defined according to results of the
harmonic analysis of the modelled water levels, see Section 7.2.2. The distance MSL-LAT
extracted from these results was applied to convert levels relative to MSL at equivalent levels
referenced to LAT. This distance is 0.9m at HKW and 1.0m and IJV and TNW.

Accompanying this report, three (3) Excel files are provided which contain all the results of the
extreme values analysis and their associated parameters.

In this section, some of the detailed results (waves) are presented at HKW, 1JV and TNW. For
other parameters, detailed results are only presented at HKW. The detailed results at all other
locations are provided in Excel files with the report and are accessible through the database as
well.

Extreme Value Analysis Methodology

The DHI J-EVA model has been applied to estimate extremes of wind speeds, wave heights,
water levels and currents speeds and variables associated with extremes of the afore-
mentioned variables. The J-EVA model consists of 1) a storm model and 2) a statistical model.
The two components are briefly described in the following.

Storm model

Storm events evolve in time with a build-up phase, a storm peak and a decay as the wind storm
moves away and/or the low pressure fills up. It is important to accurately model this time
evolution and not just the storm peak itself as the time evolution has direct impact on short-term
response such as, for instance, the maximum crest height. Directionality is also important in this
context as wind and wave direction typically shift during a storm passage.

J-EVA makes use of a storm model to realistically capture this evolution of relevant
environmental variables (H,,o, T,,, WS etc.) in storm events. The purpose of the storm model is:

1. To condense the storm events into a set of characteristic values for all relevant variables
suitable for statistical modelling
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2. To provide means of simulating realistic time series of the relevant variables in each storm
from a set of simulated characteristic storm values. We call these time series intra-storm
time series or trajectories

From the input time series of the relevant environmental variables presented in Sections 3.3, 4
and 5, the storm model separates this into individual (storm) event and computes characteristic
values of the environmental variables, thus fulfilling its purpose no. 1.

The original time series of the relevant variables are also retained along with the computed
characteristic values, and this data is later used to generate intra-storm time series of the
relevant variables, using a storm similarity concept and scaling method.

The theory and implementation of the J-EVA storm model is detailed in Appendix C.

Statistical model

The J-EVA statistical model is used to estimate the statistical distribution of the characteristic
storm values of the environmental variables, returned by the J-EVA storm model. The theory
and implementation of the J-EVA statistical model is detailed in Appendix B.

The J-EVA statistical model estimates the marginal distributions of all characteristic storm
variables, that is the distribution of each variable completely independent of any other variable.
It can also estimate the distributions of variables conditional on a selected variable being
extreme (attaining a high value).

The J-EVA statistical model includes an option of modelling marginal and conditional
distributions dependent on co-variates. For this study, the wind, wave and current directions
have been used along with season (day of the year, ¢) as co-variates. The specific analysis
set-up is further detailed below. The use of directional and seasonal co-variates jointly means
that the marginal and conditional distributions will vary continuously with both direction and
season. This is done to capture the significant directional and seasonal variation in the wind,
wave and current conditions.

Extreme value estimates using J-EVA are obtained via simulation. Empirical distributions are
generated by sampling a large number of events from the statistical distributions of J-EVA.
Extreme value estimates for required return periods are then “read off” from these empirical
distributions. Directional/seasonal estimates are obtained by only considering the empirical
distribution of simulated events within a given directional/seasonal sector, while omni-estimates
are obtained by not imposing such conditions on the simulated events.

Four extreme value models have been set up for this study and are briefly outlined below (see
Table 8.1). All four models use the day of year as the seasonal co-variate.
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Table 8.1 Summary of the four extreme value models implemented in this study
Model Directional Conditioning Conditioned Variables
Co-variate variable
Wind Direction at time of | Storm peak wind H,0, CS,es; @t time of peak wind
speed peak wind speed speed U, speed
D10
Water None Extremes of HWL, None
level LWL both total and
residual
Current Direction at time of | Peak residual Uy, Hyo at the time of peak current
speed peak residual current speed speed
current speed D,
Wave Storm model PWD | Storm model Associated g, Ty,
heights Hmo,p,eq T02' Ulo. CS, WLresidual

The individual model set-ups and results are further detailed in the following sections.

Application

Performing the J-EVA simulations is a computationally very demanding task which could take up
to 30 hours on a 20-core machine with 64 GB of RAM. Thus, doing J-EVA on all wave model
elements within the database area (~56,000 elements) is not possible within a reasonable time
frame. In order to have the extreme value results (and their joint probabilities) at all elements,
DHI picked 63 points (herein referred to as “J-EVA points”) spread within the domain as shown
in Figure 8.1. The 3 analysis points at Hollandse Kust (west), IJmuiden-Ver and Ten Noorden
van de Waddeneilanden, which were introduced in Section 6, were among the 63 J-EVA points
(see the top plot in Figure 8.1). The rest of the points were selected in the corner areas of other
Dutch Offshore Wind Farms (see the middle and bottom plot in Figure 8.1), boundaries of the
database area, a few shallow water points and at elements with rapid water depth changes
(sand ridges).
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After performing J-EVA on all the 63 points, the results were populated to all elements following
the below approach:

1. Calculate the median of annual max of different parameters at each element. Main
parameters are Hmo, U0, CS & WL. In addition, calculate the median of associated
parameters to the annual max values, such as the associated Tp or Toz2 to the annual max
Hmo. As an example, please see Figure 8.2 and Figure 8.3 for the median of annual max of
Hmo and the associated Toz values, respectively.

[deg]

516 Median Annual Max based on HmO [m]
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Figure 8.2  Median of annual max of Hmo values all over the database domain
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Figure 8.3 Median of To2 associated to annual max of Hmo all over the database domain
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8.2
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2. To calculate the extreme values (or the associated parameters), the below formula/
approach was used:

The wave height quantity in a random model point i, H;, is obtained from the ‘J-EVA’ points
Jj = Llinygy, by

NJEVA

E(Hm01yri) } . .
H: = Z T b

Where the sum of weight factors Y;w;; = 1 and H; is the corresponding wave height
guantity calculated using J-EVA in point j. The wave height quantities are the
directional/monthly extreme value estimates at different return periods.

A similar approach for wave period, water level, wind and current speed items (by replacing
H and H,,, with relevant items). Scale factors w are kept the same. Weight factors w;;
were based on inverse distance cubed i.e., w;; = a(1/6ij3), where §;; is the distance
between point i and j and a is a normalization factor to ensure }; w;; = 1.

3. The weight factor is a 63 x 1 matrix and defines how much each of the 63 J-EVA points
could contribute to the value at any element.

4.  The J-EVA outputs were used directly in the J-EVA points (when i = j)

Waves

A DHI J-EVA storm model and statistical model has been set up for wave height extremes and
associated parameters. Independent storm events are identified using declustering with a
minimum separation criterion of 18 hours and the equivalent storm model parameters calculated
for each storm event. The storm model peak wave direction PWD and season have been used
as co-variates and the model fitted to characteristic storm variable values (Hp,g p,eq, In 0¢q , Ty, -
etc.).

A prior has been set on the upper end point of the significant wave height H, ,, ., limiting this to

0.7 times the local water depth to MSL. This is considered a rather conservative estimate for
the the depth-limited H,,,.

Long simulations are then made providing simulated values of these storm variables for Hy, ;¢4
more extreme than any contained in the original hindcast. The storm model is then applied to
convert these storm events into time series of sea state variables at hourly time steps.

Monte-Carlo simulation is used to numerically fold the Forristall wave (1978) and crest (2000)
distributions with the long-term distributions of relevant sea state variables in order to obtain
estimates of the wave and crest height distributions duly accounting for the storm duration. In
practice, this is done by sampling the maximum wave and crest height in each sea state. The
distribution of the maximum wave and crest height is obtained by raising the non-exceedence
probability distribution of individual wave and crest height to the power of N, where N is the
number of individual waves in the sea state:

N

B
P(Hmax < thmO) = <1 — exp <_ (a[jl 0) )) (8-2)
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a and B are the scale and shape of the Forristall distributions. The sampled maximum waves
and crests are then treated in the same way as the sampled values of eg. H,,,, following the
procedure outlined in Appendix B.1.4, in order to obtain the extreme value estimates of
individual wave and crest heights for various return periods.

Various plots showing the ouput from the long simulations are presented in the following.

Figure 8.4 shows directional exceedance probability plots obtained at HKW. The y-scale is the
average annual number of exceedances and the simulated data has been split into segments
corresponding to the length of the hindcast record (38 years). Hereby, it is possible to draw
95% confidence bands (shaded area) and median (blue line). The total number of events will
vary between directional sectors, meaning that the start point of the curves will vary between
directional sectors. The match is generally good, especially for the dominant sectors. Some
mismatch between the simulation and the hindcast is observed for the infrequent and benign
easterly sectors, but as these are irrelevant from a design perspective, this is not concerning.
The hindcast can be considered as a random sample of the 38 years of storms from the true
distribution of storm severity, and the rest of the observed mismatches between hindcast and
median of the simulation (sectors NW, N and SW) is attributed to the natural variability of the
extremes of such a random sample. For instance, a couple of large events including the largest
have co-variate PWD only slightly above 337.5°. The spline representation of distribution
parameters implemented in J-EVA ensures that these events contribute to the wave height
distribution in the vicinity of their co-variate value including below 337°N, but in the plots they will
be assigned to one and only one directional sector. It is also important to note that even though
the results are shown for 45° sectors in Figure 8.4, the same model outputs can be separated
consistently into any other directional sector division, including 30 sectors as used for the
present study.

Figure 8.5 to Figure 8.7 show the J-EVA results from simulating 10,000 years of storm events.
Each dot in the scatter plots represent one storm event. From such plots, the relationship
between various parameters can be observed. For example, from Figure 8.6, the positive
correlation between the high residual water levels and storms propagating from the north
westerly sector is evident. This figure also shows that high values of the residual current speed
are associated with storms from south-west. It is also evident that the north-westerly events
generally are associated with longer wave periods and smaller wind speeds, compared to
events from south-west, consistent with the longer fetch from NW compared to SW.

Figure 8.8 and Figure 8.9 present the J-EVA results after applying the storm model to generate
individual sea states from the simulated storms presented in Figure 8.5 to Figure 8.7. Figure 8.8
is directly comparable to Figure 8.4, but now shows the exceedance probability of the individual
sea states (of which there are likely more than one per storm). Figure 8.9 is directly comparable
to Figure 8.5 in the sense that it shows the simulated variables plotted agains simulated H,,,.
Note that the storm duration parameter o,, only exists as a storm parameter. It determines the
number of sea states (humber of hours) of the storm but has no direct sea state equivalent.
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Figure 8.4 Directional exceedance probability of H,q ., obtained from DHI's Joint-EVA simulation of

storm events at HKW.

Hindcast data shown in black and median and 95% confidence band of simulated events
shown with blue line and shaded area respectively.
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DHI’s Joint-EVA simulation of storm events at HKW.

Posterior predictive distribution at HKW on equivalent storm peak (Hmo, p, eq) iS presented on
top left. Storm duration (top right), Tp (second row left), To2 (second row right), Residual
water levels (third row left), Wind speed at 10mMSL (third row right) and residual current
speed (bottom) against equivalent storm peak (Hmo, p, eq). Black dots show original hindcast
and coloured dots the result of a simulation of 10,000 years. Warmer colours indicate higher
density of points.
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Figure 8.6 DHI’s Joint-EVA simulation of storm events at HKW.

Equivalent storm peak (Hmo, p, eq) (top left), Storm duration (top right), Tp (second row left), Toz
(second row right), Residual water levels (third row left), Wind speed at 10mMSL (third row
right) and residual current speed (bottom) against Direction. Black dots show original
hindcast and coloured dots the result of a simulation of 10,000 years. Warmer colours
indicate higher density of points.
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Figure 8.7 DHI's Joint-EVA simulation of storm events at HKW.

Equivalent storm peak (Hmo, p, eq) (top left), Storm duration (top right), Tp (second row left), To2
(second row right), Residual water levels (third row left), Wind speed at 10mMSL (third row

right) and residual current speed (bottom) against Season. Black dots show original hindcast

and coloured dots the result of a simulation of 10,000 years. Warmer colours indicate higher
density of points.
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Figure 8.8 Directional exceedance probability of H,,, obtained from DHI's Joint-EVA simulation of storm
events at HKW.

Hindcast data shown in black and median and 95% confidence band of simulated sea states
shown with blue line and shaded area respectively.
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The directional and seasonal extreme values of wave heights and their associated parameters
have been computed for sea states with high water level conditions (WL>0mMSL) and low water
level conditions (WL<OMMSL) respectively.

Table 8.2 contains the directional extreme significant wave heights for both high and low water
level conditions at HKW. The extreme Hmo values associated to low water level conditions are
1-1.4m lower than the extreme Hmo associated to high water levels for the dominant directions.
For the more benign easterly directions, extremes associated with low water level are actually
highest, indicating that these type of sea states are associated with a negative surge.

Table 8.3 and Table 8.4 summarizes the directional extreme significant wave height at 13V and
TNW, respectively.

Table 8.2 Extreme directional Hmo for high and low water level conditions at HKW

Directional Extreme Significant Wave Heights, Hmo [m]

Direction (PWD Tr [years]
[deg N]) 1 2 5 10 50 100 1000 10000
Omni 56 | 60 | 64 | 6.7 | 7.3 7.6 8.3 8.9
0 43 | 48 | 54 | 57 | 65 6.8 7.5 8.2
= 30 35 | 39 | 45 | 48 | 56 5.8 6.6 7.3
S 60 1.8 | 21 | 25 | 28 | 36 3.9 5.0 5.7
& 90 15 1.8 | 21 | 23 | 28 3.0 3.5 4.0
A 120 15 1.8 | 21 | 23 | 27 2.9 3.4 3.8
= 150 17 19 | 22 | 25 | 29 3.0 3.5 4.0
o 180 21 | 24 | 28 | 31 | 37 4.3 5.2 5.9
3 210 39 | 42 | 46 | 49 | 56 5.8 6.5 7.0
< 240 48 | 51 | 55 | 58 | 63 6.6 7.2 7.8
T 270 42 | 47 | 52 | 56 | 63 6.5 7.3 7.9
300 50 | 55 | 59 | 63 | 7.0 7.2 8.0 8.6
330 51 | 56 | 61 | 65 | 7.2 7.4 8.2 8.8
Omni 48 | 51 | 54 | 57 | 6.2 6.4 7.0 7.7
0 36 | 40 | 45 | 48 | 54 5.7 6.4 7.1
- 30 33 | 37 | 41 | 45 | 51 5.3 6.0 6.7
S 60 20 | 24 | 28 | 30 | 36 3.9 4.8 5.5
& 90 1.8 21 | 24 | 26 | 3.1 3.3 3.8 4.2
v 120 19 | 21 | 25 | 27 | 31 3.2 3.7 4.0
= 150 21 | 23 | 26 | 28 | 32 3.3 3.8 4.2
3 180 24 | 26 | 29 | 31 | 37 4.0 5.0 5.7
3 210 38 | 41 | 45 | 47 | 54 5.6 6.2 6.8
2 240 46 | 49 | 53 | 55 | 6.1 6.3 6.9 7.4
= 270 31 | 36 | 40 | 44 | 52 5.6 6.3 6.9
300 35 | 38 | 42 | 44 | 51 5.3 6.2 7.0
330 37 | 40 | 44 | 47 | 54 5.6 6.5 7.3
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Table 8.3 Extreme directional Hmo for high and low water level conditions at I3V

Directional Extreme Significant Wave Heights, Hmo [m]

High Water (WL > 0OmMSL)

Low Water (WL < OmMSL)
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Table 8.4

Directional Extreme Significant Wave Heights, Hmo [m]

Extreme directional Hmo for high and low water level conditions at TNW

DA

Omni 6.8 7.3
0 44 | 51 | 58 | 62 | 71
> 30 41 | 48 5.1 5.9 6.5
= 60 4.4 4.7 5.3 5.8
g 90 4.0 4.6 5.1
A 120 4.2 4.9
= 150 4.1 4.6
o 180 4.2 4.9 5.6
S 210 41 | 45 | 53 5.6 6.5 7.2
< 240 52 | 56 | 60 | 64 | 7.1
T 270 58 | 63 | 68 | 7.2
300 62 | 6.7
330 63 | 6.9
Omni 54 | 58 | 63 | 6.6
0 41 | 46 | 52 | 55 | 63
= 30 39 | 43 | 49
= 60 40 | 42 | 48
& 90 43
M 120
3 150
§ 180
§ 210 4.1 4.8
2 240 47 | 49 | 53 | 56 | 6.2
S 270 47 | 51 | 56 | 60 | 67
300 43 | 47 | 52 | 56 | 65
330 49 | 54 | 59 | 63 | 71

Table 8.5 to Table 8.10 summarize the associated Toz and Tp (50%) to the extreme Hmo values

at HKW, 13V and TNW, respectively.
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Table 8.5 Associated To2 to extreme directional Hmo at HKW

Directional Associated Wave Periods , Toz [s]

Omni 7.4
0 69 | 74
= 30 60 | 64 | 69 | 7.3
S 60 60 | 6.4 7.3
E 90 5.8
A 120
= 150 5.7
g 180 57 | 61 6.6 7.0
(L]
S
-
a0
I
=
[%2]
=
£
o
\"
—
2
2
(L]
S
3
o
—
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Table 8.6 Associated To2 to extreme directional Hmo at 1JV

Directional Extreme Associated Significant Wave Periods , To2 [s]

High Water (WL > 0OmMSL)

Low Water (WL < OmMSL)
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Table 8.7 Associated Toz to extreme directional Hmo at TNW

Directional Extreme Associated Significant Wave Periods , To2 [s]

o 30 6.3 6.8
= 60 6.1 6.4
g 90
A 120
= 150
§ 180
g 210
5 240
T 270
=5

(7))

S

13

o

v

-

2

S

Q

)

(T

=

2

o

—
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Table 8.8 Associated Tp (50%) to extreme directional Hmo at HKW

Directional Associated Wave Periods , T;[s]

High Water (WL > 0mMSL)

Low Water (WL < OmMSL)
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Table 8.9 Associated Tp (50%) to extreme directional Hmo at 13V

Directional Extreme Associated Significant Wave Periods , Ty[s]

210 8.3 8.6 8.9 9.2 9.7 9.8 10.4 10.9

High Water (WL > 0OmMSL)

=

(7))

=

£

o

A\

—

S

S

9

S 210 8.2 85 8.9 9.1 9.7 98 10.4 10.9

> 240 9.0 9.4 96

S 270 8.0 8.4 858
300 8.4 8.9 9.1
330 9.4 9.9 10.4 10.9
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Table 8.10

Directional Extreme Associated Significant Wave Periods , Ty[s]

Omni

30
60
90
120
150
180
210
240

Associated Tp (50%) to extreme directional Hmo at TNW

9.7

9.5

10.6

9.8

8.2

8.3

8.6

8.7

9.2

9.5

10.1

DA

10.7

8.5

9.4

8.7

9.6

9.2

9.5

10.2

10.4

High Water (WL > 0OmMSL)

270

10.1

10.5

300
330

Omni

10.8

104

11.2

10.9

30
60
90
120
150
180
210
240

9.1

9.1

9.8

9.4

10.9

10.5

11.2

11.0

8.3

9.7

8.6

11.0

9.2

11.1

9.4

8.5

10.3

10.0

8.9

8.4
10.8

10.5

8.3

8.3

8.7

8.9

9.3

9.7

8.3

9.0

8.4

9.2

8.8

9.9

9.9

10.3

10.5

Low Water (WL < OmMSL)

270

9.3

9.6

10.0

10.3

10.8

300

9.3

9.6

330

10.4

10.9
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Table 8.11 to Table 8.13 includes the extreme directional individual wave heights (Hmax) at HKW,
13V and TNW for both HWL and LWL conditions, respectively.

Table 8.11  Directional extreme Hmax at HKW for both HWL and LWL conditions

Directional Extreme Individual Wave Heights, Hmax [m]

High Water (WL > OmMSL)

Low Water (WL < OmMSL)

224 11822658_MetOceanStudy_Hollandse_Kust_(west)_Final / nafe/fld/bri/mce/mgo/ybr / 2019-03-12





Extreme Metocean Conditions a
DHI

Table 8.12  Directional extreme Hmax at IJV for both HWL and LWL conditions

Directional Extreme Individual Wave Heights, Hmnax [m]

High Water (WL > 0OmMSL)

Low Water (WL < OmMSL)
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Table 8.13  Directional extreme Hmax at TNW for both HWL and LWL conditions

Directional Extreme Individual Wave Heights, Hmax [m]

=
(7))
S
£
o
VAN
-
2
S
Q
)
(T
=
=
)
I
300 11.2 12.2
330 11.6 12.8
Omni 9.7 10.4
0 7.2 8.2
= 30 7.2 7.9 9.2 9.7 11.3 12.8
S 60 7.5 8.1 9.3 9.7 11.0 12.3
& 90 7.4 8.4 8.8 10.1 11.3
M 120 7.9 8.9
2| 150 7.7 8.6
§ 180 7.3 8.6 9.9
S 210 7.3 8.6 9.2 10.8 12.2
3 240 8.4 8.9 9.6 10.1 11.3 11.8
S 270 8.4 9.1 100 | 106 | 121 | 12.7
300 7.6 8.3 9.2 9.9 11.5 12.2
330 8.7 9.5 10.5 11.2 12.8 13.5

Table 8.14 provides the associate Thmax values to omni-directional Hmax values at 3 analysis
points (for HWL conditions).
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Table 8.14  Summary of associated Trmax to omni-directional Hmax for HWL conditions at 3 analysis points

Associated Thmax [sec] to extreme Hmax (WL > 0)

Tr [years]
Point Name Parameter
1 2 5 | 10 | 50 | 100 | 1000 | 10000
Thmax - 5% 75 | 79 | 77 | 80 87 | 85 | 9.1 9.1
HKW Thmax - 50% 89 | 95 | 93 | 9.6 | 10.5 | 10.5 | 11.0 | 10.9
Thmax - 95% 10.8 | 11.8 | 11.3 | 11.8 | 13.0 | 13.0 | 13.1 | 13.4
Thmax - 5% 87 | 86 | 9.1 | 9.5 | 9.8 | 100 | 10.4 | 10.9
TNW Thmax - 50% 10.1 | 10.5 | 10.9 | 11.6 | 11.8 | 11.8 | 12.6 | 13.0
Thmax - 95% 122 | 127 [ 133 | 142 146 143 | 152 | 154 |
Thmax - 5% 76 | 79 | 84 | 85 88 | 89 | 9.6 9.8
LV Thmax - 50% 9.1 | 9.5 | 10.0 | 10.2 | 10.8 | 10.8 | 11.5 | 11.7
Thmax - 95% 114 | 11.8 | 125 | 126 | 13.1 | 13.2 | 141 | 148

Table 8.15 summarizes the omni-directional extreme Hmo, Hmax and Cmaxfor HWL conditions at 3
analysis points. TNW contains the largest extreme values and HKW shows the lowest values.
TNW is located in deeper location compared to other two analysis locations.

The expert in WATER ENVIRONMENTS

227





DA

Table 8.15  Summary of omni-directional extreme sea states for HWL conditions at 3 analysis points

Extreme Sea States [m] for WL >0

HKW 104 | 11.1 | 12.0
TNW Hmax 12.6 | 13.5 | 14.7
v 10.6 | 114 | 12.3

HKW 12.3 | 12.7
TNW Cmax [mLAT] 13.8 | 14.4
v 12.1 | 12.6
HKW 9.2
TNW Cmax [mSWL] 11.1
1\Y; 9.6

The spatial variations of extreme 100-year and 10,000-year significant wave heights (associated
with HWL) across the Hollandse Kust (west) and IIJmuiden-Ver wind farm zones are presented
in Figure 8.10. As expected, the values follow the water depth variations within the site.
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8.3

Extreme HmO [m] 100-years

Nothing [m] / Latitude

3.0 3.2 34 3.6 38 4.0
Easting [m] / Longitude

Extreme HmO [m] 10,000-years

42
[deg]

Nothing [m] / Latitude

3.0 32 34 36 3.8 4.0
Easting [m] / Longitude

42
[deg]

DA

HmO0-10000yr

I Above 10.05
[ 9.90 - 10.05
[ 9.75- 9.90
[ ]960- 975
[ ] 945- 960
] 9.30- 9.45
] 9.15- 9.30
[ 9.00- 9.15
I 8.85- 9.00
I 8.70- 8.85
Bl 855- 8.70
Bl 8.40- 855
Bl 825- 8.40
Bl s.10- 825
Bl 795- 8.10
Il Below 7.95

[ ] Undefined Value

Figure 8.10 100-year and 10,000-year Hmo across the Hollandse Kust (west) and IJmuiden-Ver

Wind Speed

A J-EVA statistical model has been set up for the extremes of the 10m wind speed. The
extremes have been found by declustering the continuous time series of wind speed into
individual events requiring at least 18 hours between storm events. The direction at the time of
the peak wind speed and the season are used as co-variates. The significant wave height H,,,
and residual current speed CS,..;qua @re conditioned on extremes of the wind speed. Total
current speed is obtained by randomly sampling tidal current assuming this completely
independent of the residual current. Note that time series around the storm peak were not
required for the extremes of wind speed, as folding with the short-term distribution of wind gusts
was not required. The storm model has therefore not been applied for wind speed extremes.

Figure 8.11 show directional exceedance probability of the 10m wind speed. The model fits
data well but the figure also highlights the random variability in the tail of the historical data

(black lines).
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Figure 8.12 to Figure 8.14 show the results (omni-directional, directional and seasonal) of
10,000 years of simulation with wind speed being the conditioning parameter at HKW. Some
correlation is seen between the wind speed and residual current speeds with high values of the
residual current speed being associated with wind from S-SW approximately parallel to the
coastline. The significant wave height H,,, is obviously also correlated with wind speed, but the
dependence is found to vary with wind direction. The wind speeds are less strong from NNW,
yet the waves are highest from this direction, consistent with the longer fetch in this direction.
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Figure 8.11 Directional exceedance probability of 10m wind speed obtained from DHI's Joint-EVA
simulation of wind speed maxima at HKW.

Hindcast data shown in black and median and 95% confidence band of simulated events
shown with blue line and shaded area respectively.
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Figure 8.12 DHI’s Joint-EVA simulation of storm events at HKW with wind speed (U1o) being the
conditioning parameter.

Posterior predictive distribution at HKW on U1o is presented on top left. Scatter plot of Hmo
(top right) and residual current speeds (bottom) against Uio are shown. Black dots show
original hindcast and coloured dots the result of a simulation of 10,000 years. Warmer
colours indicate higher density of points.
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Figure 8.13

DHI's Joint-EVA simulation of storm events at HKW with wind speed (U10) being the
conditioning parameter.

Directional (based on wind direction D1o) results for Uio (top left), Hmo (top right) and residual
current speeds (bottom) are shown. Black dots show original hindcast and coloured dots the
result of a simulation of 10,000 years. Warmer colours indicate higher density of points.
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Figure 8.14 DHI’s Joint-EVA simulation of storm events at HKW with wind speed (U1o) being the
conditioning parameter.

Seasonal results for Uio (top left), Hmo (top right) and residual current speeds (bottom) are

shown. Black dots show original hindcast and coloured dots the result of a simulation of
10,000 years. Warmer colours indicate higher density of points.
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Table 8.16 summarizes the monthly and directional extreme of 2hr-averaged wind speeds at
10mMSL at HKW.

Table 8.16  Directional extreme wind speed, 10m, 2hr-averaged at HKW

Tr [years]
Wind speed, 10m, 2h [m/s]
1 2 5 10 50 100 1000
Omni 244 25.6 27.0 28.0 30.1 30.9 33.6
0 16.2 17.9 19.7 20.9 23.2 24.1 26.9
30 15.0 16.4 18.2 19.2 21.4 22.3 24.9
60 13.6 15.0 17.0 18.2 20.5 21.3 23.9
_ 90 14.4 15.6 17.3 18.3 20.5 21.3 24.0
g 120 14.4 16.0 17.7 18.8 20.8 21.6 24.1
s 150 15.1 16.3 18.4 19.7 22.1 23.0 25.8
-g 180 19.0 20.3 23.0 23.8 26.2 27.1 30.0
210 22.5 24.0 25.7 26.8 29.0 29.8 32.6
240 21.4 22.9 24.5 25.6 28.0 28.8 31.5
270 20.4 22.2 24.2 25.5 28.1 29.1 32.1
300 19.6 21.3 23.0 24.2 26.8 27.8 30.8
330 17.4 19.4 21.1 22.3 24.7 25.7 28.5
Jan 21.7 23.0 25.0 26.1 28.4 29.3 32.0
Feb 20.5 22.4 24.0 25.0 27.5 28.4 31.3
Mar 19.1 20.6 22.5 23.6 25.4 26.3 29.2
Apr 16.3 17.8 19.6 20.5 22.7 23.6 26.5
o> May 15.0 16.5 18.0 19.1 21.4 22.4 25.3
< Jun 15.1 16.0 17.6 18.7 21.2 22.1 25.1
é Jul 15.0 16.4 17.6 18.8 21.1 22.1 25.0
Aug 16.0 17.0 18.8 19.9 22.3 23.3 26.2
Sep 17.9 19.2 20.8 22.1 24.3 25.2 28.1
Oct 19.5 21.2 22.6 23.9 26.5 27.5 30.5
Nov 20.6 22.1 24.0 25.3 27.8 28.8 31.9
Dec 21.5 23.2 24.8 26.1 28.4 29.3 31.9
8.3.1 Conversion between time scales

The information provided in this section details storm wind speed correction factors that can be
applied to the modelled wind speeds to represent various time intervals. These corrections
were determined following the guidance specified by [12].

For averaging times shorter than 1 hour, the mean wind speed during storm conditions can be
expressed as:

U (2) = Uy n(2) - [1 = 0411, - In (T/TO)] 8.3)
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with:

Uy r(z) isthe sustained wind speed (m/s) at an elevation of z mMSL, averaged over a time
interval T

Uy1n(2) is the 1 hour sustained wind speed at altitude z mMSL
Ty is the reference time averaging interval of 3600s

I, is a dimensionally dependent value for the turbulence intensity of wind speed, given
by: I, = 0.06 - (1 +0.043 - Upg) * (%/7,)

As the modelled wind speeds represent a 2-hour sustained wind speed (Uzn), a means of
determining the 1-hour sustained wind speed (Uwo) is a necessary step toward implementing the
above corrections.

Values for Uy were approximated via an iterative solution to the temporal averaging equations
described above, setting T to 7200s, and the elevation z to 10m, which gave a correction factor
of 3.3% from 2h to 1h.

Having established a set of values for Uwo, Storm wind speed correction factors relative to
modelled values of U,z are provided in Figure 8.15 and Table 8.17 to Table 8.19 for the
following conditions:

*  Averaging periods of: 3s, 600s, 1h, 2h (reference), and 3h'2
* Elevations above MSL: 10, 60, 100, 120, 160, 200, 250 and 300 mMSL

Users can use the values in Table 8.17 to Table 8.19 or the formulas given above to convert the
time series (2-hr averaged) given at a specific altitude (time series is available through the
database), to other averaging times (at the same altitude).

Storm wind speed correction factors relative to U

16 10m,2h
: —_— U10m’2h=1 Om/s
_15F —— U oman=15m’s L
o =
S _"_U10rn.2h 20m/s
& 1.4r U, om an=25m/s ]
c m,2h
_% 13} —o—Umm’zh:SOmls i
g U ; 0m’2h=35m/s
8 1.2 _._U10m’2h=40mls I
£ i i
§ 1.1
0p]
1 - =
0-9 i a gl i b il i MR | i il
10° 10" 102 10° 10* 10°

Averaging interval, T(s)

Figure 8.15 Storm wind speed correction factors relative to Uiom,2n

12 The ISO 19901-1 equations are intended for averaging times less than 1h and should therefore be used with caution
for longer averaging times. However, the conversion factor for 3h (10m) was also computed applying the
methodology of the Coastal Engineering Manual [38]). This methodology is independent of wind speed and valid for
longer averaging times. The result applying CEM was identical to the result applying ISO 19901-1 for wind speed of
20m/s, indicating that the ISO 19901-1 equations may be applicable for averaging times of up to 3h.
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Table 8.17  Storm wind speed correction factors relative to Uiom2n and Uso,2n

Storm wind speed correction factors relative to U 10m.2h

Averaging time, T(s)

3 15 &0 800 3600 7200 10800
10 1.2828 1.2243 1.1740 1.05903 1.0252 1.0000 0.9853
ﬁ_ 15 1.327% 1.2601 12017 1.1047 1.0252 1.0000 0.59825
:.-E 20 1.3736 1.2564 1.2258 1.1193 1.0333 1.0000 0.5805
2 25 1.42M1 1.3333 1.2584 1.1341 1.0374 1.0000 0.9781
30 1.4674 1.3708 1.2875 1.1452 1.0415 1.0000 0.9756
35 1.5155 1.4089 1.3171 1.1645 1.0455 1.0000 0.9731
40 1.5643 1.4477 1.3471 1.1802 1.0503 1.0000 0.59705

Storm wind speed correction factors relative to Ugom.2n

Averaging time, T(s)

3 15 &0 600 3600 7200 10800
10 1.1881 1.1500 1.1163 1.0604 1.0158 1.0000 0.95901
ﬁ_ 15 1.2180 11737 1.1347 1.0699 1.01585 1.0000 0.5885
ré 20 1.2452 11877 1.1533 1.0795 1.0222 1.0000 0.5870
=2 25 1275959 1.2220 11721 1.0854 1.0245 1.0000 0.5854
30 1.3109 1.2456 1.1913 1.0993 1.0277 1.0000 0.5838
35 1.3424 1.2716 1.2106 1.1083 1.0305 1.0000 0.5822
40 1.3744 1.2570 1.2303 1.1195 1.0333 1.0000 0.5805
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Table 8.18  Storm wind speed correction factors relative to Uzoom,2n, U120m,2h, U1eom,2n and Uz200,2n
Storm wind speed correction factors relative to U 100m.2h
Averaging time, T(s)
3 15 &0 800 3600 7200 10800
10 1.1687 1.1338 1.1038 1.0539 1.0150 1.0000 0.9512
i. 15 1.1953 1.1545 1.1201 1.0624 1.0174 1.0000 0.5398
=20 12222 1.1763 1.1367 1.0709 1.01598 1.0000 0.5584
5 | 1.2455 1.1979 1.1534 1.0795 1.0222 1.0000 0.5870
30 12771 121528 1.1704 1.0885 1.0247 1.0000 0.9855
35 1.3050 1.2420 1.1878 1.0874 1.0272 1.0000 05341
40 1.3334 1.2645 1.2051 1.1064 1.0257 1.0000 0.59825
Storm wind speed correction factors relative to U 20m 2h
Averaging time, T(s)
3 15 &0 800 3600 7200 10800
10 1.1620 1.1285 1.0996 1.0517 1.0144 1.0000 0.9916
ﬁ. 15 1.1875 1.1487 1.1153 1.0599 1.0167 1.0000 0.5502
o5 |20 12133 1.1852 1.1312 1.0681 1.0150 1.0000 0.5889
= |25 1.2384 1.1885 1.1473 1.0754 1.0213 1.0000 0.8875
30 1.2659 12109 1.1636 1.0845 1.0237 1.0000 0.9861
35 1.2827 12322 1.18M 1.0935 1.0261 1.0000 0.5848
40 1.3199 1.2538 1.1968 1.1021 1.0285 1.0000 0.9833
Storm wind speed correction factors relative to U 200m 2h
Averaging time, T(s)
3 15 &0 600 3600 7200 10800
10 1.1445 1.1147 1.0889 1.0452 1.0125 1.0000 0.9525
ﬁ. 15 1.1673 1.1327 1.1025 1.0534 1.0145 1.0000 0.9913
% 20 1.1802 1.1509 1.1170 1.0807 1.0169 1.0000 0.95M
- 25 1.2135 1.1654 1.1313 1.0882 1.0150 1.0000 0.5885
30 12371 1.1830 1.1458 1.0757 1.0211 1.0000 0.8877
35 1.2509 1.2065 1.1605 1.0833 1.0232 1.0000 0.5864
40 1.2850 1.2251 1.1753 1.0810 1.0254 1.0000 0.5852
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Table 8.19  Storm wind speed correction factors relative to Uzsom,2n and U3oo,2n

Storm wind speed correction factors relative to U 250m . 2h

Averaging time, T(s)

3 15 60 600 3600 7200 10800
10 1.1375 1.1081 1.0845 1.0435 1.0122 1.0000 0.95928

‘:ﬁ. 15 1.1581 1.1262 1.0875 1.0508 1.0142 1.0000 0.8917
§ 20 1.1810 1.1436 11113 1.0578 1.0181 1.0000 0.5508
:JN 25 1.2031 1.1811 1.1245 1.0648 1.0181 1.0000 0.5894
30 1.2255 1.1788 1.1387 1.0720 1.0201 1.0000 0.8883

35 1.2481 1.1968 1.1526 1.0782 1.0221 1.0000 0.5871

40 12711 1.2150 1.1667 1.0865 1.0241 1.0000 0.8855

Storm wind speed correction factors relativeto U 2h
Averaging time, T(s)

3 15 60 600 3600 7200 10800

10 1.1321 1.1048 1.0812 1.0422 1.0118 1.0000 0.5931

‘::“. 15 1.1528 11212 1.0540 1.0488 1.0136 1.0000 0.5520
g 20 1.1738 1.1378 1.1065 1.0555 1.0155 1.0000 0.5505
o 25 1.1550 1.1547 1.1185 1.0622 1.0174 1.0000 0.5398
30 1.2164 11717 1.133 1.0691 1.0153 1.0000 0.8887

35 1.2382 1.188% 1.1485 1.0780 1.0212 1.0000 0.9876

40 1.2602 1.2064 1.1600 1.0831 1.0232 1.0000 0.5554

8.3.2 Wind speed profile

In this section, a more detailed analysis has been performed considering the highest measured
wind speeds (at various heights) in order to determine the validity of the vertical profiles for
extreme conditions. Although local LIDAR measurements at Hollansde Kust (hoord) and (zuid)
were available, the database coverage extends to a much larger area, where not very many
wind measurements are available, including IJmuiden-Ver or Ten Noorden van de
Waddeneilanden or Hollandse Kust (west) areas. Therefore, a consistent approach must be
utilized to provide extreme winds at various heights within the large database area (future Dutch
Offshore Wind Farm areas).

In Section 3.3.1.4, a shear value (from power profile) of 0.074 was used for normal conditions
based on the fit to various measurement stations (in particular HKNB). In Section 3.3.1.5,
extensive validations were shown at various heights, and it was concluded that the selected
approach provided good results for both normal and extreme conditions.

Figure 8.16 and Figure 8.17 show the highest (wind speed at 100mMSL above 26m/s)
measured wind profiles at K13 and MM-lIImuiden (LIDAR) and the corresponding 95" percentile
at each measurement level. The values correspond to original measured values and no-
averaging was used. Using the same approach described in Section 3.3.1.4, the shear value
was found (included in the title of Figure 8.16 and Figure 8.17 — 5% and 95% confidence limit
values are also included). Please note that the shear value corresponding to the 95" percentile
of the highest measured wind speeds corresponds to a rather conservative profile. The shear
value based on the analysis from these offshore stations was ~0.12.
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Figure 8.16 Measured wind speed profiles (in colour) and the 95 percentile profile (based on the

measurements) at K13 (LIDAR) — The values of shear are shown in the title.
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Figure 8.17 Measured wind speed profiles (in colour) and the 95" percentile profile (based on the
measurements) at MM-1IImuiden (LIDAR) — The values of shear are shown in the title.

Same analysis was performed on the measurements at HKNB, HKZB and EPL, shown in Figure

8.18 to Figure 8.20, respectively. The shear value was seen to be lower than what was used in
this study for normal conditions (0.074) and around 0.07.
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Figure 8.18 Measured wind speed profiles (in colour) and the 95" percentile profile (based on the
measurements) at HKNB (LiDAR) — The values of shear are shown in the title.
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Figure 8.19 Measured wind speed profiles (in colour) and the 95" percentile profile (based on the
measurements) at HKZB (LiDAR) — The values of shear are shown in the title.
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Figure 8.20 Measured wind speed profiles (in colour) and the 95" percentile profile (based on the
measurements) at EPL (LIDAR) — The values of shear are shown in the title.

Based on the analysis presented here and in Section 3.3.1.4, it is clear that the shear value is
higher at offshore stations (~0.12 - based on 95" percentile of largest measured wind speeds)
compared to relatively nearshore stations such as EPL, HKNB or HKZB (~0.07).

Based on the analysis above, and the analysis that was carried out by KNMI (on behalf of
RVO.nl — see Appendix G of [1]), a shear value of 0.1 was chosen (see Section 9.3.2 of [1]).
DHI believes that the shear value of 0.1 would account for some uncertainities with regards to
measurement data coverage.

8.3.3 Summary
Table 8.20 summarizes the monthly and directional 10-min wind speeds at 100mMSL at HKW.

Table 8.21 and Table 8.22 summarize the omni-directional extreme wind speeds at 10mMSL
and 100mMSL at all 3 analysis points for 2-hr and 10-min averaging periods. Looking at the
results, little variation is seen across the points.
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Table 8.20  Monthly and directional extreme 10-min wind speeds at 100mMSL at HKW

Directional/Monthly U100 Wind speeds [m/s]

Directional

Monthly
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Table 8.21  Summary of extreme wind speeds at 10mMSL at 3 analysis points

Extreme Wind Speed [m/s] at 10mMSL

. . Tr [years]
Point Name Averaging
1 2 5 | 10 | 50 | 100 | 1000
HKW 25.6 | 27.0 | 28.0 | 30.1 | 30.9
TNW 2hr 25.6 | 27.0 | 27.9 | 29.9 | 30.7
uv 25.8 | 27.2 | 28.2 | 30.3 | 31.1
HKW 29.0 | 30.8 | 32.0 | 34.6 | 35.6 |
TNW 10 min 20.1 | 30.8 | 31.9 | 344 | 353 383
uv 29.3 | 31.0 | 32.2 | 34.8 | 35.8

Table 8.22  Summary of extreme wind speeds at 100mMSL at 3 analysis points

Extreme Wind Speed [m/s] at 100mMSL

- . Tr [years]
Point Name Averaging
1 2 5 10 50 100 | 1000

HKW 33.7 | 35.6 | 36.9 | 39.6 | 40.7 .
TNW 2hr 33.8 35.6 | 36.8 | 394 | 40.4

v 34.0 358 | 37.1 | 39.9 | 41.0

HKW 369 | 39.1 | 40.6 | 43.8 | 45.1

TNW 10 min 37.0 39.1 | 40.5 | 43.6 | 44.7

uv 37.2 | 394 | 409 | 44.1 | 454

8.4 Water Levels

A DHI J-EVA statistical model has been set up for water levels. Extremes of high and low water
levels are estimated independently for total water level (tide and residual) and residual alone.
Water levels exhibit seasonal variation and season is therefore used as a co-variate.

Table 8.23 and Table 8.24 contain the monthly extreme total and residual high water level
values at HKW, respectively. As expected, summer months have relatively lower values. It
should be noted that the extreme residual water levels are not as large as the total water level
values. Although there is high correlation between residual (surge) and the large storms from
northerly sectors, but HKW is located offshore and at deeper waters compared to a more
nearshore/shallower point.

Table 8.25 summarizes the extreme total and residual water levels at HKW.
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Table 8.23  Extreme monthly total high water levels at HKW [MLAT]

Monthly Extreme Total High Water Level [mLAT]

Table 8.24  Extreme monthly residual high water levels at HKW [mLAT]

Monthly Extreme Residual High Water Level [m]

Annual

Jan
Feb
Mar

Monthly
c
S
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Table 8.25  Summary of extreme total and residual water levels at HKW [mLAT]

Extreme Water Level [mLAT]

Total high WL

Total low WL

Residual high WL

Residual low WL

Table 8.26 summarizes the extreme total high and low water levels at all 3 analysis points.
Small variation is seen between the points.

Table 8.26  Summary of extreme total high and low water levels [nLAT] at 3 analysis points

Extreme Total High & Low Water Level [mLAT]

HKW

TNW

LWL

uv
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Currents

A DHI J-EVA statistical model has been set up for the extremes of residual current speed.
Independent current events have been found by declustering the continuous time series
requiring a minimum event separation of 18 hours. The current direction (going-to) at the time of
peak current speed and the season are used as co-variates. The significant wave height H,,,
and wind speed U,, are conditioned on extremes of the current speed.

Figure 8.22 and Figure 8.23 show the results of J-EVA simulation on the residual current speed
after 50,000 years of simulation. The extremes of residual current at HKW is mainly either NNE-
going or SSW-going, with some large currents occasionally coming from more easterly
directions, as seen from Figure 8.23. Current in other directions only occur when the current
turns and the speed during turning is not the event maxima. In order to fill the tables of
directional extremes for other sectors, the following approach have been taken.

. The 95% directional quantile of all data (i.e. the hourly current speed) has been estimated.

. The extreme values from J-EVA in the dominant direction and the direction opposite to that
are extracted.

. The 95% directional quantile is scaled according to these extreme values and the
directional extreme values taken as the maximum of the scaled directional quantile within
each 30° directional sector bin.

Figure 8.21 illustrates this approach. The directional 95% quantile is shown in as a grey line,
while the directional quantile scaled with 1, 100 and 1000 year NNE and SSW extreme values
are shown with coloured lines. The constant density contours from the J-EVA simulation (see
also Figure 8.23, upper left) in the vicinity ot the two dominating directions are shown for
reference (as grey dots). Due to the way the contours are calculated, these will only be matching
the extreme values from J-EVA exactly at the dominant (NNE) peak only.

1 2 T T T T T T T T T
A 95% quantile of CR__ .
1F ,r : . JEVA density contours .
Ia W = | year residual current speed
i & ‘\ 100 year residual current speed
0.8 r if{’ 5 1000 year residual current speed | -

resi (m/s]

CS

0 30 60 90 120 150 180 210 240 270 300 330 360
CD___. [°N-going to]

resi

Figure 8.21 lllustration of the approach taken to derive directional current speed extremes.

There is a non-linear coupling between the residual and the tidal flow in these relatively shallow
water depths, meaning that the residual obtained from detiding is not entirely unaffected by the
tidal amplitude. In other words, there is a tendendency that the largest residual amplitudes
coincide with low tidal amplitudes. Ramdomly adding tide to the extremes of residuals will
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therefore lead to an over-estimation of total amplitudes. A separate extreme value model has
therefore been set up and fitted to the largest total current speeds, in order to provide extreme
value estimates of the total current speed. Figure 8.24 is comparable to Figure 8.22 but
showing simulations with total current speed instead of residual current speed. The flood and
ebb currents have different magnitudes. This is the reason for the apparent bi-modal scatter in
the subplots in Figure 8.24 showing current speed vs. H,,, and U;,. The lack of correlation
between total current speed and H,,,, and U,, respectively is also evident from these subplots.
This is not surprising as the tidal amplitude is as large as the residual.
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Figure 8.22 DHI's Joint-EVA simulation of storm events at HKW with residual current speed (CSresiduar)
being the conditioning parameter.

Posterior predictive distribution on CSresidual iS presented on top left. Scatter plot of Hmo (top
right) and wind speed (bottom) against CSresidual are shown. Black dots show original
hindcast and coloured dots the result of a simulation of 50,000 years. Warmer colours
indicate higher density of points.
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Figure 8.23 DHI’s Joint-EVA simulation of storm events at HKW with residual current speed (CSresidual)
being the conditioning parameter.

Directional (based on residual current direction CSresidual) results for CSresidual (top left), Hmo
(top right) and wind speed (bottom) against CDresidual (§0ing-to) are shown. Black dots show

original hindcast and coloured dots the result of a simulation of 1,000,000 years. Warmer
colours indicate higher density of points.
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Figure 8.24 DHI’s Joint-EVA simulation of events at HKW with total current speed (CStota)) being the
conditioning parameter.

Posterior predictive distribution on CSiotal is presented on top left. Scatter plot of Hmo (top
right) and wind speed (bottom) against CSwtal are shown. Black dots show original hindcast
and coloured dots the result of a simulation of 50,000 years. Warmer colours indicate higher
density of points.

252 11822658_MetOceanStudy_Hollandse_Kust_(west)_Final / nafe/fld/bri/mce/mgo/ybr / 2019-03-12





Extreme Metocean Conditions a
DHI

Table 8.27 presents the results of the monthly and directional extreme total depth-averaged
current speeds at HKW. Currents are seen to be strongest going to northerly (0 and 30 degree
sectors) and southerly (180 and 210 degree sectors) directions.

Table 8.27  Extreme directional (going-to) total depth-averaged current speeds at HKW

Directional/Monthly total Current speeds - Depth Averaged [m/s]

Directional

Monthly

Oct
Nov

Dec
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Table 8.28 summarizes the extreme depth-averaged, near-surface and near-seabed total
current speeds at 3 analysis locations. Yet again, small variation is seen between the points.

The details on vertical current profiles are given in Section 9.5.1 of [1].

Table 8.28  Summary of extreme total current speeds at 3 analysis points and 3 levels

Extreme Current Speeds [m/s]

Depth-Averaged

uv

HKW
TNW Near Surface

uv

HKW
TNW Near Sea Bed

uv
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Model Quality Indices

To obtain an objective and quantitative measure of how well the model data compared to the
observed data, a number of statistical parameters so-called quality indices (QI’s) are calculated.

Prior to the comparisons, the model data are synchronized to the time stamps of the
observations so that both time series had equal length and overlapping time stamps. For each
valid observation, measured at time t, the corresponding model value is found using linear
interpolation between the model time steps before and after t. Only observed values that had
model values within + the representative sampling or averaging period of the observations are
included (eg for 10-min observed wind speeds measured every 10 min compared to modelled
values every hour, only the observed value every hour is included in the comparison).

The comparisons of the synchronized observed and modelled data are illustrated in (some of)
the following figures:

»  Time series plot including general statistics

»  Scatter plot including quantiles, QQ-fit and Ql's (dots coloured according to the density)
*  Histogram of occurrence vs. magnitude or direction

*  Histogram of bias vs. magnitude

*  Histogram of bias vs. direction

» Dual rose plot (overlapping roses)

+ Peak event plot including joint (coinciding) individual peaks

The quality indices are described below and their definitions are listed in Table A.1. Most of the
quality indices are based on the entire data set, and hence the quality indices should be
considered averaged measures and may not be representative of the accuracy during rare
conditions.

The MEAN represents the mean of modelled data, while the BIAS is the mean difference
between the modelled and observed data. AME is the mean of the absolute difference, and
RMSE is the root mean square of the difference. The MEAN, BIAS, AME and RMSE are given
as absolute values and relative to the average of the observed data in percent in the scatter plot.

The scatter index (Sl) is a non-dimensional measure of the difference calculated as the
unbiased root-mean-square difference relative to the mean absolute value of the observations.
In open water, an Sl below 0.2 is usually considered a small difference (excellent agreement) for
significant wave heights. In confined areas or during calm conditions, where mean significant
wave heights are generally lower, a slightly higher SI may be acceptable (the definition of SI
implies that it is negatively biased (lower) for time series with high mean values compared to
time series with lower mean values (and same scatter/spreading), although it is normalised).

EV is the explained variation and measures the proportion [0 - 1] to which the model accounts
for the variation (dispersion) of the observations.

The correlation coefficient (CC) is a non-dimensional measure reflecting the degree to which the
variation of the first variable is reflected linearly in the variation of the second variable. A value
close to 0 indicates very limited or no (linear) correlation between the two data sets, while a
value close to 1 indicates a very high or perfect correlation. Typically, a CC above 0.9 is
considered a high correlation (good agreement) for wave heights. It is noted that CCis 1 (or -1)
for any two fully linearly correlated variables, even if they are not 1:1. However, the slope and
intercept of the linear relation may be different from 1 and 0, respectively, despite CC of 1

(or -1).
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The Q-Q line slope and intercept are found from a linear fit to the data quantiles in a least-
square sense. The lower and uppermost quantiles are not included on the fit. A regression line
slope different from 1 may indicate a trend in the difference.

The peak ratio (PR) is the average of the Npeak highest model values divided by the average of
the Npeak highest observations. The peaks are found individually for each data set through the
Peak-Over-Threshold (POT) method applying an average annual number of exceedance of 4
and an inter-event time of 36 hours. A general underestimation of the modelled peak events
results in PR below 1, while an overestimation results in a PR above 1.

An example of a peak plot is shown in Figure A.1. ‘X’ represents the observed peaks (x-axis),
while Y’ represents the modelled peaks (y-axis), based on the POT methodology, both
represented by circles (‘0’) in the plot. The joint (coinciding) peaks, defined as any X and Y
peaks within +36 hours?'® of each other (ie less than or equal to the number of individual peaks),
are represented by crosses (X’). Hence, the joint peaks (‘xX’) overlap with the individual peaks
(‘0’) only if they occur at the same time exactly. Otherwise, the joint peaks (‘X’) represent an
additional point in the plot, which may be associated with the observed and modelled individual
peaks (‘0’) by searching in the respective X and Y-axis directions, see example with red lines in
Figure A.1. Itis seen that the X’ peaks are often underneath the 1:1 line, while the Y’ peaks
are often above the 1:1 line.

30 T T T T T
Nont =17
Mean =25.12m/s
28+ 1 | BIAS =-0.52m/s
X STD =1.80m/s
X . PR =0.98
26+ AR AN 1
0
é 24+ X X 4
> * '
X
22 1
20l | 1:1 line (45°)
X peaks (24)
Y peaks (24)
x  Joint +/-36h
18 : : : : :
S L O .
X (m/s)

Figure A1  Example of peak event plot (wind speed)

13 36 hours is chosen arbitrarily as representative of an average storm duration. Often the observed and modelled
storm peaks are within 1-2 hours of each other.
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Table A.1 Definition of model quality indices (X = Observation, Y = Model)
Abbreviation Description Definition
N Number of data (synchronized) -
Mean of Y data,
MEAN Mean of X data
STD Standard deviation of Y data
Standard deviation of X data
BIAS Mean difference
AME Absolute mean difference
RMSE Root mean square difference
_ _ \/%zgil(y—x— BIAS),?
Sl Scatter index (unbiased) T
NZ?‘:1|X1|
Y (X —=X)2 =2 (G -X) - (v = V)]?
EV Explained variance =
P N, - X)?
LG -X0-Y)
CcC Correlation coefficient - —
JE 06 - R B0 - V2
QQ Quantile-Quantile (line slope and intercept) Linear least square fit to quantiles
. . ZiN=pleak Yi
PR Peak ratio (of Npeak highest events) PR = ZNT
Pk x:
i=1 1
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J-EVA Statistical Model

The theory and methodology behind the J-EVA statistical model is described here.

The J- EVA (Joint-Extreme Values Analysis) statistical model is a tool for making extreme value
analysis of a set of parameters with a-priori unknown joint dependence properties. Application
of J-EVA requires as input a set of independent ‘events’ with concurrent values of the
parameters being modelled. A typical example is storm peak significant wave heights,
associated wave period, storm surge, wind speed, but the tool is generic and can model any
kind of stochastic non-discrete parameters, as long as they fulfil the requirements of
independence and identical distribution (iid). The input data may come from measurements or
numerical hindcast models or a combination hereof and the usual requirements to data
consistency and quality also apply here.

Covariates may be defined if a-priori knowledge about variations in extremal properties is
suspected. Typical examples of covariates are direction and/or season. Non-parametric smooth
variations with covariate(s) are implemented using a B-spline technique (see Section B.1.2 for
details) and periodicity (as is the case for both direction and season) is possible. The use of
covariates also implies that the requirement of identical distribution only applies for random
variables sharing the same covariates (as for instance waves from the same direction occurring
during the same time of year). It is not recommended to apply the model across discontinuous
(abrupt) covariate variations. Extreme value models incorporating covariates are called non-
stationary extreme value model in the statistical literature.

The statistical uncertainty due to the typically limited sample size of historical extremes is
estimated by the tool and may be propagated through to the end results. A Bayesian Markov
Chain Monte Carlo (MCMC) technique is adopted (see Section B.1.3 for details).

NOMENCLATURE

Abbreviation

Explanation

lid Independent Identically Distributed (random variable)
LT Lower Tall

MCMC Markov Chain Monte Carlo

ur Upper Tail

The expert in WATER ENVIRONMENTS
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B.1.1

B.1.1.1

Model components

The J-EVA statistical model contains the following model components;

e  Marginal models describing the marginal distribution of each parameter (i.e. the distribution
of the parameter without considering the values of the remaining parameters)

o  Rate of occurrence describing how often a parameter (event) occurs

o  Conditional extremes model describing the distribution of other parameters conditional on a
selected parameter being extreme

Each of the components is detailed below.

Marginal models

Marginal (uni-variate) distributions are fitted to each stochastic variable in turn. A combination of
a gamma (I') distribution, modelling the bulk of the data, and Generalized Pareto (GP) tails
modelling the distribution tails above a threshold is used for the marginal distributions.
Whenever relevant, both the upper and lower tails are modelled with a GP distribution, the lower
tail basically being a GP tail fitted to the reversed data below the low threshold.

1
'(Pr(u1|a:ll){<1+f1u1(—_x) 51} X < U
1
P =< P ) U S x <
(x) r(x|a, u) L s rsn (B.1)
X —Uy\TE,
Ll_(l_Pr‘(uzla,ﬂ)) {(1"‘62 (2 2) 2} ,X>u2
The gamma distribution is given by;
PrCela ) = o~y (o)

where I'(a) is the complete gamma function and y (a,%x) the lower incomplete gamma function.

The model parameters defining the marginal distributions are;
a gamma distribution shape parameter

u  gamma distribution mean parameter (gamma shape multiplied with gamma scale
parameter)4

&, GP shape parameter for lower tail
¢, GP scale parameter for lower tail'®
&, GP shape parameter for upper tail

{, GP scale parameter for upper tail

14 The distribution parameters are practically uncorrelated with this formulation of the gamma distribution. This
improves mixing of the MCMC chain

15 As for the gamma distribution, an orthogonal parameterization has been used, where adjusted scale parameter, v =
{(1+ &), is sampled. For the ease of interpretation, the results are, however, presented for the scale parameter ¢.
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The thresholds, at which the GP tails take over, are set as quantiles in the gamma distribution of
the bulk data, ie,

u = Pr_l(’ﬁ)

uy = Prt(xz) (B.3)

Where k is a constant (covariate-free) non-exceedance probability. Threshold uncertainty is
included by ensemble averaging over a range of values for k; and k,. These values are
sampled from a uniform distribution over pre-set quantile intervals.

The model parameters are estimated in a sequential way; first the gamma distribution is fitted to
all data, then the threshold is calculated from the fitted gamma distribution and sampled
threshold non-exceedance probability and finally the GP lower and upper tails fitted
independently to the data sample below u,/above u, respectively. The log-likelihood functions
are;

n

trj(z|b) = —Z{(a —1DlInz; —%zij —InT(a) —a(lnu —1In a)},

i=1

1
Yepp,j(2Ib) = — Z [an + (1 +a) 1n<1 +§—1(u1 — Zz;‘))}

i:zij<u1

1
Loy @lD) == {ln(2+(1 +g)1n<1+§_z(z,.j_u2)>}

i:zij>u2

(B.4)

B.1.1.2 Rate of occurrence

The occurrence of events is considered a Poisson process and the Poisson annual rate of
occurrence p is required for estimation of annual non-exceedance probabilities. In the covariate-
free case, p is simply estimated by the total number of historical events divided by the length of
the historical data series in years. In the case of covariates, the covariate domain is divided into
m bins of constant area, A, and the rate the log-likelihood function of p approximated by (/11/):

¢,(z|b) = Z ce In(p(k)) — AZ p(kD) (B.5)
k=1 k=1

where ¢, is the number of threshold exceedances in bin k.

B.1.1.3 Conditional extremes

The conditional extremes model by Heffernan & Tawn (2004), models distributions of
parameters conditional on one parameter being extreme. This is useful for modelling for
instance the distribution of spectral peak period or wind speeds when the significant wave height
is extreme

The original conditional extremes model proposed by Heffernan & Tawn, makes use of
probability integral transform to marginal distributions with standard Gumbel distributions. This
introduces asymmetry in the marginal distributions and makes modelling of negatively
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dependent variables somewhat more complicated than positively dependent variables. Keef,
Papastathopoulos, & Tawn (2013) propose a modification of the model replacing the Gumbel
margins by Laplace margins whereby both positive and negative tails become exponential. This
modification to the original model is applied in J-EVA.

The marginal distributions are defined over the entire range from the ‘lower’ end point of the
lower tail to the upper end point of the upper tail by the combined Gamma-GP model (B.1).

Probability integral transformation to Laplace margins is given by:

In(2P(X))), P(X;) < 0.5
il I (2(1-Px))) P(x;) =05 0

The Heffernan & Tawn (2004) conditional distribution for a set of variables with Laplace margins
simplifies into one function for both positive and negative dependence (Keef, Papastathopoulos,
& Tawn, 2013):

(et = ¥) =y +y"IW; 1), j = 12, # (B.7)

with the random variable, Yje, being conditioned on the random variable, Y;. We use notation Y
to indicate that these variables have Laplace margins. W; is a random variable from an
unknown distribution. We introduce the additional parameters, m and s and assume that Z; =
(W,- — m,-)/s,- follows a common distribution independent of covariates. Hence Eq. (B.7) may be
written as:

(YielY; = y) = ay + yPi(m; + 5;Z)),

(B.8)
JIC=12,j#]
The negative log-likelihood for pairs of the sample {y;;,v;»} is given by:
2
b .
8; (yijc - (ajyij + mj)ﬁ-f))
e, = Ins;y;” + 2 ,
. Bj (B.9)
Bx;>Yi5(0¢id; ) 2 (Sjyij ) :

¢ =12,jC#]

ucg,j is the threshold with non-exceedance probability, 4;, adopted for the conditional extremes
model, meaning that the model is fitted to pairs of variables for which the non-exceedance
probability of the conditioning variable exceeds 4;. This threshold is set independently of the
Generalized Pareto threshold u,, and may be lower than that, since the distribution below the
GP threshold u, is defined by the gamma distribution.

Conditional extremes model threshold uncertainty is included by sampling 4; from a uniform

distribution over a pre-set quantile interval followed by ensemble averaging results over a
number of different values of 4;.

Residuals, r, are calculated from the estimated model parameters as:

. l((y. R m) (B.10)
3] §] 1) ]/ ij ] .
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Multidimensional dependencies are modelled through the residuals. For each parameter, j =
2, ...,n, with n being the total number of variables modelled, the residual is calculated for each
event i leading to a vector of residuals for each event r; = [r;,, ..., 1;,]. These n vectors of
residuals are later used for simulating data in the model.

It then follows that the Laplace marginal value of parameter j conditioned on parameter 1 is
given by

(leY1 = y) =ay + y”f(mj + sjrj) (B.11)

The probability transform (B.6) is inversed to get the non-exceedance probabilities of the
associated parameters. The magnitude of each associated parameter is then calculated from its
marginal distribution.

Co-variates

Penalized B-splines are used to model the parameter variation with covariate. The basic idea of
penalized B-splines, originally introduced by Eilers & Marx (1996), is to use B-splines with a
moderately large number of evenly-spaced knots and control the parameter smoothness by a
variance penalty factor, 2.

B-spline regression is started by dividing the domain over which to fit a curve into n’ equal
intervals by specifying the position of n’ + 1 knots. B(asis)-splines are then constructed as
sequences of polynomial functions of degree, g, connected the knots. Each B-spline is positive
in a range spanning q + 2 knots, and zero elsewhere. Curve-fitting using B-splines consists in
finding the coefficients, B;—1.,/4+4, With which to multiply the B-splines. The function value may be
expressed as the linear combination of the spline basis, B, and the coefficients.

n'+q

F0) = BB (8.12)
i=1

Penalized B-splines (P-splines) are an extension of B-splines in which a penalty is put on the
differences between adjacent B-coefficients. The degree of roughness is controlled by a
variance parameter, 72, and the difference penalty matrix, K. For first order differences, the
difference matrix is given by:

—_—
U=y

|
Juny
—

K= (B.13)

The basis of B-splines and the effect of roughness penalty, introduced through 2, is illustrated
in Figure B1.

Both directional and seasonal variations are periodic. Periodic smoothing is introduced by
‘wrapping’ the spline at the ends. Specifically, the last q basis splines are merged with the first g
splines and the total number of basis functions reduced by q. The difference penalty matrix is
wrapped similarly, i.e. K is now;
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(B.14)

B-splines are extendable to higher dimensions through tensor-product B-splines (see e.g. /4/).
The multidimensional surface is now described by tensor-products of B-splines. The tensor-
product B-splines in two dimensions are illustrated in Figure B2. The coloured shapes under-
lying the surface are the individual tensor-product B-splines scaled by the respective
coefficients. The total number of B-coefficients to estimate is now (ny + q) X (n;b + q). Different
number of knots and different penalty factors may apply for each dimension. However, as
Figure B2 also illustrates, large roughness penalty in one dimension may influence the
smoothness in other dimensions. This indicates that roughness penalty should be determined
for all dimensions simultaneously.
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Figure B1 Quantile regression analysis for some fictive seasonally varying parameter, illustrating the
components of P-splines. The coloured curves show the individual B-splines each multiplied

by its respective b-coefficient. Quadratic B-splines (¢ = 2) and first order penalty have been
used.
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Quantile regression analysis, illustrating the components of tensor-product P-splines in 2 dimensions. The
coloured surfaces show the individual tensor-product B-splines each multiplied by its respective -
coefficient. Quadratic B-splines (¢ = 2) and first order penalty have been used.
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B.1.2.1

B.1.3

B.1.3.1

Generalized linear array models

The penalized B-spline approach outlined above requires evaluation x = BB, where B is a
(sparse) m x n matrix where m is the total number of data points irregularly spaced within the
covariate domain, and n the total number of knots n = n; X n,. B is a n X 1 vector of spline
coefficients.

However, if we can organise our irregularly spaced data onto a regular m; x m, grid, we may
reduce the problem size substantially through the use of Generalized Linear Array Models
(GLAM) (/1/, I12]). These provide a computationally and memory-efficient framework for
combining tensor product B-splines with array data and have been used in a very similar
application in the past (/14/).

In fact, the problem now reduces to evaluation of B, M (B)B;, where M (B) isan, X n,
reordering of 8. B, and B, are size m; X n; and m, X n, respectively.

Parameter Estimation

Distribution parameters for the model components described in Section B.1.1 are defined by the
B spline coefficients and parameter estimations thus consists in estimating the appropriate
values of B.

A Bayesian approach is applied to estimate the g-coefficients. The approach builds on work in
/8/, 113/ and /17/.

Priors

Spline model
The prior for § up to a constant of proportionality is given by (/8/):

1 1
n(B|t?) @exp (‘ﬁﬁTKﬁ) (B.15)
T

where rk(K) is the rank of the penalty matrix, K.

The variance parameter 72 is estimated through 10-fold cross-validation. Cross-validation is a
robust and simple technique to optimize the predictive performance of a model, i.e. its capability
of predicting the likelihood of a data sample that was not used to estimate the model. In this
way, the right complexity of the model is achieved — it is neither too simple nor is it over-fitting to
the data. In this particular case, too simple a model would be too smooth and thereby ignore co-
variate effects that were truly present, while a too complicated model would be exaggerating co-
variate effects by trying to adopt to the individual extreme events.

The 10-fold cross-validation consists in, for a given choice of 72, to fit the model to 90% of the
data (training) and then calculate the likelihood of the remaining 10% of the data(validation).
This is repeated 10 times such that all data points have been used one time for validation and
the 10 likelihoods are then summed. This whole procedure is then repeated for a new choice of
72, Estimation of all values of 72 at once is not feasible as the model has as many values of 72
as the number of model parameters times the number of covariates. Instead a sequential

procedure has been adopted,;
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1. Values of 72 for the T-distribution are estimated by;
a. Estimate an appropriate global value by varying all 72 at the same time
b. Estimate a ratio between the shape a and mean u by varying these separately (but
using same value for season and direction)
c. Estimate the ratio between season ¢ and direction 8, using the relative ratio between
a and u estimated under b)
d. Repeat step a), but now using the relative ratios between «, yu, ¢ and 6
2. The I'-distribution is now fitted using the most appropriate combination of 72 estimated
above and together with appropriate quantile thresholds «;, k, this provides the non-
stationary threshold above which the GP tail is assumed. For each GP tail, the steps a-d
are followed though now with the ratio of GP shape ¢ to scale ¢ estimated under step b.

Figure B3 show an example of the results of a cross-validation, in this case for the upper tail of
the Hp, 4 Variable. The rows in the plot show results of cross-validation steps a to d. Upper
and lower subplots show the summed log-likelihood score on the 10 validation sets as against
the prescribed value of t2. Row 2 and 3 show colour-scaled plots of the summed log-likelihood
score for the tested combinations of 72 (along x-axis) and ; (along y-axis). Yellow indicate
higher cross-validation score (better predictive performance). The right-hand plots show the
same results as the left-hand plots but smoothing the results across neighbouring t2
combinations. Results in left hand plots are normally used. The black dots show random
combinations sampled from the probability distribution that can be constructed from the summed
log-likelihood score. The black crosses indicate the optimum point.
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Figure B3 Example of cross-validation for the upper GP tail of the distribution of Hy,,, ¢q- Se€
explanation in text for details.
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Marginal distributions

In addition to the priors on the spline cofficients B, we may also specify priors for the values of
the actual distribution parameters or the support ranges. In the case of a negative GP shape
parameter, the support range for the GP distribution has an upper end point X,,,, given by (see
Section B.1.1.1 for definition of parameters).

Xnax = _g-l_u (B.16)

The distribution tail will asymptotically approach this limit. If a physical absolute upper limit of a
parameter is known, it may be introduced in the extreme value analysis by setting the upper end
point of the GP support range to be this limit.

B.1.3.2 Proposal generation

The posterior distributions are approximated using Markov Chain Monte Carlo methods with a
Metropolis-Hastings (MH) sampling scheme. The MH scheme progresses as follows (for one
model component):

1. Define start values?s, B(® Set iteration number i = 1.

2. For each model parameter; Propose candidate coefficients, g* from a multivariate
normal distribution MVN(BU~Y,S). Two approaches are followed to estimate the
covariance matrix S

a. Following the approach of Rue (/16/), also adopted by Lang and Brezger (/13/),
proposals are drawn from a MVN with covariance matrix § = (BTB + TizK)

b. Following Roberts and Rosenthal (/15/), the empirical covariance matrix is estimated
and proposals drawn from a MVN with covariance matrix

b I
S=(1- 6)22.382§ +e?x 0.013“ (B.17)

where %,, is the empirical co-variance matrix of size d X d estimated from the markov
chain. The latter term 0.011,/d is random noise and the small constant € is used to
control the degree of random noise in the proposal. Roberts and Rosenthal use € =
0.05 and we adopt the same value here.

The latter approach requires an estimate of the co-variance matrix, which can only be
obtained from running the MCMC. Hence, approach a. is first run for a large number of
iterations. As approach b. turns out to be computationally faster, the MCMC algorithm has
been set to switch to this approach after a number of iterations. Multivariate normal
random samples are generated from a Cholesky decomposition L of the covariance

matrix S. Hence

B =BV +Lxu (B.18)

16 Start values for spline coefficients are made by fitting constant models through (seasonally-directionally) binned
data, followed by fitting a smoothing spline through the estimated parameter values
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B.1.3.3

)

where u is a vector of standard normal random (uncorrelated) samples

3. Accept g with probability:

L(z|B)m (B (cD) ) ((rH D) } (B.19)

(-1 P*) — mi
A8 =i T )

4. Steps 2-3 are repeated for each model parameter after which the iteration counter i is
incremented by one.

Full model inference

The procedure detailed above is valid for one single model component (gamma distribution bulk,
GP tail, Conditional extremes model). However, the full model requires estimation of all
components in a hierarchical order as follows;

Parameter 1: Gamma distribution bulk — GP tails

Parameter 2: Gamma distribution bulk — GP tails
—Conditional Extremes Model

|
Parameter n: Gamma distribution bulk — GP tails )

This is achieved as follows;
1. For each input variable (eg Hp, Ty, ..., €1C);

a. Fit the gamma distribution to all events and save a number of independent samples
from the chain. Also fit the rate of occurrence model for the primary parameters of
interest that are later used as conditioning parameters.

b. At each stored sample of the gamma distribution of bulk data, sample a threshold non-
exceedance probability, compute the threshold, run a GP chain and save an appropriate
number of samples of this after burn-in. Both high and low tail are estimated
independently in this way.

This procedure results in n samples (n = number of Gamma samples times number of GP
samples) of each marginal distribution.

2. Fit all conditional extremes models to the marginal distribution samples. The CE models
are fitted simultaneously in order to achieve vectors of residuals emanating from the same
historical events, whereby multidimensional dependencies can be carried over into storm
simulations (see also Section B.1.1.3). The conditional extremes model threshold ¢
uncertainty is accounted for by updating the threshold non-exceedance probability A for
each update of the GP tail threshold in the marginal models. The iteration procedure for
each A update is as follows:

a. Sample a threshold non-exceedance probability and identify the events above this in the
conditioning distribution.

b. Fit the CE model across all GP tail updates and to each variable in turn. The CE chain
is run for a number of iterations for each GP tail update, but only the last iteration is
stored. Also the residuals are stored for the last iteration. By running this procedure
over all variables in turn, a matrix of residuals is built for each stored CE iteration with
size number of threshold exceeding events times number of variables.
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B.1.4

The above procedure results in an equal number of samples of the marginal and conditional
models, the latter with associated residuals. A number of thresholds in both marginal tails and
conditional extremes is incorporated in this sample, thus accounting for some of the threshold
uncertainty. Equal weight is thereby given to all possible thresholds within the assumed
plausible range. It is our experience with constant models that this is a reasonably good
approximation for most data sets and definitely superior to a constant threshold approach.

Proper implementation of the MCMC approach ensures that the final sample of model
parameters thus obtained represents a sample from the posterior distribution of the model
parameters. The uncertainty related to the extrapolation from a limited input data sample to
events with a very low exceedance probability is reflected in this posterior distribution.

An overview of the different distribution parameters to be determined for one particular marginal
and conditional extremes distribution is given in Table B1. The threshold quantiles are specified
as constants and do therefore not vary with co-variates. This means that a certain threshold for
example for a GP tail model is taken as a constant (across co-variate space) quantile in the
underlying Gamma distribution. But as the Gamma distribution itself is non-stationary with
respect to co-variates, the actual threshold for the GP model will also vary with co-variates. The
quantiles are sampled uniformly from specified intervals.

Table B1 Overview of model parameters

Description Symbol Typel?

Rate of occurrence p Tensor-Product B-spline
I distribution shape a Tensor-Product B-spline
T distribution mean U Tensor-Product B-spline
GP low tail threshold quantile K1 Constant

GP low tail shape parameter & Tensor-Product B-spline
GP low tail scale parameters 0 Tensor-Product B-spline
GP high tail threshold quantile Ko Constant

GP high tail shape parameter & Tensor-Product B-spline
GP high tail scale parameters 0, Tensor-Product B-spline
CE threshold quantile A Constant

CE a parameter a Tensor-Product B-spline
CE b parameter b Tensor-Product B-spline
CE mean parameter m Tensor-Product B-spline
CE standard deviation parameter s Tensor-Product B-spline

Simulation and Return Value Estimation

Due to the complexity of the model and the need to ensemble average over the posterior
distribution sample of the model parameters, return values are obtained by simulating events in
the model. Popular speaking, such a simulation consist in sampling a very large number of
events whereby the sought return value can be ‘read off’ as the i’th largest event in the

17 In the case of a constant (covariate-free) model, all parameters are constant.
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simulated sample. The rank i depends on the simulation length (numbers of years simulated)
and the return period in question.

Combined with an appropriate event (storm) model this procedure also allows for swift
convolution of the long-term distribution of the slowly varying parameters with a short-term
distribution of a certain type of response. The classical example in this respect is the
convolution of the long-term distribution of sea states with the short-term distribution of
maximum wave crest heights to obtain the long-term distribution of the maximum crest
elevation.

The simulation procedure followed to simulate one year of events is detailed below;

1. Sample a particular iteration from the MCMC chain

2. Sample the number of events from a Poisson distribution with arrival rate corresponding to
the average annual number of events in the input data set

3. Sample non-exceedance probability for all events

4.  For a non-stationary model, assign co-variates to each event through the fitted non-
stationary rate function for the conditioning variable

5. Calculate the magnitude of the conditioning variable for all events from its marginal non-
stationary distribution

6. Resample events from the data set for all events with non-exceedance probability below
the conditional extreme model quantile threshold 4 as the conditional extremes model is
only applicable for conditioning events with non-exceedance probability above 1. In
practice, the resampling is done by searching for the nearest event in the dataset in terms
of all co-variates and magnitude

7.  Magnitudes of conditioned parameters n,, ..., n,, above the conditional extreme model
guantile threshold A are modelled through the conditional extremes model. A vector of
residuals r; = [r;,, ..., ;] €manating from the same event in the data set is sampled for
each event from the stored residuals for the particular MCMC iteration. The Laplace
marginal values for all conditioned parameters calculated from eq. (B.11) and the marginal
distributions applied to convert the Laplace marginal values to the physical values.

Return values with long recurrence period requires a large number of years to be simulated.
Denoting the number of years n and the required return period T, reasonably converged
estimates of return values are obtained when n = 100T,.. In other words, a 100 year return
value requires simulation of around 10.000 years.

Estimation of return values with longer return periods require longer simulations. But at the
same time, only the events in the very tail of the distribution of the conditioning variable are
relevant at long return periods. The simulations are therefore split. One simulation including
events throughout the distribution is made to obtain the return values for return periods around
1 to 10 years. Progressively longer simulations are then made for the longer return periods, but
with an increasing threshold on the non-exceedance probability of the conditioning parameter,
such that only relevant events are simulated.

Return values are usually reported as quantiles in the distribution of the annual maximum. The
annual maximum distribution is constructed from the simulation by only retaining the largest
simulated value per year and the relationship between quantile and return period given by;

o =exn(~2) 620

The return values hereby obtained reflect the uncertainty in the extreme value distributions and
larger uncertainty will inflate the return values especially for return periods longer than the
duration of the historical input data sample. This is achieved by integrating across the posterior
distribution of the model parameters (effectively achieved by sampling amongst the MCMC
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iterations when simulating events in step 1). This type of distribution is also known as the
posterior predictive annual maximum distribution.

Conditional distributions of associated parameters are readily obtained from the simulation of
conditioned parameters.
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C J-EVA Storm Model
The theory and methodology behind the J-EVA storm model is described here.
The J- EVA (Joint-Extreme Values Analysis) storm model is a model for the description of wave
characteristics of storm events. The model is used in conjunction with the J-EVA statistical
model to describe the long-term distribution of individual wave and crest heights and possibly
also wave-induced structural loading.
The model defines characteristic storm variables from the historical hindcast or measured record
of slowly time-varying variables such as (but not limited to) significant wave height, peak period,
mean or peak wave direction, storm surge and wind speed. These characteristic values are
suitable for statistical modelling using the J-EVA statistical model. The statistical modelling of
characteristic storm variables will allow for generation of long series of simulated storm
parameters. The J-EVA storm model can then be applied in reverse to generate intra-storm time
series of the slowly varying variables.
Numerical folding with any short-term distribution model of wave or crest height or a structural
load or load response may be carried out on the intra-storm time series to generate the long-
term distribution of the response.
NOMENCLATURE

Abbreviation Explanation

CD Current direction [°N] (flowing towards, true North, clockwise positive)

CS Current speed [m/s]

WD Wind direction [°N] (coming from, true North, clockwise positive)

WS Wind speed [m/s]

Hpo Zeroth moment significant wave height [m]

Hinopeq Equivalent Gauss-bell shaped storm peak H,,q [M]

H. Individual (trough-crest) wave height [m]

Hpax- Maximum (highest) individual (trough-crest) wave height [m]

Hinp Most probable maximum individual wave height in a storm event [m]

T,. Spectral peak period [s]

Toz Second moment wave period [s]

MWD Mean Wave Direction [°N] (coming from, true North, clockwise positive)

PWD Peak Wave Direction [°N] (coming from, true North, clockwise positive)

Oeq- Equivalent Gauss-bell shaped storm standard deviation [no. of wave cycles]
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Characterization of Historical Storms

The J-EVA storm model is applied on a time series of slowly varying environmental variables.
This time series must include the significant wave height and a measure of the mean wave
period but can include any other environmental variable of interest. The time series must be on
an equidistant time axis with sufficiently small time step size that the time-evolution of the storm
events of interest are adequately resolved.

The steps followed to convert this continuous time series into individual storm events and then
to characterize each event are described in this section.

Wave Height and Storm Duration

Storm events are identified by their significant wave height. Standard metocean techniques for
separating the continuous time series of significant wave heights into individual (storm) events
consist in defining a minimum time separation between consecutive storm peaks and moreover
often an additional requirement that the level must have dropped below a fraction of the minor of
consecutive peaks in order for those to be defined as two separate events. This additional
requirement ensures that storms with long durations are not unintentionally split into separate
events.

The time series of H,,, is de-clustered into independent events by requiring that there is a pre-
specified minimum interevent time between events. The minimum interevent time is dependent
on the meteorological events generating the storms but is typically in the order of 18-36 hours
for extra-tropical cyclones. Moreover, events are only separated if the significant wave height
has passed below 75% of the minor of two adjacent events.

The distribution of the maximum short-term response in each historical storm is then calculated.
The empirical short-term distribution of individual wave height H conditional on H,,, by Forristall
(1978) is typically applied, though the actual choice of short-term distribution model is not
important, as long as the distribution is continuous. The Forristall (1978) short-term distribution
of H conditional on H,,y, P(H < h|H,,), is given by:

h 2.126
P(H < thmO) =1- exp <— <W1[‘10) ) (Cl)
" m

The distribution of the maximum wave in storm i, H,,,, ; is given by the following product over
the n; sea states making up storm i:

n;
P(Hpaxs < h) = ﬂP(H < RlHpo,)" (C.2)
j=1

The number of waves in sea state j, N;, is estimated by dividing the duration of the sea state

(time step size in the input time series) by the mean zero-crossing period'® over the sea state.
The most probable storm maximum wave height, H,,,, ;, is found by solving the following
equation for h:

p,ir

1

18 The second moment period T, is used as a proxy for the zero-crossing period when spectral wave model hindcast
data is used as input

C-2
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It is shown in the original work by Tromans and Vanderschuren (1995), that when P(H|H,,,) iS
of a Weibull type distribution, (C.2) converges to a generalized Gumbel distribution:

hy 1 C4
) - 4

where « is the shape factor of the wave height distribution (=2.126 in the Forristall 1978
distribution) and N; is the equivalent number of waves in the storm.

P(Hmax_i < h)~ exp| —exp| —InN; ((

The duration of the storm and thereby the value of N is related to the narrowness of the
distribution of the storm maximum wave. Storms with long durations and thereby many sea
states of similar magnitude will have a narrower distribution of the storm maximum wave,
compared to those storms in which the maximum wave will come within a relatively short period
in time (i.e. within very few sea states).

This property is used in the J-EVA storm model to characterize storms by peak magnitude and a
duration. A Gauss-bell shaped curve is chosen to represent the variation in time of H,,,. The
variation in time of H,,, is defined by equivalent storm peak, H,,,, hereafter termed H, .4, and
equivalent storm duration given by the Gauss-bell standard deviation, o, as:

t*)?
Hmo(t*) = HmO,p,eq X exp <_ 202 ) (C.5)
eq

t* is a pseudo-time measured in number of wave cycles and can be converted to true time by
use of the slowly varying mean wave period. Thus t* = 0 at the storm peak (H,,o = Hpg p,eq) and

any t* < 0 defines the number of wave cycles that will pass before the storm peak is reached,
whereas any t* > 0 defines the number of wave cycles that have passed since the storm peak.

Best-fit values of the peak (Hp,,4) and standard deviation (o,,) of the Gauss-bell shaped
storm are found by mean-square error minimization of the differences between the actual storm
maximum wave height probability density and that of the Gauss-bell shaped storm. The
minimization is carried out as follows:

Sea states with H,,;,o < 0.75 X Hp,g 5, .4 are found to have insignificant impact on the distribution of

storm maximum wave height and can be neglected'®. From (C.5) we have that the Gauss-bell
shaped storm will cross under 75% of H,,, ,, .4 at a distance from the peak of 0.7594,, waves.

Hence, we create an evenly spaced vector, t;, of m points, t;,;, € [-0.7590,,; 0.7590,,] and
evaluate H,,, along this vector for storm i:

(C.6)

2
ZO'eq’i

, (tn)?
Hpg (tm) = HmO,p,eq,i X exp <_ =

Each point along this vector represents a sea state of 1.52a,,;/m waves. The distribution of the
maximum wave in the storm is now given by (C.2), i.e.:

)1.5202q_i/m

m
P(Hpax; < h) = HP (H < h|Hmo(t,) €7
j=1

19 Though sea states with less than 75% of the peak significant wave height have negligible influence on the most
probable maximum wave in the storm, sea states down to 65% of peak significant wave height have been included
in the build-up of the storm, as these typically contain some of the steepest sea states and the maximum wind
speed may also fall early in the storm trajectory.
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The probability density is obtained by numerical differentiation of (C.7) and the squared
difference of this probability density function and that of the actual storm is computed.
Minimization of the squared difference is carried out by changing the values of H,g, ¢,; and
0eq,i» Whereby best fit values of these parameters are obtained for storm i.

Two examples of storm characterisation are shown in Figure C1. The first storm (24. Nov. 1981)
is an example of a persistent storm lasting for many hours, while the second storm is more
intense in its peak but lasting only a few hours. These differences are reflected in the relative
values of Hp,g  .q and o,,.

Associated Environmental Variables

Characteristic storm values of all associated environmental variables to be included in the
subsequent joint-probability analysis are required. Examples associated variables are:

. Peak wave direction, PWD

. Peak period, T,

. Second moment period, Ty,

. Directional spreading, gy

. Residual water level, W L,.c4;

. Residual current speed, CS,.;; and direction CD,.z4;

*  Wind speed, WS and wind direction WD

These variables vary during the storm and weighted average values are calculated to provide a
characteristic value of the variable for each storm. The weight factor, w;, for sea states j,j =
1:n; where n; is the number of sea states in storm i, are computed from the contribution of the
individual sea states to the total storm most probable maximum wave, H,,y,:

wj = a(H‘mp,l:n - Hmp,l:nﬁf) o

where Hy,, 1., is the most probable maximum wave height of the storm considering all sea states
in the storm and Hy,;, 1., ~; iS the most probable maximum wave height when sea state j is
omitted and « is a normalization factor. An overbar (e.g. T,) is used to denote a characteristic
(weighted average) value of an environmental variable.

The characteristic storm second moment period T, is shown in Figure C1 for the two examples
storms. T,, takes values close to the values at the storm peak.
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24-Nov-1981: Hyo peat = 9.2m, H,y = 16.8m
T T

12 T T T
10 + —_ AAAy -
0 Tz = 9.5s e VO
AAdaa
AAL
8 A h
Hyopeq = 9.1m

6 Teq = 7430

4 -

- Historical storm Hmo [m]
9 Efquiv?lent storm Hmo [m]
A Historical storm Toz [s]
0 EERENEENEN [ ([ ]]
23-11-81 12:00 00:00 12:00 00:00 12:00
10 09-Dec-2011: Hpopear = 9.3m, H,,, = 16.0m
T T T
8 -
6L M _
4 -
- Historical storm H_ . [m]
2 Equivalentstorm H_ . [m]
A Historical storm T02 [s]
0

08-12-11 12:00 00:00 12:00

Figure C1 Two examples of hindcast historical storms and storm model parameterization. Vertical
green bars?%: Hourly values of H,,,. Blue triangles: Hourly values of T,,. Characteristic storm
variables Hy,op,eq, 0eq and T, values printed on figure. Sea states with

C.1.2 Simulation of Intra-Storm Variation

The J-EVA storm model is also used to simulate intra-storm variation of the environmental
variables model. The intra-storm variation refers to the hourly variation of the variables during a
storm event exemplified by for instance the build-up and subsequent decay of wind speed and
significant wave height, the rotation of the mean wave direction and the increase in wave age
from steep young wind waves during build-up to swell waves during storm decay.

The simulation of intra-storm variation consists in matching up simulated storms with similar
historical storms followed by a scaling of the similar historical storm time series.

20 The filled bars mark the sea states which are retained from each storm for subsequent intra-storm simulation, see
section C.1.2.
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Similarity and Storm Resampling

A methodology developed to identify the historical storms most similar to the simulated storm is
described in this section. The method builds on a flexible concept of storm dissimilarity. The
smaller the dissimilarity, the more representative the historical storm is assumed to be of the
simulated storm.

The dissimilarity criteria are established in order to select a historical storm to represent the
storm modelled through the J-EVA statistical model. The dissimilarity criteria are inspired by
Feld et.al (2015).

In the following € is used to denote any characteristic storm variable (e.9. Hppeq OF T_p) and w
to denote the corresponding intra-storm variable (H,,, or T}).

Dissimilarity is first calculated for each variable listed below as follows for historical storm, i, and
simulated storm, k:

doix = |Quisri — Q| / 00 (C.9

with g2 being the standard deviation of this variable through all included historical storms. This
weight factor is found to provide a reasonable balance between the various variables but it is
possible to apply weight factors in addition to this, in order to better match for instance
significant wave height between historical and simulated storms.

Dissimilarities are calculated for the relevant variable which may be considered important in
terms of describing the storm evolution.

Overall storm dissimilarity for simulated storm k, dy, is calculated by summing up the square of
the individual dissimilarities, for each historical storm, i.e.:

n v

di = Z Z dfix (C.10)

i=1 Q=1

where Q = 1: v represent the v different environmental variables included in the dissimilarity
criterion. After having ranked the historical storms in terms of (dis)similarity, one of the most
similar historical storm is picked randomly amongst the least dissimilar ones. The randomly
selected storm is then used to represent the intra-storm variability of the modelled storm, after
appropriate scaling (see next section) is conducted.

Typically, the representative storm is selected amongst the 20 most similar storms, but the end
results are not very sensitive to this number because of the applied scaling.

Historical Storm Scaling

Having sampled a historical storm amongst the most similar ones, the intra-storm variation of
the historical storm is scaled such that the characteristic storm variables of the scaled storm
matches those of the simulated storm.

2l Guwp and gs.qs0n COrrespond to half of the standard deviation of the corresponding parameters, to account for their
periodicity.
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The proposed scaling methodology assumes that a constant scaling factor applies for the entire
storm. As water levels vary around zero, a reference level of 10 meters below the sea surface is
used in order to avoid division by zero.

Scaling of the selected historical storm variables to generate the time series of simulated storms
is conducted as follows:

1. Establish a scaling or correction factor based on the characteristic storm variables of the
simulated (subscript SIM) and selected historical storm (subscript HIST) using the generic
formulation:

ag = Qsim [ Quist (C.11)

2. Caorrect the historical storm time series of parameter wy; ¢y to obtain the intra-storm
variability of the simulated storm, wg,y, ;, as follows (for time step j):

Wsim,j = Aq " WHIsT,j (C.12)

Specifically for directional variables (wind, wave and current directions, here generalized by the
notation ) a rotation rather than scaling is applied:

g = Osim — Onist (C.13)
The intra-storm variability of the directional variable is then obtained as (at time step j):

O = ag + Opsr ) (C.14)

Typically, peak (or mean) wave direction is used as a covariate (distributions vary with wave
direction) and wind and current directions are not simulated in the J-EVA statistical model. In
this case, the wave direction rotation factor, apyp, is also used to rotate the current and wind
direction time series such that wind-wave and current-wave misalignment from the historical
storm is maintained in the simulated storm

For residual water levels, that can also take negative values, the scaling is done relative to a
minimum level, WL,.f, that is never surpassed:

WiLsin + Wlyep

WL} = (WLHIST,j + WLRef)m - WLRef (C15)
The reference water level could be taken as the water depth at the site, which in practice would
mean that the water level in the simulated storm would be the water level in the historical storm
shifted by the difference WL, — WLysr. Typically, we use Wig.r = 10 m, which implies a
moderate scaling of the water levels beyond the scaling that is coming from the simulated value
from the long-term model, W Lg;,.

In addition to the adjustment of the time series values, the time is also scaled in order to
maintain the number of waves in the storm, and therefore keep H,,,, and C,,,, estimates the
same. The time scaling is performed as follows:

TimeSlM = TimeHIST ) aTOZ ' ao—eq (C 16)
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with ar, and Ugyg being the scaling factors applicable for T, and storm duration o,
respectively.

It follows from this scaling method that an exact recovery of the historical storm is obtained in
the case of an exact match between the simulated and historical characteristic storm variables.

Storms are defined to begin at the last up-crossing of 60% of peak H,,, prior to the peak and
end at the first down-crossing of 75% of peak H,,, after the storm peak. Sea states with H,,, >
75% of peak H,,, are contributing to the distribution of the maximum wave within a storm. The
extension down to 60% of peak H,,, at the storm build-up is introduced to ensure that the peak
wind speed is included in the storm. The sea states thus included are marked as filled bars in
Figure C1. Storm peaks must as a minimum be separated by the specified inter-event time,
typically between 18 and 36 hours for extra-tropical cyclones, to be treated as separate events.
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