Geotechnical Report
Laboratory Test Data
Wind Farm Site I&II
Borssele Wind Farm Zone
Dutch Sector, North Sea

Client Reference No. TN48112 Fugro Report No. N6016/07 Issue 3

Rijksdienst voor Ondernemend Nederland (RVO)

Geotechnical Report Laboratory Test Data Wind Farm Site I&II Borssele Wind Farm Zone Dutch Sector, North Sea

Client Rijksdienst voor Ondernemend Nederland (RVO)

Client Address Croeselaan 15

3521 BJ Utrecht The Netherlands

Client Reference No. TN48112

Fugro Report No. **N6016/07 (3)**

Report Issue No.	Date	Report Status	Approved
3	4 Sept 2014	Final	LJP
2	24 Aug 2015	Draft	LJP
1	17 Aug 2015	Interim	-

Rijksdienst voor Ondernemend Nederland (RVO) Croeselaan 15 3521 BJ UTRECHT The Netherlands

Attention: Mr R. de Bruijne

Our ref: N6016/07(3)/MKL/EMG

Nootdorp, 4 September 2015

Geotechnical Report – Laboratory Test Data – Wind Farm Site I&II – Borssele Wind Farm Zone – Dutch Sector, North Sea

This report presents geotechnical information. The report was prepared in accordance with Contract WOZ1500008 between Rijksdienst voor Ondernemend Nederland (RVO) and Fugro Engineers B.V., dated 17 March 2015.

The principal team members for report preparation were Mr P. Holley (Geotechnical Engineer) and undersigned. We acknowledge the valuable assistance of Mr R. de Bruijne, who acted as Client contact for this project.

Thank you for the opportunity to be of service. Please do not hesitate to contact us if you require any additional information.

Yours faithfully

FUGRO ENGÍNEERS B.V.

M. Klein

Principal Geotechnical Engineer

		Page
REP	ORT ISSUE CONTROL	(i)
QUA	LITY MANAGEMENT RECORD	(ii)
SUM	MARY	(iii to iv
MAIN	I TEXT:	
1.	INTRODUCTION	1
1.1	Purpose of Report	1
1.2	Scope of Report	1
1.3	Project Responsibilities and Use of Report	2
1.4	Report Format	2
2.	STUDY OVERVIEW	3
2.1	Sources of Information	3
2.2	Laboratory Test Programme	3
3.	REFERENCES	6
LIST	OF PLATES FOLLOWING MAIN TEXT:	Plate
Vicin	ity Map	1-1
Detai	iled Location Plan	1-2 to 1-3
List c	of Project Reports	1-4
Norm	nalised Cyclic Deviator Stress versus Number of Cycles to Failure (Coarse Grained Soils)	2-1
Norm	nalised Cyclic Shear Stress versus Number of Cycles to Failure (Fine Grained Soils)	2-2
Cycli	c Simple Shear Tests – Drammen Clay Comparison	2-3

SECTION A: GEOTECHNICAL LABORATORY TEST RESULTS

SECTION B: GUIDELINES FOR USE OF REPORT

REPORT ISSUE CONTROL

Section	Page No.	Plate No.	Issue No.	Revision

Notes:

- 1) The definitive copy of this report is held in Fugro's information system
- 2) Report distribution is restricted to project participants approved by the Client
- 3) The report issue number is the same as the highest issue number of any individual page
- 4) Pages of this report are at Issue 3
- 5) The number at the bottom left-hand corner of each page shows the Fugro report number and page issue number. The number in brackets indicates the issue number of the page

QUALITY MANAGEMENT RECORD

Project Lead: R. Atsma – Senior Project Engineer

Report Review and Approval: J. Peuchen – Principal Engineer

Report Section	Prepared By	Checked By
Main Text	MKL	LJP
Plates following Main Text	MKL	LJP
A Geotechnical Laboratory Test Results	PH	MKL
 Laboratory Testing Overview 	PH	MKL
 Index Laboratory Tests 	PH	MKL
Microscopic Inspection	PH	MKL
 Static Triaxial Tests 	PH	MKL
 Static Direct Simple Shear Tests 	PH	MKL
Cyclic Triaxial Tests	PH	MKL
Cyclic Direct Simple Shear Tests	PH	MKL

Person(s):

PH: Pat Holley MKL: Martijn Klein LJP: Joek Peuchen

SUMMARY

The Dutch Ministry of Economic Affairs is responsible for the legislative framework for the development of offshore wind farms in the Netherlands. Within this framework (a) (concession) tender(s) for subsidy for construction and operation of (a) wind farm(s) will be organized under the SDE+ regulation. As part of the tender preparations, the Netherlands Enterprise Agency (RVO) has requested Fugro to perform a geotechnical investigation of Wind Farm Site WFS I & II of the Borssele Wind Farm Zone (WFZ). The Borssele Wind Farm Zone is located in the Dutch Sector of the North Sea, approximately 36 km from the coastline (refer to "Vicinity Map" on Plate 1-1 and "Detailed Location Plan" on Plates 1-2 to 1-3).

The objective of the geotechnical investigation and associated laboratory testing programme for WFS I and WFS II is to:

- improve the geological and geotechnical understanding;
- update an earlier geological and geophysical model;
- provide a detailed geological ground model;
- determine the vertical and lateral variation in seabed conditions;
- provide relevant geotechnical data to progress the design of windfarm foundation elements, including, but not limited to foundations and cables.

The offshore phase of the geotechnical investigation included geotechnical borehole drilling with downhole sampling and in situ testing, seafloor in situ testing and geotechnical laboratory testing. An office programme of geotechnical laboratory testing and reporting of results followed the offshore phase.

This report is one of a set of Fugro reports. This particular report provides laboratory test results for WFS I&II:

- Results of geotechnical index tests;
- Results of static triaxial and direct simple shear tests, including measurement of small strain on selected specimens;
- Results of cyclic triaxial and cyclic simple shear tests;
- Cyclic test results plotted for S-N degradation curves and with background Drammen Clay Model.

This report is one in a series of reports prepared as part of this project (refer to "List of Project Reports" on Plate 1-4). Companion reports for WFS I&II contain results of geotechnical borehole locations, seafloor in situ test locations, and describe a geological ground model for site WFS I&II including geological setting, stratigraphy, lateral variability, geohazards and basic geotechnical parameter values respectively.

SAMENVATTING

Het Ministerie van Economische Zaken is verantwoordelijk voor het wettelijke kader van de ontwikkeling van windparken op zee in Nederland. Binnen dit kader vallen inschrijvingen voor de Stimulering Duurzame Energie (SDE+) subsidieregeling voor de bouw en uitvoering van (een) windpark(en) op zee. T.b.v. de voorbereiding van de inschrijvingen heeft de Rijksdienst Voor Ondernemend Nederland (RVO) Fugro gecontracteerd voor een geotechnisch onderzoek in de kavels WFS I & II van windgebied Borssele (WFZ). Het windgebied Borssele ligt in het Nederlandse deel van de Noordzee, ongeveer 36 km voor de kust (zie "Vicinity Map" op Page v en "Detailed Location Plan" op Page vi).

Het doel van het geotechnisch onderzoek en bijbehorend programma van laboratoriumproeven is om:

- inzicht te verkrijgen in de geologische en geotechnische omstandigheden;
- het bestaande geofysische en geologische model te verfijnen;
- een gedetailleerd geologisch grondmodel te genereren;
- de verticale en laterale variabiliteit van de grond te bepalen;
- relevante geotechnische data voor de ontwikkeling van het ontwerp van windpark funderingsconstructies beschikbaar te stellen, inclusief maar niet gelimiteerd tot funderingen en kabels.

Het geotechnisch onderzoek op locatie bestond uit geotechnische boorgaten met monsternames en in situ testen, sonderingen vanaf de zeebodem en geotechnische laboratoriumproeven. Vervolgens zijn op kantoor een geotechnisch laboratorium testprogramma en rapportage van de resultaten uitgevoerd.

Dit rapport maakt deel uit van een serie van Fugro rapporten. Dit rapport bevat resultaten van geotechnisch onderzoek voor WFS I & II:

- Resultaten van geotechnische classificatie laboratoriumproeven;
- Resultaten van statische triaxial en statische directe schuif proeven, inclusief meting van "small strain" op geselecteerde monsters;
- Resultaten van cyclische triaxial en cyclische schuifproeven;
- Plotten van cyclische resultaten tegen S-N degradatie grafieken en met achtergrond "Drammen Clay" model.

Dit rapport maakt deel uit van een serie van rapporten t.b.v. dit project (zie "List of Project Reports" op Page 1-4). Zes andere rapporten die WFS I&II behandelen bevatten respectievelijk: de resultaten van de geotechnische boorgat locaties, in situ test locaties vanaf de zeebodem, en een geologisch grondmodel voor WFS I&II voorzien van informatie over het geologisch kader, stratigrafie, laterale variabiliteit geo-risico's en algemene geotechnische parameters

1. INTRODUCTION

1.1 Purpose of Report

The Dutch Ministry of Economic Affairs is responsible for the legislative framework for the development of offshore wind farms in the Netherlands. Within this framework (a) (concession) tender(s) for subsidy for construction and operation of (a) wind farm(s) will be organized under the SDE+ regulation. As part of the tender preparations, the Netherlands Enterprise Agency (RVO), henceforth referred to as 'Client', has requested Fugro to perform a geotechnical investigation of Wind Farm Site WFS I & II of the Borssele Wind Farm Zone (WFZ). The Borssele Wind Farm Zone is located in the Dutch Sector of the North Sea, approximately 36 km from the coastline (refer to "Vicinity Map" on Plate1-1 and "Detailed Location Plan" on Plates 1-2 to 1-3).

The objective of the geotechnical investigation and associated laboratory testing programme for WFS I and WFS II is to:

- improve the geological and geotechnical understanding;
- update an earlier geological and geophysical model;
- provide a detailed geological ground model;
- determine the vertical and lateral variation in seabed conditions;
- provide relevant geotechnical data to progress the design of windfarm foundation elements, including, but not limited to foundations and cables.

The offshore phase of the geotechnical investigation included geotechnical borehole drilling with downhole sampling and in situ testing, seafloor in situ testing and geotechnical laboratory testing. An office programme of geotechnical laboratory testing and reporting of results followed the offshore phase.

1.2 Scope of Report

This report is one of a set of Fugro reports. This particular report provides geotechnical results for WFS I&II, including:

- Results of geotechnical index tests;
- Results of static triaxial and direct simple shear tests, including measurement of small strain on selected specimens;
- Results of cyclic triaxial and cyclic simple shear tests and post-cyclic static tests;
- Cyclic test results plotted for S-N degradation curves and with background Drammen Clay Model.

Results presented in this report are for an area demarcated as Investigation Areas I and II. WFS I&II are within these areas. The boundaries of WFS I&II are subject to change.

1.3 Project Responsibilities and Use of Report

This report presents information according to a project specification determined and monitored by the Client.

This report must be read in conjunction with "Guide for Use of Report", Section B.

Fugro understands that this report will be used for the purpose described in this "Introduction" section. That purpose was a significant factor in determining the scope and level of the services. Results must not be used if the purpose for which the report was prepared or the Client's proposed development or activity changes. Results may possibly suit alternative use. Suitability must be verified.

1.4 Report Format

This report is one in a series of reports. Refer to Plate 1-4 for a list of Fugro reports prepared as part of this project. Companion reports for WFS I&II contain results of geotechnical borehole locations, seafloor in situ tests and describe a geological ground model for site WFS I&II including geological setting, stratigraphy, lateral variability, geohazards and basic geotechnical parameter values respectively.

The principal sections of this report are the Summary, Main Text, Plates following Main Text, and Section A. Comments are as follows:

- The Summary section allows a quick-scan management overview. It includes a selection of plates. The selected plates are duplicates from a larger set of Plates following Main Text;
- Section 2 of the Main Text focuses on methodology;
- Section A provides the principal information as described in Section 1.2 "Scope of Report". This section should be read in conjunction with the Plates following Main Text, where applicable;
- Section A starts with primary information, which may consist of links to Plates following Main Text. Plate numbering starts with a section number, e.g. Plate A1-1 belongs to Section A1.

2. STUDY OVERVIEW

2.1 Sources of Information

This report uses and summarises selected information.

Client-supplied information included Geotechnical Scope of Work (RVO, 2015).

Survey of documents held in the Fugro database provided additional information, including information about the regional geology and general geotechnical data.

2.2 Laboratory Test Programme

2.2.1 Test Results

Geotechnical laboratory testing comprised (where appropriate) geotechnical index, microscopic inspection and (cyclic) strength, i.e. Isotropically Consolidated Undrained (CIUc and CIUe) triaxial tests in compression and extension, Cyclic CIU Triaxial (CTXL) tests, Direct Simple Shear (DSS) and Cyclic DSS (CSS) tests. Laboratory test results are provided in Section A "Geotechnical Laboratory Test Results". Section A further presents details and includes commentary on individual test results where required.

The static and cyclic test programme covered specimens of five distinct formations present across WFS I&II: Southern Blight, Eem/Kreftenheye, Tongeren, Rupel and Dongern. The Southern Blight, Eem/Kreftenheye and Tongeren formations consist predominantly of coarse-grained soils and the Rupel and Dongern formations consist predominantly of fine-grained soils.

The test programme consisted of:

- For each coarse-grained soil unit (three soil units in total):
 - a. one (1) static consolidated undrained triaxial compression test including bender element tests for determination of shear wave velocity
 - b. one (1) static consolidated undrained triaxial test
 - c. and four (4) or five (5) cyclic consolidated undrained triaxial tests
- For each fine-grained soil unit (two soil units in total):
 - a. two (2) or three (3) direct simple shear tests
 - b. five (5) or six (6) cyclic simple shear tests
 - c. one (1) static consolidated undrained triaxial compression test including bender element tests
 - d. one (1) static consolidated undrained triaxial compression test
 - e. two (2) static consolidated undrained triaxial extension tests.

Cyclic test results are plotted as cyclic degradation S-N curves, refer to Plates 2-1 and 2-2. The S-N curves were generated using a best-fit power regression model.

Static test results are included on Plates 2-1 and 2-2. However, to derive the regression lines for coarse grained material (Plate 2-1), static test results have been omitted from the data set. S-N curves proposed by Andersen (2009) are included as a reference. Vertical effective consolidation stress was used in the normalization of cyclic stresses.

Regression lines for the fine grained materials (Plate 2-2) use only selected cyclic test results from those which did not show failure after 1500 cycles. The test at the highest cyclic stress ratio (for N>1500) was used for the regression in case of multiple tests with N>1500. Tests results with no clear failure after 1500 cycles at lower CSR were not considered for the regression lines, although the data points are still included on Plate 2-2. Normalization of cyclic shear stresses uses a static reference undrained shear strength ($s_{u;ref}$). This reference strength is selected using the DSS test result on proximal samples.

Presented S-N curves should be used with care. Specific design situations require verification of suitability of the laboratory approach and presented regression lines.

Cyclic shear tests data are further plotted with background Drammen Clay Model contours (Andersen, 1988), refer to Plate 2-3. Selected s_{u:ref} is the same as used for the S-N normalization.

2.2.2 Premises and Assumptions

The laboratory test programme was in addition to earlier laboratory test programmes performed as part of this project, refer to Plate 1-4. Tests were conducted according to ISO (2014).

For the coarse-grained soil units, test specimens were reconstituted. Testing was performed on batch samples, i.e. for each soil unit a selection of samples were mixed to form a batch. For each batch, static and cyclic testing was performed on specimens with the same densities and consolidation stresses.

Undisturbed specimens were used for static and cyclic testing of fine-grained soil units. Test conditions, i.e. vertical and radial stresses for re-compression, were selected on the basis of in situ stress conditions.

Cyclic testing was performed at 0.1 Hz, i.e. a cycle of 10 seconds. Specimens were subjected to stress controlled cyclic loading under undrained conditions and sinusoidal loading waveform. Specimens were tested at selected cyclic stresses (q_{cy} / τ_{cy}) with average cyclic stresses (q_{ay} / τ_{av}) set to zero.

Specimen failure is considered to be achieved when one of the following conditions has been met:

- The average shear strain amplitude exceeds 3.75% in coarse-grained soils or 15% in fine-grained soils:
- The cyclic shear strain amplitude exceeds 3.75% in coarse-grained soils or 15% in fine-grained soils;
- Excess pore water pressure exceeds 95% of the effective stress in the specimen at the start of cycling:
- The applied cyclic shear stress drops to less than 90% of the specified value.

Cyclic testing will be terminated when failure of the specimen is evident or at 1500 cycles, whichever is earlier.

2.2.3 Test preparations and test conditions

Triaxial testing was performed at isotropic conditions following an assessment of expected in situ stress conditions. Consolidation history was estimated using available oedometer test data and using Cone Penetration Test (CPT) correlation. The assessment indicated an Overconsolidation Ratio (OCR) of approximately 2.5 to 3 for the Rupel formation and around 3 to 3.5 for the Dongern formation.

Coefficient of earth pressure at rest (K_0) was estimated using Brooker and Ireland (1965) their proposed relation between OCR, plasticity and K_0 and Mayne and Kulhawy (1982). Both methods indicated a K_0 value of around 1 for both soil units.

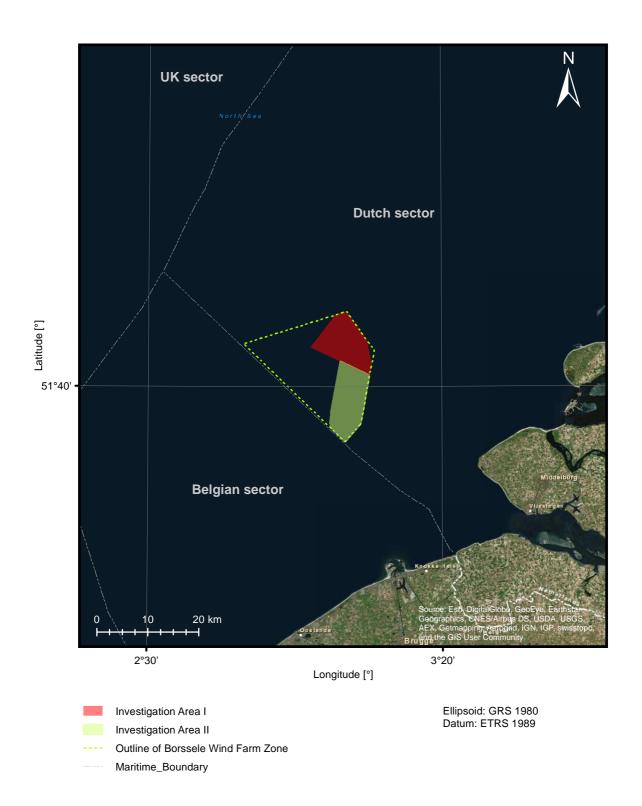
The in situ stress conditions used the unit weight profiles as used in calculation of derived CPT parameters, presented in companion reports (Plate 1-4). For fine-grained specimens, consolidation stresses were selected similar to calculated in situ stresses. For coarse-grained specimens, selected consolidation and test stresses represent an approximate average of in situ stress levels within the target formation. For the Southern Bight formation, a higher than average level was selected considering the recommended lower limits of the test apparatus (which is around 10 kPa to 15 kPa). Consolidation stresses are the same for tests on coarse-grained specimens from the same formation.

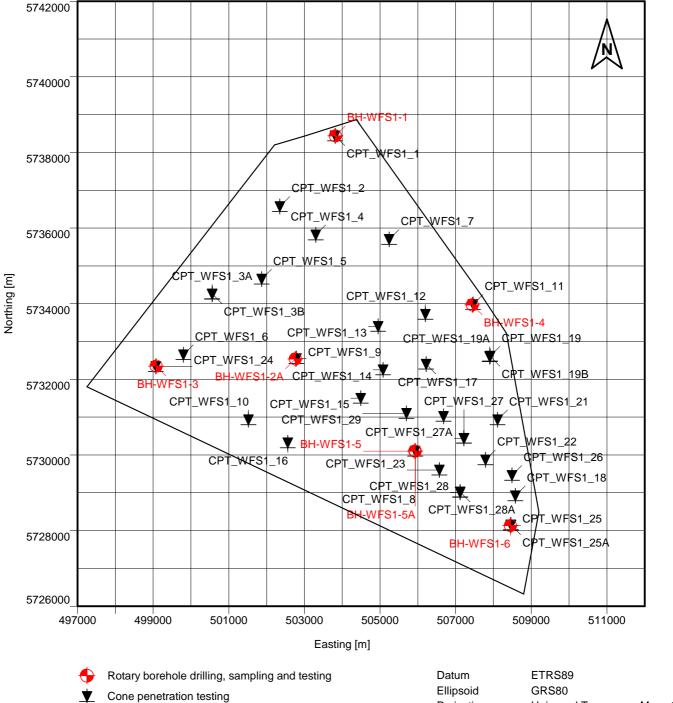
For the coarse-grained material "batch-samples" were prepared. Available particle size distribution data from samples from various formations were used to select a number of samples with similar grading as the predominant grading of the target formation. On these samples, microscopic inspection was performed to confirm that angularity and sphericity of the individual samples were similar. The microscopic inspection confirmed that samples could be batched. Section A3 presents results of the microscopic inspection. After samples were batched, sieving analyses were done to confirm that sample grading was in line with the predominant grading of the target formation. Results of the sieving analyses on the batch samples are presented in Section A2. No soil was re-used after testing.

Selected dry densities for coarse-grained specimen preparation were based on (a) average measured unit weights and water contents and (b) minimum and maximum index dry unit weights. The selected densities represent relative densities of approximately 70% (Southern Bight), 100% (Eem/ Kreftenheye) and 60% (Tongeren). It may be noted that the method for determination of the maximum index unit weight is different from the method of triaxial test specimen preparation. The results of maximum index unit weight tests are typically higher and may not be fully achieved during test specimen preparation.

¹ Atterberg limits indicate a plasticity between 40% to 60% for the Rupel formation and 80% to 100% for the Dongern formation.

3. REFERENCES

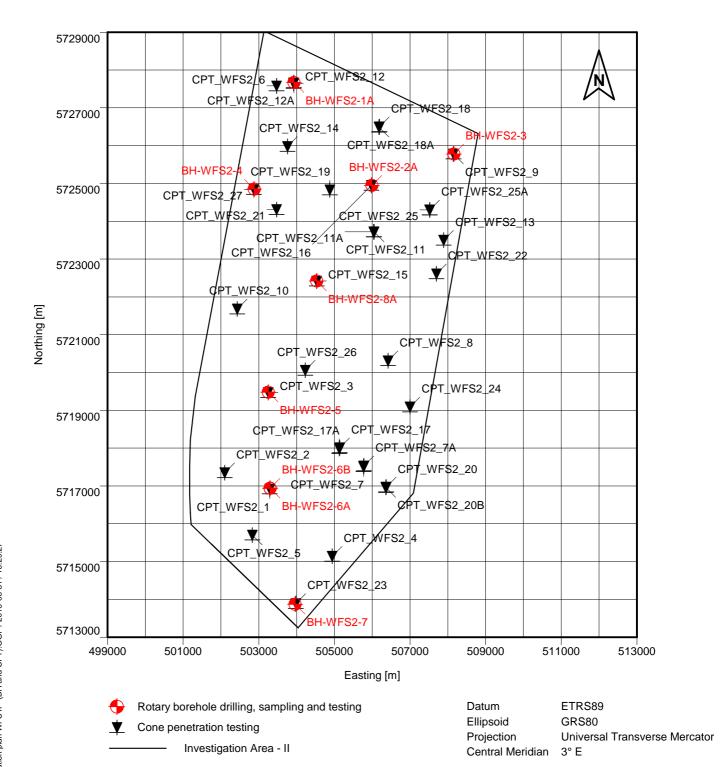

Andersen, K.H. and Lauritzsen, R., (1988), "Bearing Capacity for Foundations with Cyclic Loads", Journal of Geotechnical Engineering, Vol. 114, No.5, pp. 540-555.


Andersen, K.H. (2009), "Bearing Capacity under Cyclic Loading - Offshore, along the Coast, and on Land. The 21st Bjerrum Lecture presented in Oslo, 23 November 2007", Canadian Geotechnical Journal, Vol. 46, No. 5, pp. 513-535.

BSI British Standards Institution (1999), "Code of Practice for Site Investigations", British Standard BS 5930:1999.

ISO International Organization for Standardization (2014), "Petroleum and Natural Gas Industries - Specific Requirements for Offshore Structures – Part 8: Marine Soil Investigations", International Standard ISO 19901-8:2014.

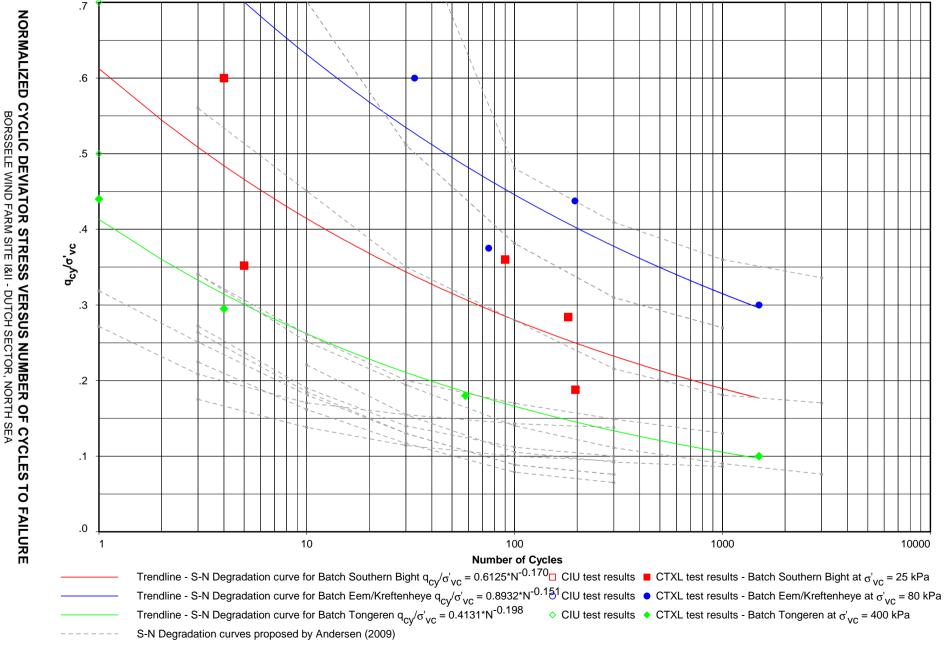
Rijksdienst voor Ondernemend Nederland (2015), "Soil Investigations Wind Farm Zones - Section IV-d. Scope of Work Geotechnical Survey - Borssele Wind Farm Zone - Wind Farm Site I & II", Rev F, 17 March 2015.

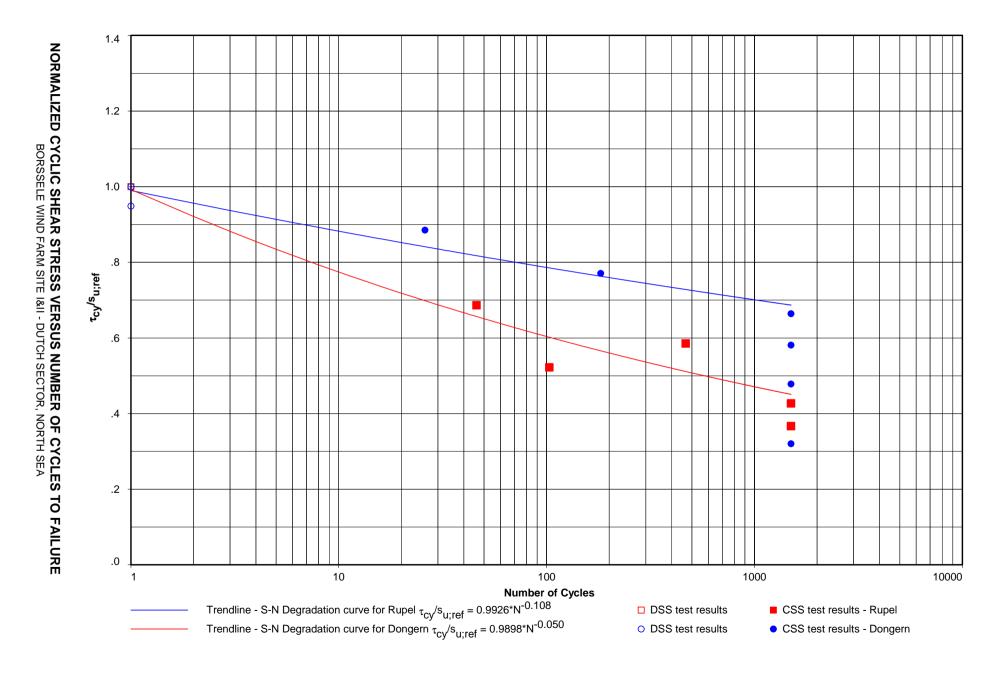


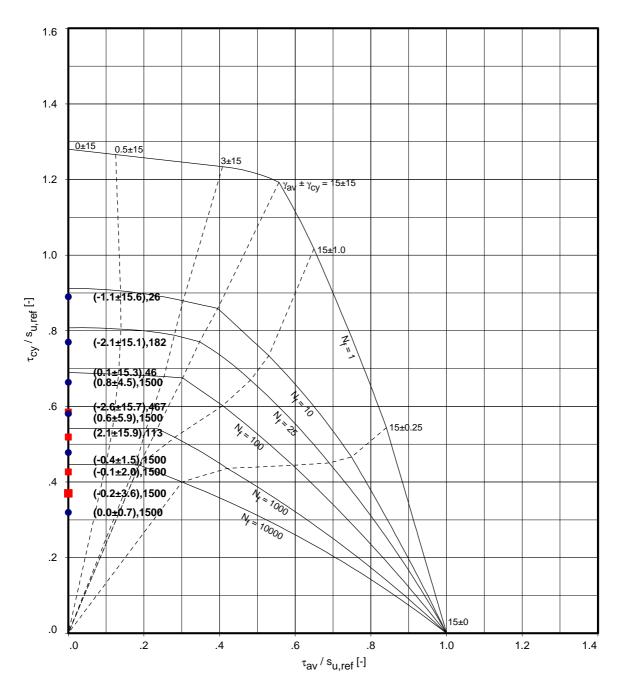
Investigation Area - I

Projection Universal Transverse Mercator Central Meridian 3° E

DETAILED LOCATION PLAN


BORSSELE WIND FARM ZONE, WFS I & II - DUTCH SECTOR, NORTH SEA


DETAILED LOCATION PLAN


BORSSELE WIND FARM ZONE, WFS I & II - DUTCH SECTOR, NORTH SEA

Report Number	Title	Contents
N6016/01	Geotechnical Report - Investigation Data - Geotechnical Borehole Locations Wind Farm Site I Borssele Wind Farm Zone - Dutch Sector, North Sea	Geotechnical data including geotechnical logs, results from downhole (seismic) cone penetration tests and results from geotechnical laboratory tests.
N6016/02	Geotechnical Report - Investigation Data - Seafloor In Situ Test Locations Wind Farm Site I Borssele Wind Farm Zone - Dutch Sector, North Sea	Geotechnical data including interpreted geotechnical logs and results from seafloor cone penetration tests.
N6016/03	Geotechnical Report - Investigation Data - Geotechnical Borehole Locations Wind Farm Site II Borssele Wind Farm Zone - Dutch Sector, North Sea	Geotechnical data including geotechnical logs, results from downhole (seismic) cone penetration tests and results from geotechnical laboratory tests.
N6016/04	Geotechnical Report - Investigation Data - Seafloor In Situ Test Locations Wind Farm Site II Borssele Wind Farm Zone - Dutch Sector, North Sea	Geotechnical data including interpreted geotechnical logs and results from seafloor cone penetration tests.
N6016/05	Geological Ground Model Wind Farm Site I Borssele Wind Farm Zone - Dutch Sector, North Sea	Geological ground model including, stratigraphy, lateral soil variability, geohazards, basic geotechnical parameter values and assessment of geotechnical suitability of selected types of structures.
N6016/06	Geological Ground Model Wind Farm Site II Borssele Wind Farm Zone - Dutch Sector, North Sea	Geological ground model including, stratigraphy, lateral soil variability, geohazards, basic geotechnical parameter values and assessment of geotechnical suitability of selected types of structures.
N6016/07	Geotechnical Report - Laboratory Test Data Wind Farm Sites I & II Borssele Wind Farm Zone - Dutch Sector, North Sea	Results of advanced static and cyclic laboratory tests.

Note 1: CIU triaxial test results from Southern Bight and Eem/Kreftenheye batch samples plot outside the graph

CSS test results - RupelCSS test results - Dongern

Note(s):

- Comparison of cyclic direct simple shear test results with Drammen clay model at YSR = 1 (Andersen et al., 1988)
- $(\gamma_{av}\pm\gamma_{cy})$, N_f : Average shear strain and cyclic shear strain (%) at final number of cycles

CYCLIC SIMPLE SHEAR TESTS - DRAMMEN CLAY COMPARISON (YSR=1)

BORSSELE WIND FARM ZONE, WFS I&II - DUTCH SECTOR, NORTH SEA

SECTION A: GEOTECHNICAL LABORATORY TEST RESULTS

SECTION A1: LABORATORY TESTING OVERVIEW

SECTION A2: INDEX LABORATORY TESTS SECTION A2: MICROSCOPIC INSPECTION

SECTION A4: STATIC TRIAXIAL TESTS

SECTION A5: STATIC DIRECT SIMPLE SHEAR TESTS

SECTION A6: CYCLIC TRIAXIAL TESTS

SECTION A7: CYCLIC SIMPLE SHEAR TESTS

SECTION A1: LABORATORY TESTING OVERVIEW

TEXT	T – SECTION A1:	Page
A 1.	LABORATORY TESTING OVERVIEW	
A1.1	SUMMARY OF LABORATORY TESTS	A1
A1.2	QUALITY OF RESULTS	A4
A1.3	PRACTICE FOR SAMPLE HANDLING AND LABORATORY TESTING	A5
A1.4	INDEX LABORATORY TESTS	A6
A1.5	MICROSCOPIC INSPECTION	A6
A1.6	STATIC TRIAXIAL TESTS	A6
A1.7	STATIC DIRECT SIMPLE SHEAR TESTS	A7
A1.8	CYCLIC TRIAXIAL TESTS	A7
A1.9	CYCLIC SIMPLE SHEAR TESTS	A8
LIST	OF PLATES IN SECTION A1:	Plate
Sumr	mary of Isotropically Consolidated Undrained Triaxial Test Results	A1-1 to A1-2
Sumr	mary of Cyclic Triaxial Test Results	A1-3
Sumr	mary of (Cyclic) Direct Simple Shear Test Results - Consolidation	A1-4
Sumr	mary of (Cyclic) Direct Simple Shear Test Results – Test Results	A1-5

A1. LABORATORY TESTING OVERVIEW

A1.1 SUMMARY OF LABORATORY TESTS

Main Text Section 2.2 titled "Laboratory Test Programme" presents an overview of the geotechnical laboratory tests performed including discussion of adopted strategy, premises and assumptions. Section A presents results from the laboratory tests performed. Table A1.1 presents the type and number of laboratory tests along with test references. Note that water content, unit weight and pocket penetrometer tests, which are part of test types are not presented in this table. Laboratory test data are presented per type per section.

Table A1.1: Overview of Laboratory Test Programme

Test Type	Total		F	ormatic	on		Test Procedure (ISO, 2014)
	Number of Tests	Southern Bight	Eem/Kreftenheye	Tongeren	Rupel	Dongern	
Geotechnical Index							
Particle Size Analysis (Sieving)	3	1	1	1	-	-	BS1377:Part 2:1990 / Fugro in-house procedure
Microscopic Inspection	27	10	11	6	-	1	In general accordance with BS 5930:1999
Strength							
Isotropically Consolidated Undrained Triaxial (CIU) compression with (Bender Elements)	5 / (5)	1 / (1)	1 / (1)	1 / (1)	1 / (1)	1 / (1)	BS1377:Part 8:1990 / Fugro in-house procedure
Isotropically Consolidated Undrained Triaxial (CIU) extension	4	-	-	-	2	2	Fugro in-house procedure
Direct Simple Shear (DSS)	5	-	-	-	2	3	Fugro in-house procedure based ASTM6528-07
Cyclic							
Cyclic Isotropically Consolidated Undrained Triaxial (CTXL)	13	5	4	4	-	-	Fugro in-house procedure
Cyclic Direct Simple Shear	11	-	-	-	5	6	Fugro in-house procedure based ASTM6528-07

Strength testing on coarse-grained material was performed on batch samples. Testing on the fine-grained formation selected undisturbed samples were used. Table C1.2 below presents a summary of the samples used for batch sample preparation and strength testing.

Table A1.2: Test Specimens per Formation

Formation ⁽¹⁾	Location	Site	Sample	Sample Type	Sample Depth [m bsf]	Test Type
	BH-WFS1-1	WFSI	2A/2B	Bag	3.00 / 3.30	
	BH-WFS1-3	WFSI	2A/2B	Bag	1.00 / 1.30	
Couthorn Dight	BH-WFS1-4	WFSI	2A/2B	Bag	1.00 / 1.30	- CIUc(+BE)
Southern Bight	BH-WFS2-4	WFSII	3A	Bag	2.00	- CTXL
	DILIMEON 5	MEON	2A/2B	Bag	1.00 / 1.20	
	BH-WFS2-5	WFSII	4A/4B	Bag	3.00 / 3.30	
	DILLMEGA CA	MEGI	7A	Bag	6.00]
	BH-WFS1-6A	WFSI	12A	Bag	13.00	
Eem/Kreftenheye	BH-WFS2-3	WFSII	4A	Bag	5.00	- CIUc(+BE) - CTXL
	BH-WFS2-4	WFSII	10A	Bag	9.00	- CIXL
	BH-WFS2-6A	WFSII	4A	Bag	8.00	
	DILLMECA OA	MEGI	22A	Bag	52.00]
	BH-WFS1-2A	WFSI	25A	Bag	64.50]
Tongeren	DLLWEG4 2	MEGI	14B	Bag	25.40	- CIUc(+BE)
Tongeren	BH-WFS1-3	WFSI	16A	Bag	34.00	- CTXL
	BH-WFS1-5A	WFSI	17B	Bag	56.45]
	BH-WFS1-6	WFSI	25C	Bag	53.60	
	DILWEGA 4	WEOL	17D	WAX	51.50	CIUe
	BH-WFS1-1	WFSI	18C	WAX	52.25	CIUc+BE
Rupel			17C / 17D	WAX	34.75 / 34.95	- DSS - CSS
	BH-WFS1-4	WFSI	20B	WAX	40.55	CIUc
			21D	WAX	44.95	CIUe
	BH-WFS2-3	WFSII	9B	WAX	18.05	DSS
			15B	WAX	40.05	DSS
	BH-WFS2-6A		18D	WAX	49.4	CIUc+BE
			20B	WAX	54.35	CIUe
Dongern		WFSII	19C / 19D / 20C	WAX	33.30 / 33.50 / 34.10	- DSS - CSS
	BH-WFS2-7		21D	WAX	38.50	CIUe
			22D	WAX	39.50	CIUc

Notes

⁽¹⁾ Samples for the Southern Bight, Eem/Kreftenheye and Tongeren were batched. Laboratory testing, apart from the microscopic inspection, was performed on batch samples.

Table A1.3 presents and overview of the selected dry density and consolidation conditions for the various batch samples. In general sample preparation achieved the specified conditions.

Table A1.3: Target Test Preparation Conditions for Batch Samples

Formation	Test Type	Target Dry Density [Mg/m³]	Isotropic Consolidation Stress [kPa]						
Southern Bight		1.63	25						
Eem/Kreftenheye	- CIUc(+BE) - CTXL	1.70	80						
Tongeren	- CIAL	1.61	400						
Notes: - Actual dry densities may vary slightly compared to target									

Figures 1 to 3 below present summaries of the particle size distribution PSD curves used for batch sampling.

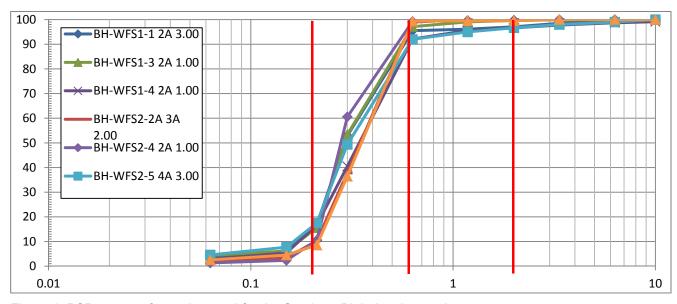


Figure 1. PSD curves of samples used for the Southern Bight batch sample

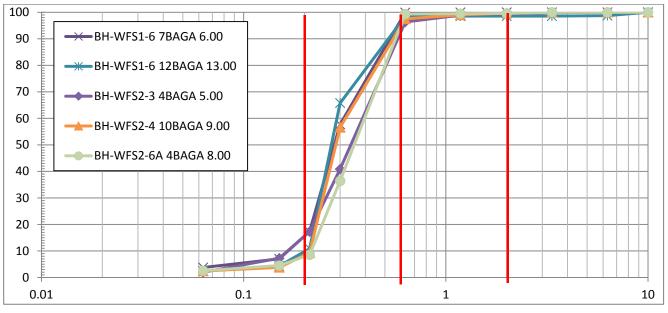


Figure 2. PSD curves of samples used for the Eem/Kreftenheye batch sample

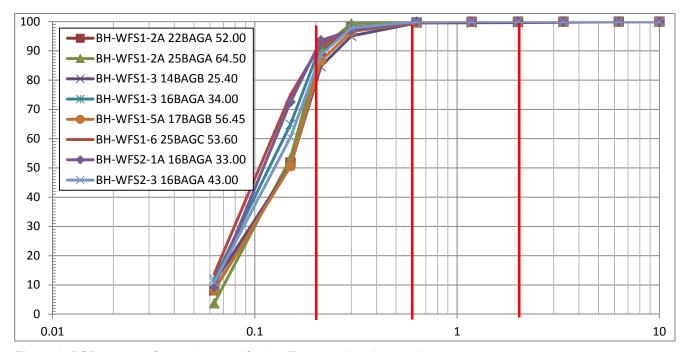


Figure 3. PSD curves of samples used for the Tongeren batch sample

A1.2 QUALITY OF RESULTS

In general, the laboratory test results are considered to be of good quality. Assessed quality of laboratory test data is according to expectations for used sampling practice and laboratory test methods. Laboratory tests were only performed on suitable soil samples.

Results of geotechnical laboratory tests are generally consistent with the visual descriptions and in situ test interpretations. It is noted that the majority of the strength tests results correlate reasonably well with the shear strength derived from the in situ tests, although some scatter is noted. This is likely attributed to heterogeneity of the test specimens in combination with differences between the various testing techniques used.

An indication of sample quality may be derived from the recompression stage of fine-grained specimens in an isotropically consolidated undrained (CIU) test, according to ISO (2014). The method applies to a limited range of soil conditions.

For eight CIU triaxial test specimens, the applicability criteria are valid. Undisturbed sample quality classifies as Class 1 to 4 (very good to excellent to very poor), with $\Delta e/e_0$ -values ranging between 0.0 and 0.12.

ISSUE 11

PRACTICE FOR SAMPLE HANDLING AND LABORATORY TESTING

Initial Sample Handling – refer to companion reports, refer to Plate 1-3

Site Geotechnical Laboratory – refer to companion reports, refer to Plate 1-3

Office Geotechnical Laboratory

Test Programme:

Soil description (of test specimens), sample photography, geotechnical

index tests and static and cyclic strength/stiffness

Programme Adjustment:

- Assessment of feasibility of a test (by sample inspection) prior to start of specimen preparation

- Decision by laboratory: (1) to proceed with test, (2) not to proceed with test, (3) to advise adjustments to test procedure

 Selection by laboratory of alternative test specimen if decision is "not to proceed" or when adequate test completion proves impracticable

Data Processing and Management:

 Laboratory-specific software and GeODin® software, as applicable Graphical scales selected to suit general presentation of data

- No display of data outside of chart limits, i.e. some values may not be shown

- Geotechnical description is an interpretation of processed data available at the time of preparation

 Level of detail and accuracy in geotechnical description and interpretation depend on factors such as test data, sample size, quality. coverage, availability of supplementary information, and project

requirements

Laboratory Air Temperature:

Sample in Plastic Bags

Sample Waxed in Cardboard

Tube:

Typically about 20 °C

- Removal of sample from tube by cutting

Geotechnical testing;

 If applicable, selection and labelling of left-over sample sections for undisturbed preservation and/or disturbed preservation

Geotechnical testing

If applicable, selection and labelling of left-over sample sections for disturbed preservation

Sample Storage and Disposition

Sample Storage:

Storage temperature within the range +2 °C and +35 °C

Protection from direct sunlight

Transport: Not applicable

Final Disposition: In accordance with laboratory procedures

References

Computer Program GeODin®, Recording, Presentation and Analysis of Geo-data.

A1.4 INDEX LABORATORY TESTS

Three particle size distribution curves are included. These present results of the sieving analyses on the three batch samples.

Note that individual strength and shear test results include a sample description of the test specimen. For the coarse-grained specimens this is from the batch sample.

A1.5 MICROSCOPIC INSPECTION

The microscopic inspections were performed on samples planned for batching. No microscopic inspections were done on the individual batch samples.

Microscopic inspection indicated that selected samples from the individual formations were similar in composition.

A1.6 TRIAXIAL TESTS

Some of the triaxial tests on coarse-grained material required use of CO₂ flushing of the test specimen during the saturation phase. This was required for CIU02, CIU04 and CIU06. No CO₂ was used during saturation of other test specimens.

In general, the CIU triaxial test results on coarse-grained material were according expectations. Specimens from the Southern Bight and Eem/Kreftenheye showed typical behaviour for dense to very dense sands, i.e. a sharp increase in deviator stress due to a negative shear-induced pore pressures. The resulting stress path for these tests shows strain-hardening behaviour. For several tests, the strain-hardening continues up to approximately 6% to 8% strain, after which the process is reversed and strain-softening occurs, i.e. further strain results in decreasing deviator stresses. An exception to this is CIU02 of the Southern Bight batch sample which continues to show strain-hardening behaviour during the complete shearing stage.

The two CIU tests on the Tongeren batch sample show both strain-softening and limited-strain-hardening behaviour, CIU05 and CIU06, respectively. During CIU05, deviator stress and pore pressure increase rapidly after the start of shearing. After approximately 1% strain the maximum deviator stress is reached and after approximately 8% strain the sample deforms continuously at approximately 200 kPa deviator stress. In contrast to this CIU06, shows initially a similar behaviour as CIU05, with a rapid increase of deviator stress and pore pressure at 1% to 2% strain, however, thereafter the pore pressure decreases resulting in a further increase of the deviator stress. The different stress-strain behaviour may be related to minor differences in composition and density of tested specimens. The batch sample includes approximately 15% fines. It was prepared to resemble medium dense conditions. Observed stress-strain behaviour is not uncommon for medium dense sands and minor variations in density and fines content may result in different behaviour.

Bender element tests were performed during CIU01, CIU03 and CIU05 to measure shear modulus at small strain (G_{max}). Results are in line with expectations considering the differences in specimen's void ratio and effective consolidation stresses. The specimens with the lower effective stresses have lower G_{max} values and the ratio G_{max}/σ_{vc} generally reduces with increasing σ_{vc} . The G_{max} values are in general accordance with small strain measurements specifically conducted for some of the test specimen.

The measured shear wave velocities for the test specimens tend to be lower than those inferred for in situ conditions. Reasons include:

- Method of shear wave velocity determination differs seismic downhole and/or CPT-based correlation versus bender elements;
- Approximation of specimen density versus in situ soil density has inherent uncertainty;
- Specimen preparation method differs from in situ soil deposition;
- In situ soil includes long-term stress history and time effects (aging).

Note that Bender Element test are done at a variety of frequencies, generally in range of 1,000 Hz to 10,000 Hz in order to find the frequency with the optimum coupling from sender to receiver elements, and hence the strongest received signal. The optimum frequency can vary between tests, as is the case for the three bender element tests done on the coarse grained batch samples.

The results of the CIU triaxial compression and extension tests on fine-grained specimens were in line with expectations considering stress history of the formation. Compression tests results generally show the typical behaviour expected of (overconsolidated) clays: a sharp initial increase in deviator stress q, a non-linear p'/q relationship and an initial increase of pore water pressure followed by a decrease proportional to the overconsolidation ratio (the higher the overconsolidation ratio, the larger the water pressure decrease).

Extension tests show behaviour similar to the compression tests, but reversed, i.e. a sharp initial decrease in deviator stress q, a non-linear p'/q relationship and an initial decrease of pore water pressure followed by a decrease proportional to the overconsolidation ratio.

CIU triaxial extension test specimens have a height over diameter (H/D) ratio of approximately 1 to 1.8. This (H/D) is to ensure there is enough head-room in the triaxial cell to allow the specimen to extend during the shearing phase of the triaxial test.

A1.7 DIRECT SIMPLE SHEAR TESTS

The majority of the test results are in line with expectations. Shear behaviour shows a continuous increase in shear stress in combination with an initial increase of pore pressure followed by a decrease after approximately 6% to 12% shear (shallowest and deepest specimen). An exception is DSS03 for which pore pressure response continues to rise at increasing strain levels. The sample photograph indicates the presence of silt pockets. This may have contributed to the different behaviour.

Results of DSS01 and DSS04 were used as a reference strength for the planning and normalization of the CSS tests. An additional DSS, i.e. DSS05, was performed to verify test results of DSS04. Test results for DSS04 and DSS05 were similar, i.e. undrained shear strengths were 253 kPa and 240 kPa respectively.

A1.8 CYCLIC TRIAXIAL TESTS

Test specimens used for cyclic testing were not pre-sheared prior to start of the cyclic test phase.

Cyclic tests results generally show a consistent behaviour, i.e. number of cycles to failure (N) increase at lower cyclic stress ratios (CSR). Furthermore, resistance to cyclic loading increases at higher relative densities, with

the Tongeren batch specimens plotting at the lower end and the Eem/kreftenheye plotting at high CSR levels (at similar N-values). Note that the Tongeren batch sample includes approximately 15% fines. This contributes to the lower cyclic resistances compared to the tests from the other two batch samples.

The cyclic tests generally show a steady increase of pore pressure at low cyclic and average strain levels up to pore pressure ratio values between 0.6 and 0.8. Thereafter, pore pressure (ratios) and cyclic and average strain levels progressively increase at higher rates and failure is typically is within 5 to 20 cycles. The measured pore pressure response toward failure is consistent with expectations for medium dense to dense sand. As the effective stress within the soil approaches zero, the soil dilates in order to sustain an increasing deviatoric stress. The dilation ceases momentarily at the stress reversal point before unloading occurs. This is clearly seen in the temporary drop in pore pressure once the pore pressure ratios are above 0.8 to 0.9.

Some test results appear lower than expected trends. These include CTXL03 and CTXL04, both on the Southern Bight batch and CTXL08 on the Eem/Kreftenheye batch. Test preparation and execution were evaluated and found to be within expected tolerances. Differences in test results may be attributed to minor differences in specimen composition.

Post-cyclic static testing was performed on the majority of samples. Typical stress strain behaviour was similar to the static CIU tests, with the Southern Bight and Eem/kreftenheye samples showing strain-hardening behaviour and the Tongeren formations showing both strain softening and (limited-) strain-hardening behaviour.

A1.9 CYCLIC SIMPLE SHEAR TESTS

Test specimens used for cyclic testing were not pre-sheared prior to start of the cyclic test phase.

Cyclic shear test results show an initial rapid increase in pore pressure ratios of about 0.6 to 0.8. Thereafter pore pressures show limited increase and the maximum pore pressure ratio per cycle remains around these ratios. Average cyclic strain levels are low and cyclic stress levels show a steady increase with subsequent cycles. This is as expected for two-way loading.

The first four of the six tests, performed on specimens from the Dongern formation, reached 1500 cycles. CSR values were increased after each test. For the fifth and sixth tests, failure occurred before the 1500 cycles were reached. The relatively high CSR values may be related to assignment of reference strength. Reference strengths were based on DSS tests in close proximity of the CSS specimens. Two DSS tests were performed giving similar static strength values. The cyclic resistance is possibly higher than static resistance.

Plate A1-1

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL TEST RESULTS

COHESIONLESS SPECIMENS

BORSSELE WIND FARM ZONE I&II – DUTCH SECTOR, NORTH SEA

Location	Sample	Test	Test	lni	Initial Conditions			Final Consolidation Conditions						
	No.	Туре	ID	Wi	γi	e ₀	W _f	γ_{f}	σ' _{vc}	σ' _{rc}	e _{pc}	$\epsilon_{\text{vol;pc}}$	$\epsilon_{v;pc}$	
				[%]	[kN/m³]	[-]	[-]	[kN/m³]	[kPa]	[kPa]	[-]	[%]	[%]	
	Southern	CIUc+BE	01	10.7	17.6	0.637	23.9	19.7	26	26	0.634	0.24	0.04	
	Bight	CIUc	02	10.8	17.6	0.639	24.0	19.7	25	25	0.636	0.19	-	
Various	Eem /	CIUc+BE	03	11.3	18.3	0.579	21.7	20.1	80	80	0.576	0.22	0.07	
(batch sample)	Kreftenheye	CIUc	04	10.2	19.5	0.465	17.4	20.9	80	80	0.460	0.35	-	
	Tongeren	CIUc+BE	05	10.0	17.4	0.647	22.9	19.9	400	400	0.606	2.45	0.39	
		CIUc	06	10.0	17.4	0.646	22.8	19.9	400	400	0.603	2.59	-	

Sample	Test	Test		At Peak Deviator Stress					At Maximum Stress Ratio			Post-Saturation		Post-Consolidation	
No.	Туре	ld.	q	u	ε _a	ε ₅₀	E ₅₀	q	u	ε _a	Vs	G _{max}	Vs	G _{max}	
			[kPa]	[-]	[%]	[%]	[MPa]	[kPa]	[-]	[%]	[m/s]	[MPa]	[m/s]	[MPa]	
Southern	CIUc+BE	01	420	-119	5.9	1.61	13.0	115	-7	0.8	105	22	136	37	
Bight	CIUc	02	759	-348	20.0	3.41	11.1	167	-37	1.4	ı	-	-	-	
Eem /	CIUc+BE	03	2430	-881	12.2	2.96	41.1	384	-32	1.1	156	50	204	85	
Kreftenheye	CIUc	04	2054	-523	7.3	2.49	41.3	627	-71	1.8	ı	-	-	-	
Tongeren	CIUc+BE	05	249	250	0.8	0.08	158.0	200	320	9.4	170	58	282	162	
	CIUc	06	282	262	19.8	0.30	47.3	263	278	8.8	1	-	-	-	

Notes:

 $- \alpha'_{vc} = \alpha'_{vc(max)}$

Key:

initial / after consolidation water content $W_{i/f}$ initial / after consolidation unit weight

γi/f initial void ratio = e_0

 e_{pc} void ratio at end of consolidation

volumetric strain at end of consolidation vertical strain at end of consolidation

vertical / radial effective stress at end of consolidation

G_{max} shear modulus at small strain

deviator stress

excess pore pressure

axial strain at peak deviator stress or maximum stress ratio

axial strain at 50% of peak deviator stress ε₅₀ Ε₅₀ Young's modulus at 50% of peak deviator stress in compression

shear wave velocity

STINGAL TO THE TRANSPORT OF THE PRINCE OF TH

Location	Sample	Formation	Depth	Test	Initial Conditions			Final Consolidation Conditions								
	No.			Туре	Wi	γi	e_0	W _f	γ_{f}	σ' _{vc}	σ' _{rc}	e _{pc}	$\epsilon_{\text{vol;pc}}$	$\epsilon_{ m v;pc}$	∆e/e₀	
			[m]		[%]	[kN/m³]	[-]	[-]	[kN/m³]	[kPa]	[kPa]	[-]	[%]	[%]	[-]	
BH-WFS1-1	17D		51.52	CIUe	27.1	19.4	0.731	27.1	19.4	490	490	0.731	0.02	-	0.00	
BH-WFS1-1	18C		52.29	CIUc+BE	24.6	19.3	0.708	24.0	19.4	500	500	0.690	1.06	0.22	0.03	
BH-WFS1-4	20B	Rupel	40.56	CIUc	24.9	19.7	0.675	24.9	19.7	400	400	0.675	0.01	-	0.00	
BH-WFS1-4	21D		44.97	CIUe	24.7	19.8	0.670	24.8	19.8	450	450	0.670	0.54	-	0.00	
BH-WFS2-6A	18D		49.44	CIUc+BE	44.3	17.4	1.199	38.9	18.0	480	480	1.052	6.64	1.20	0.12	
BH-WFS2-6A	20B		54.37	CIUe	39.1	18.3	1.025	39.2	18.2	525	525	1.027	-0.11	-	0.00	
BH-WFS2-7	21D	Dongern	28.52	CIUe	39.4	18.1	1.050	39.0	18.1	350	350	1.040	0.51	-	0.01	
BH-WFS2-7	22D		39.52	CIUc	45.6	17.3	1.228	45.6	17.4	355	355	1.227	0.04	-	0.00	

Location	Sample	Depth	Test		At Peak Deviator Stress				At Max	imum Stres	s Ratio	Post-Sa	aturation	Post-Consolidation		
	No.		Туре	Su	s _u /σ' _{vc}	εa	€50	E ₅₀	Su	s _u /o' _{vc}	ε _a	Vs	G _{max}	Vs	G _{max}	
		[m]		[kPa]	[-]	[%]	[%]	[MPa]	[kPa]	[-]	[%]	[m/s]	[MPa]	[m/s]	[MPa]	
BH-WFS1-1	17D	51.52	CIUe	-175	0.36	-5.50	-0.50	-	-175	0.36	-5.50	-	-	-	-	
BH-WFS1-1	18C	52.29	CIUc+BE	282	0.56	3.23	0.62	45.5	276	0.55	2.88	253	126	265	139	
BH-WFS1-4	20B	40.56	CIUc	336	0.84	5.18	1.66	20.2	297	0.74	3.68	-	-	-	1	
BH-WFS1-4	21D	44.97	CIUe	-252	0.56	-9.48	-1.54	-	-249	0.55	-8.98	-	-	-	1	
BH-WFS2-6A	18D	49.44	CIUc+BE	149	0.31	1.44	0.16	91.3	145	0.30	5.46	191	65	225	92	
BH-WFS2-6A	20B	54.37	CIUe	-321	0.61	-2.37	-0.46	-	-321	0.61	-2.37	-	-	-	-	
BH-WFS2-7	21D	28.52	CIUe	-114	0.32	-2.50	-0.17	-	-113	0.32	-2.63	-	-	-	-	
BH-WFS2-7	22D	39.52	CIUc	140	0.39	1.44	0.25	56.5	140	0.39	1.32	-	-	-	-	

N	otoe	,

Key:

initial / after consolidation water content

initial / after consolidation unit weight initial void ratio

void ratio at end of consolidation

change of void ratio from initial conditions to estimated in-situ stress conditions

vertical / radial effective stress at end of consolidation

volumetric strain at end of consolidation

vertical strain at end of consolidation $\varepsilon_{v;pc}$

undrained shear strength

axial strain at peak deviator stress or maximum stress ratio

 ϵ_{50}

axial strain at 50% of peak deviator stress
Young's modulus at 50% of peak deviator stress in compression
shear wave velocity
shear modulus at small strain E₅₀ =

v_s G_{max}

SUMMARY OF CYCLIC TRIAXIAL TEST RESULTS COHESIONLESS SOIL SPECIMENS BORSSELE WIND FARM ZONE I&II - DUTCH SECTOR, NORTH SEA

Location	Formation	Test Initial Conditions					Final Consolidation Conditions						Су	clic Load	ing			Post-Cyclic Static (At Peak Deviator Stress)		
			Wi	γi	e ₀	Wf	γf	σ' _{vc}	e _{pc}	E _{vol;pc}	σ' _{v;ref}	q_{av} / $\sigma'_{v;ref}$	q _{cv} / σ' _{v;ref}	N	£ _{av}	ϵ_{cy}	Ua	q _f	ε _f	Uf
			[%]	[kN/m³]	[-]	[-]	[kN/m³]	[kPa]	[-]	[%]	[kPa]	[-]	[-]	[-]	[%]	[%]	[kPa]	[kPa]	[%]	[kPa]
		CTXL01	10.5	17.6	0.635	23.9	19.7	25	0.632	0.16	25	0	0.60	4	-3.3	4.4	12	2	18.7	23
		CTXL02	10.0	17.6	0.627	23.6	19.8	25	0.624	0.18	25	0	0.28	181	-3.8	13.2	19	42	23.3	8
	Southern Bight	CTXL03	10.3	17.6	0.633	23.8	19.7	25	0.631	0.14	25	0	0.19	196	-3.9	16.6	23	4	23.3	23
		CTXL04	10.0	17.6	0.629	18.4	20.7	25	0.489	8.59	25	0	0.35	5	-0.5	12.3	19	1	-2.0	23
		CTXL13	10.1	17.6	0.631	23.7	19.7	25	0.628	0.16	25	0	0.36	90	-2.1	15.1	21	37	23.4	12
Various	Eem /	CTXL05	9.9	18.3	0.560	21.1	20.2	80	0.560	0.00	80	0	0.60	33	0.3	9.9	47	-	-	-
(batch		CTXL06	10.0	18.3	0.560	21.0	20.2	80	0.557	0.17	80	0	0.30	1500	0.0	0.0	17	1652	19.1	-680
sample)	Kreften- heye	CTXL07	9.6	18.3	0.554	20.8	20.2	80	0.551	0.23	80	0	0.44	195	-19.4	7.8	56	1585	24.1	-674
	- , -	CTXL08	10.0	18.3	0.557	21.0	20.2	80	0.556	0.08	80	0	0.38	75	-2.8	11.7	60	787	21.0	-210
		CTXL09	10.1	17.4	0.645	23.1	19.8	400	0.611	2.07	400	0.14	0.44	1	-7.9	8.3	122	-	-	-
	Tongeren	CTXL10	9.3	17.4	0.634	22.6	19.9	400	0.599	2.12	400	-	0.30	4	-8.6	12.4	296	108	25.8	339
		CTXL11	9.5	17.4	0.637	22.3	20.0	400	0.592	2.74	400	-	0.10	1500	-0.0	0.0	92	219	0.8	257
		CTXL12	9.7	17.4	0.642	21.0	20.2	400	0.556	5.22	400	-	0.18	58	-3.0	15.7	347	140	19.4	351

Notes: - σ'_{vc} = $\sigma'_{vc(max)}$ - Numbers in italic are being verified and may change Key: average deviator stress at N $q_{\mathsf{a}\mathsf{y}}$ cyclic deviator stress at N initial / final water content $q_{\text{cy}} \\$ average axial strain at N initial / final unit weight $\gamma_{i\,/\,f}$ ϵ_{ay} cyclic axial strain at N vertical effective stress at end of consolidation initial / at end of consolidation void ratio pore water pressure at N **e**_{0 / pc} deviator stress at failure volumetric strain at end of consolidation $\epsilon_{\text{vol;pc}}$ axial strain at failure reference vertical stress pore water pressure at failure number of cycles to failure

Location	Location Sample Depth Formation Test						าร		Final Con	solidation (Conditions		10/0
	No.			ID	Wi	γi	e_0	W _f	γ_{f}	σ'_{vc}	e _{pc}	$\epsilon_{v;pc}$	∆e/e₀
		[m]			[%]	[kN/m³]	[-]	[-]	[kN/m³]	[kPa]	[-]	[%]	[-]
BH-WFS2-3	9B	18.06		DSS02	28.1	19.4	0.749	27.6	19.5	185	0.735	1.10	0.02
BH-WFS1-4	17C	34.76		DSS01	22.6	20.1	0.612	22.0	20.2	350	0.597	1.39	0.03
BH-WFS1-4	17C	35.00		CSS01	20.5	20.1	0.584	18.8	20.5	350	0.538	2.89	0.08
BH-WFS1-4	17C	35.04	Rupel	CSS02	21.1	19.9	0.610	20.4	20.0	350	0.589	1.27	0.02
BH-WFS1-4	17D	35.05		CSS03	22.5	20.0	0.625	21.4	20.2	350	0.594	1.86	0.05
BH-WFS1-4	17D	35.00		CSS04	22.5	20.2	0.604	21.4	20.4	351	0.574	1.85	0.05
BH-WFS1-4	17C	35.07		CSS05	21.6	19.9	0.614	20.4	20.1	350	0.582	1.98	0.05
BH-WFS2-6A	15B	40.06		DSS03	23.8	18.7	0.751	21.0	19.1	400	0.676	6.22	0.10
BH-WFS2-7	19C	33.31		DSS04	40.4	17.7	1.105	39.5	17.8	310	1.082	1.56	0.02
BH-WFS2-7	20C	34.31		DSS05	40.8	17.5	1.134	39.7	17.6	316	1.105	1.39	0.03
BH-WFS2-7	19C	33.40		CSS06	38.9	18.0	1.046	38.1	18.1	310	1.022	1.15	0.02
BH-WFS2-7	19C	33.45	Dongern	CSS07	39.2	17.7	1.087	38.4	17.8	310	1.065	1.01	0.02
BH-WFS2-7	19D	33.55		CSS08	40.6	17.6	1.116	39.1	17.8	310	1.076	1.91	0.04
BH-WFS2-7	19D	33.59		CSS09	40.6	17.7	1.113	39.4	17.8	310	1.079	1.58	0.03
BH-WFS2-7	19D	33.61		CSS10	36.7	17.8	1.044	35.5	17.9	310	1.014	1.49	0.03
BH-WFS2-7	20C	34.39		CSS11	42.1	17.5	1.156	41.2	17.6	316	1.134	1.04	0.02

Notes:

σ'_{vc} = σ'_{vc(max)}
 Shear stage performed at constant volume
 Numbers in italic are being verified and may change

Key:

initial water content initial unit weight initial void ratio

void ratio at end of consolidation

vertical effective stress at end of consolidation

vertical strain at end of consolidation

change of void ratio from initial conditions to estimated in-situ stress conditions

Plate A1-5

Location	Sample	Formation	Depth	Test		At	At Peak Shear Stress (static)				Cyclic Loading								At Peak Shear Stress (post-cyclic static)		
	No.			ID.	σ'_{vc}	Su	s _u /σ' _{vc}	γς	Δu	S _{u;ref}	τ _{av} /S _{u;ref}	${\tau_{cy}}^{\!\!\!/} S_{u;ref}$	N	γav	γсу	Ua	τ _f	γς	Δu_{f}		
			[m]		[kPa]	[kPa]	[-]	[%]	[kPa]	[kPa]	[-]	[-]	[-]	[%]	[%]	[kPa]	[kPa]	[%]	[kPa]		
BH-WFS2-3	9B		18.06	DSS02	185	180	0.97	9.8	-79	ı	-	-	-	-	-	-	-	-	-		
BH-WFS1-4	17C		34.76	DSS01	350	316	0.90	27.5	-76	ı	-	-	-	-	-	-	-	-	-		
BH-WFS1-4	17C		35.00	CSS01	350	-	-	-	1	316	0	0.37	1500	-0.2	3.6	263	211	20.8	89		
BH-WFS1-4	17C	Rupel	35.04	CSS02	350	ı	ı	-	ı	316	0	0.52	103	1.84	14.4	164	159	27.3	98		
BH-WFS1-4	17D		35.05	CSS03	350	-	-	-	-	316	0	0.43	1500	-0.1	2.0	204	325	29.9	-50		
BH-WFS1-4	17D		35.00	CSS04	350	-	-	-	-	316	0	0.59	467	-2.6	15.7	201	233	30.0	8		
BH-WFS1-4	17C		35.07	CSS05	350	-	-	-	-	316	0	0.69	46	0.1	15.3	187	285	29.9	-4		
BH-WFS2-6A	15B		40.06	DSS03	400	152	0.38	14.7	115	-	-	-	-	-	-	-	-	-	-		
BH-WFS2-7	19C		33.31	DSS04	310	253	0.82	11.5	-109	-	-	-	-	-	-	-	-	-	-		
BH-WFS2-7	20C		34.31	DSS05	316	240	0.76	10.1	-44	-	-	-	-	-	-	-	-	-	-		
BH-WFS2-7	19C		33.40	CSS06	310	-	-	-	-	253	0	0.32	1500	0.0	0.7	26	211	7.2	-80		
BH-WFS2-7	19C	Dongern	33.45	CSS07	310	-	-	-	-	253	0	0.48	1500	-0.4	1.5	136	291	13.2	-119		
BH-WFS2-7	19D		33.55	CSS08	310	-		-	1	253	0	0.58	1500	0.6	5.9	171	234	15.2	-47		
BH-WFS2-7	19D		33.59	CSS09	310	-	=	-	-	253	0	0.66	1500	0.8	4.5	169	285	14.2	-60		
BH-WFS2-7	19D		33.61	CSS10	310	-	=	-	-	253	0	0.77	182	-2.1	15.1	132	210	28.9	-88		
BH-WFS2-7	20C		34.39	CSS11	316	-	-	-	-	253	0	0.89	26	-1.1	15.6	7	210	29.7	-161		

Notes:

- o'_vc = o'_vc(max)
 Static, cyclic and post-cyclic shear stages performed at constant volume
 Numbers in italic are being verified and may change

INUI		in talle are being verified and may enange			
Key:			τ_{ay}	=	average shear stress at N
			τ_{cy}	=	cyclic shear stress at N
σ'_{vc}	=	vertical effective stress at end of consolidation	γ_{ay}	=	average shear strain at N
$\mathbf{S}_{\mathbf{u}}$	=	undrained shear strength	γсу	=	cyclic shear strain at N
γс	=	shear strain at peak shear stress	u_{a}	=	inferred pore water pressure at N
Δu	=	change in inferred pore water pressure	τ_{f}	=	shear stress at failure
$s_{\text{u;ref}} \\$	=	reference undrained shear strength	γ_{f}	=	shear strain at failure
N	=	number of cycles to failure	\mathbf{u}_{f}	=	inferred pore water pressure at failure

SECTION A&: INDEX LABORATORY TESTS

Particle Size Distribution

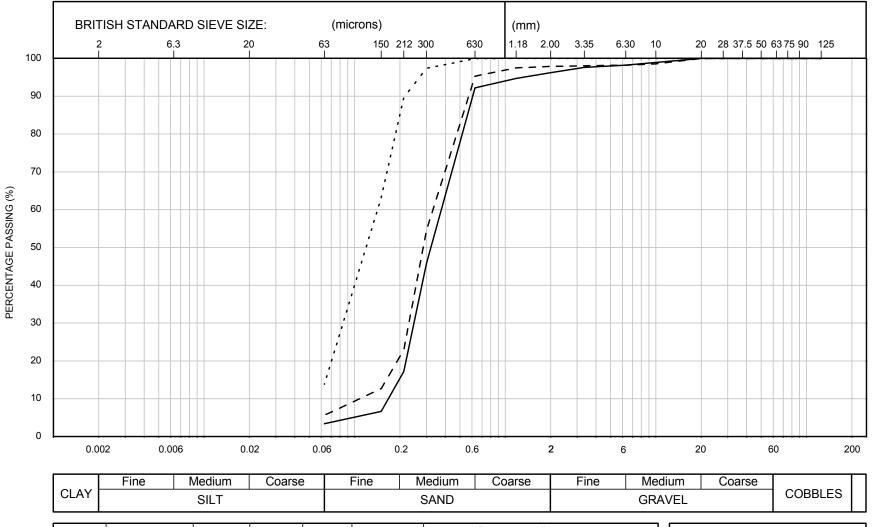
LIST OF PLATES IN SECTION A2:	Plate

A2-1

Date: 29/06/2015

Template Issue: 5:0

Drawn by: ER


Date: 26/06/2015

Approved by: ALB

Date: 29/06/2015

Filename: J11286 \ CLASS \ Southern Bight_Batch_ps.OPJ

PARTICLE SIZE DISTRIBUTION TEST RESULTS BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Curve	Borehole	Sample D	Depth (m)	BS Test *	Pretreatment	Percentage soil types				
Curve	Borenoic	Campic	Deptii (iii)	Method	Method	Clay	Silt†	Sand	Gravel	Cobbles
 	Southern Bight Eem/ Kreftenheye Tongeren	Batch Batch Batch	- - -	9.2 9.2 9.2	N/A N/A N/A		3 5 13	94 93 87	3 2 -	- - -

	* Tested in accordance with the following clauses of BS 1377: Part 2: 1990:				
	9.2 9.3 9.4 9.5	Wet sieve Dry sieve Sedimentation by pipette Sedimentation by hydrometer			

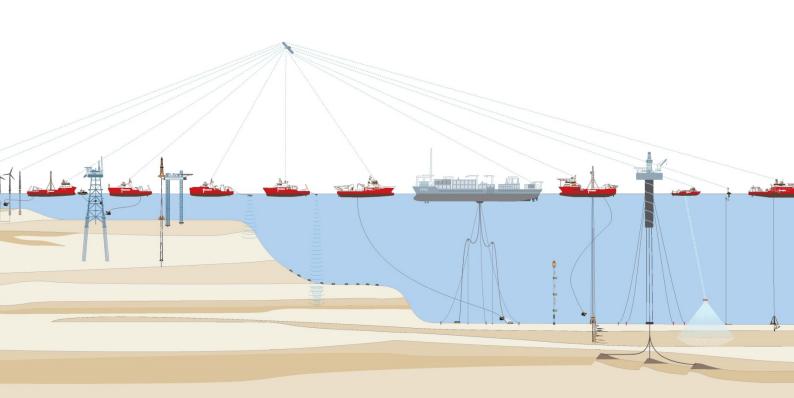
[†] Note: Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SECTION A3: MICROSCOPIC INSPECTION

Technical Note: Microscope Descriptions, Report No. J11286-TN-001 (01)

33 Pages

FUGRO GEOCONSULTING LIMITED


Technical Note: Microscope DescriptionsBorssele Offshore Wind Farm, The Netherlands
North Sea

Fugro Document No.: J11286-TN-001(02)

Rijksdienst voor Ondernemend Nederland (RVO.nl)

Final Technical Note

Project Name: Borssele Microscope Photography

Project Number: J11286 Document Number: J11286-TN-001(02)

Subject: Microscope Descriptions

Issued to: Rijksdienst voor Ondernemend Nederland (RVO.nl) and Fugro Engineers B.V.

Issue Date: 25 August 2015

Prepared by: Leah Arlott and Abigail Walters

Checked by: Chris E Smith Approved by: Lorraine O'Leary and Grant Lewis

1. PURPOSE OF STUDY

Reflected light microscopic analysis was carried out on 27 samples from the Borssele windfarm site on behalf of Fugro Engineers B.V. in order to determine the composition of three principal soil units. Microscope analysis provides an additional dataset that can be compared with other relevant geotechnical data (e.g. particle size distribution (PSD) and X-ray diffraction (XRD)) and allows further interpretation based on similar geological formations in the North Sea.

1.1 Project Overview

The 27 samples were taken from 12 geotechnical borehole locations, from depths ranging between 1.0 m and 56.5 m below seafloor (BSF). All samples are bag samples. Table 1.1 summarises the soil units and samples tested.

Table 1.1 Summary of Samples for Microscope Work

Soil Unit	Location	Bag Sample ID	Depth Below Seafloor [m]
	BH-WFS1-1	2A/2B	3.00
	BH-WFS1-3	2A/2B	1.00
Couthorn Dight (A)	BH-WFS1-4	2A/2B	1.00
Southern Bight (A)	BH-WFS2-4	3A	2.00
	BH-WFS2-5	2A/2B	1.00
		4A	3.00
	BH-WFS1-6A	7A	6.00
		10A	8.00
		11A	9.00
		12A	13.00
	BH-WFS2-3	4A	5.00
Eem/Kreftenheye (B)		5A	7.00
	BH-WFS2-4	10A	9.00
		8A	7.00
		9A	8.00
	BH-WFS2-6A	4A	8.00
		5A	9.00
	DILLMEGA 0	14B	25.40
	BH-WFS1-3	16A	34.00
Tangaran (F2)	BH-WFS1-5A	17B	56.45
Tongeren (E2)	BH-WFS1-6	25C	53.60
	BH-WFS2-1A	16A	33.00
	BH-WFS2-3	16A	43.00

1.2 Guidelines on Use of Technical Note

Appendix A (Guidelines on Use of Technical Note) outlines the limitations of this technical note, in terms of a range of considerations including, but not limited to, its purpose, its scope, the data on which it is based, its use by third parties, possible future changes in design procedures and possible changes in the conditions at the site with time. It represents a clear exposition of the constraints which apply to all technical notes issued by Fugro. It should be noted that the Guidelines do not in any way supersede the terms and conditions of the contract between Fugro and Rijksdienst voor Ondernemend Nederland (RVO.nl).

2. METHODOLOGY

2.1 Slide Preparation

Slides of washed and unwashed material were prepared for each sample by smearing a layer of sediment approximately one grain thick onto a glass slide. Care was taken to avoid removing or crushing coarser grains, where present. The washed slide was prepared by washing a small amount of sediment in a clean tray using deionised water. Washing was undertaken to remove any clay or silt coating on grains. In some cases, samples were washed several times until the washing water was visually considered clean.

2.2 Sediment Classification and Descriptions

All sediment classifications for this technical note have been undertaken in accordance with BS 5930:1999 (BSI, 2010).

A hand-sample analysis of the prepared slides and bagged samples was undertaken in order to obtain a generalised soil description. A Munsell colour chart was used to describe the colour of slide samples at least 2 hours following slide preparation, ensuring colours were consistently described from dry samples.

Percentages of each mineral constituent were estimated using a point count method aided by comparison charts such as those of Terry and Chilingar (1955) and Folk (1951). Angularity was estimated and Krumbein roundness number (K) ranges were assigned based on Krumbein (1941). Sizes of shells and shell fragments were described according to BS 5930:1999 (BSI, 2010).

2.3 Photography

Representative photographs were taken at two frame widths: 4 mm and 10 mm. All photographs were taken at these two frame widths to ensure consistency and comparability between plates and samples. The microscope was carefully focussed on the sample prior to the taking of each photograph. Where grains occur at different levels on the slide it was not possible to get the entire frame in focus; in this case the microscope was focussed on the majority of the grains.

Digital photograph files issued with this technical note are named according to the sample name and location, followed by "UW" for unwashed samples and "W" for washed samples. The frame width is also included in the file name.

Features of note in samples, for example echinoid fragments or minerals, were photographed and named as outlined above. Many of these features were photographed during microscope analysis, at differing frame widths.

3. RESULTS

This section presents a broad overview of the findings for each soil unit. Please refer to the plates provided for a detailed description of each sample (Southern Bight Soil Unit - Plates 1.1 to 1.10, Eem/Kreftenheye Soil Unit - Plates 2.1 to 2.11 and Tongeren Soil Unit - Plates 3.1 to 3.6).

3.1 Southern Bight Soil Unit

The Southern Bight soil unit is a moderately to well sorted silty fine to medium sand which commonly contains angular shell fragments. Colours are generally light yellowish browns in the unwashed samples and light grey in washed samples.

The main constituents of the unit are:

- Quartz, which accounts for between 70% and 90% of the sample and is generally clear or colourless, with some grains showing hues of yellow, orange, red or pink;
- Lithic/mafic fragments, accounting for up to 15% of the sample and generally black, grey or dark brown in colour;
- Feldspar, which is approximately 5% of samples and generally white or pale yellowish brown in colour;
- Other minor constituents, which are less than 5% of the sample, including shell fragments and bioclastic debris, glauconite, and mica (muscovite and biotite).

In addition to these constituents, some unwashed samples exhibit a trace coating of silt and/or clay.

3.2 Eem/Kreftenheye Soil Unit

The Eem/Kreftenheye soil unit is a well sorted fine to medium sand. Colours are generally light brownish greys, greys or yellowish browns in unwashed samples and light grey in washed samples.

The main constituents of the unit are:

- Quartz, which accounts for between 85% and 95% of the sample and is generally clear or colourless, with some grains orange, red or pink;
- Lithic/mafic fragments, accounts for up to 5% of the sample and generally dark grey, brown or black in colour;
- Feldspar, which is up to approximately 5% of samples and generally white, pink or orange in colour:
- Other minor constituents, which are generally less than 5% of the sample, including shell fragments and bioclastic debris, calcite, epidote, glauconite, and mica (muscovite).

In addition to these constituents, some unwashed samples exhibit a coating of silt. Epidote in Eem/Kreftenheye samples is pale green in colour with translucent to transparent subangular to

subrounded grains and vitreous lustre. This differentiates it from glauconite pellets which are generally dark green and opaque with no lustre.

3.3 Tongeren Soil Unit

The Tongeren soil unit is a moderately to well sorted clayey or silty fine sand, and is generally olive grey in colour when unwashed and grey or light grey when washed.

The main constituents of the Tongeren unit are:

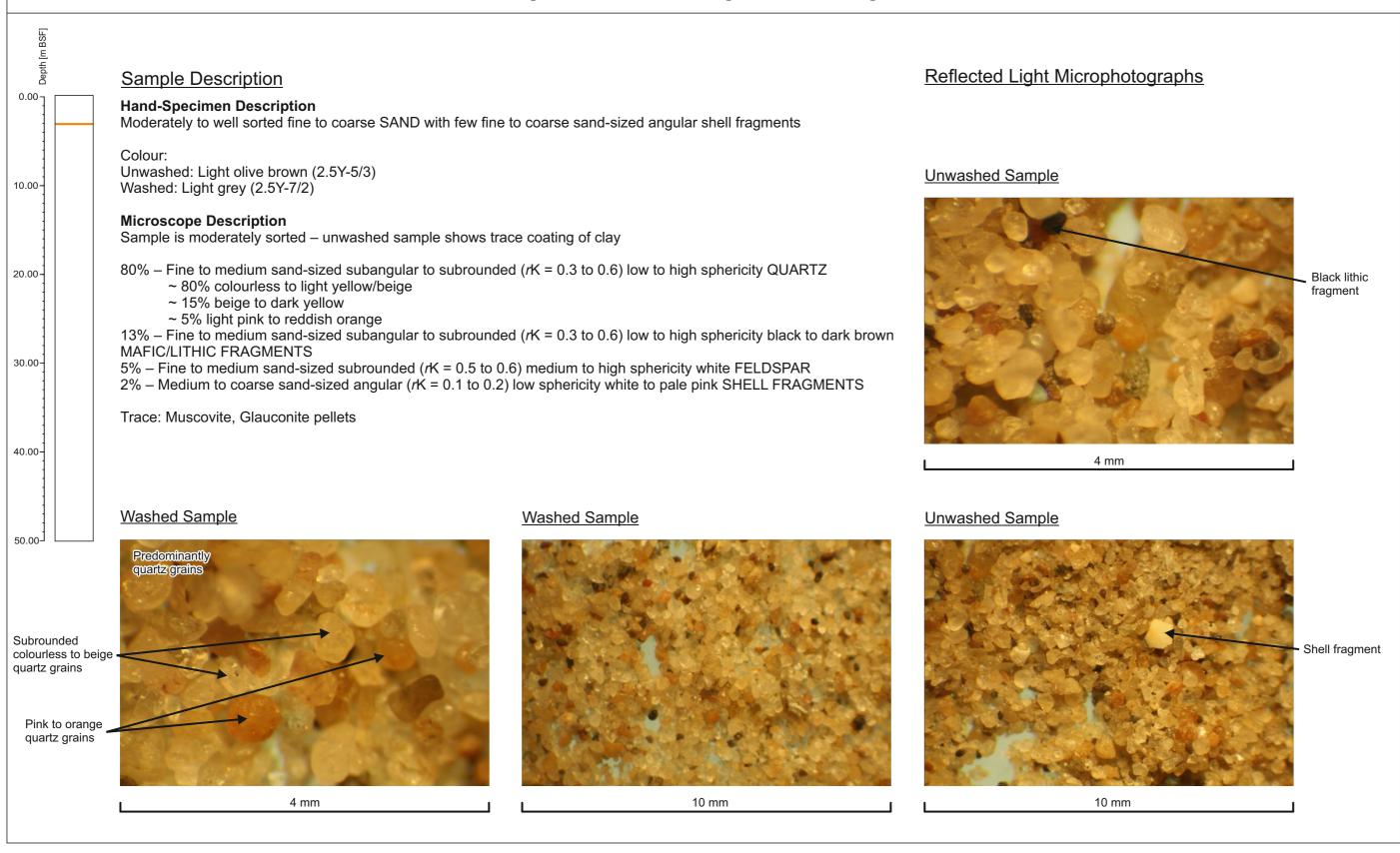
- Quartz, which accounts for between 85% and 88% of the sample and is generally clear or colourless, with some grains pale yellow, pale orange or pale pink;
- Glauconite pellets, account for between 7% and 10% of the sample and dark greyish green in colour;
- Lithic/mafic fragments, which is up to 5% of the sample and generally dark grey, brown or black in colour;
- Other minor constituents, which are generally less than 5% of the sample, including shell fragments and bioclastic debris, calcite, epidote, glauconite, and mica.

All samples are coated with either clay or silt. Epidote in Tongeren samples is pale green in colour with translucent to transparent subangular to subrounded grains and vitreous lustre. This differentiates it from glauconite pellets which are generally dark green and opaque with no lustre. Epidote was only identified in one sample of the Tongeren soil unit (Sample BH-WFS2-3 16 BAG A).

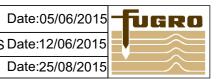
4. REFERENCES

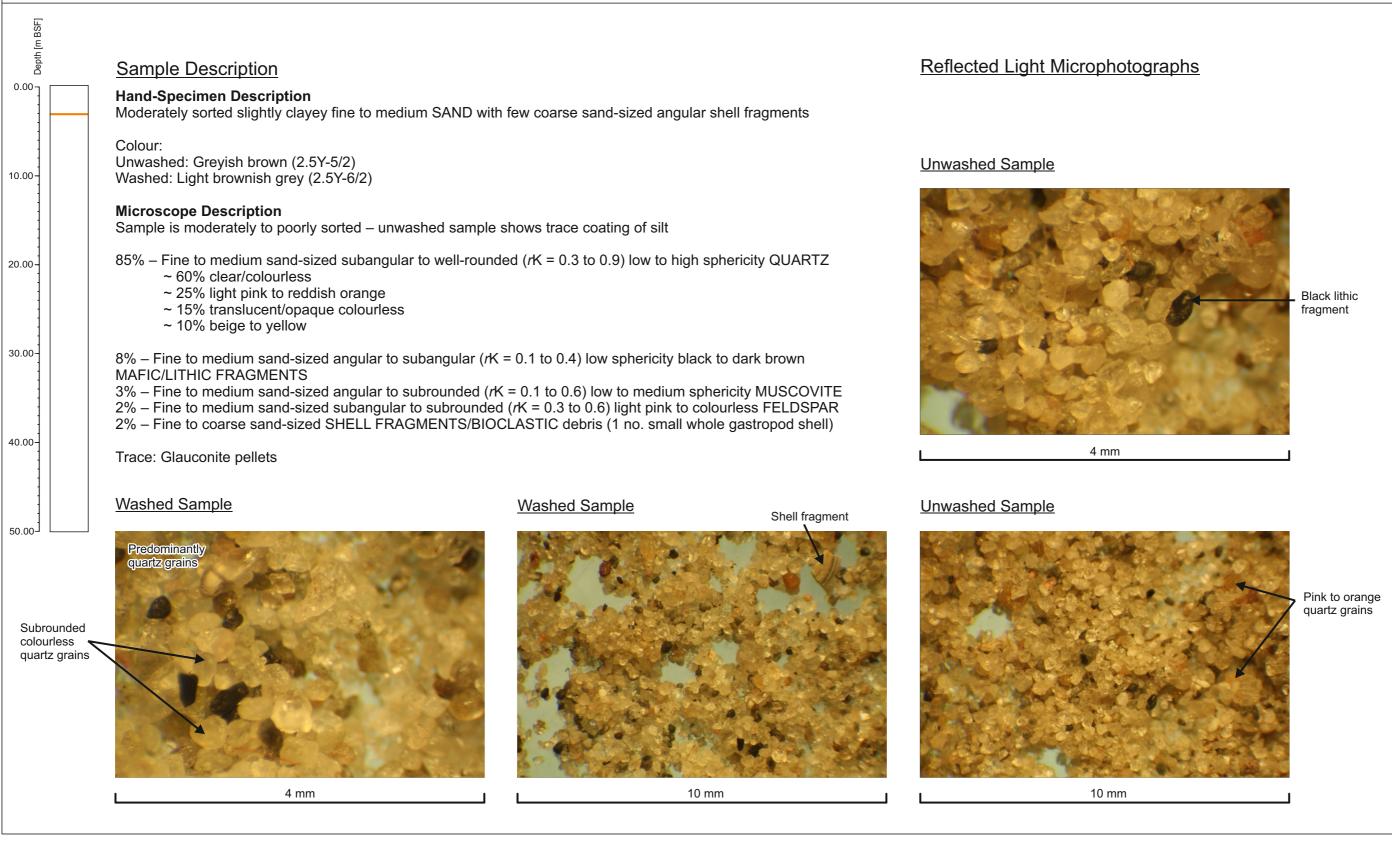
BSI, 2010. BS 5930:1999 Code of Practice for Site Investigations, Incorporating Amendment No. 2. London: BSI.

FOLK, R. L., 1951. *A Comparison Chart for Visual Percentage Estimation*, Journal of Sedimentary Petrology, **21** (1) pp 32–33.


KRUMBEIN, W. C., 1941. *Measurement and Geological Significance of Shape and Roundness of Sedimentary Particles*, Journal of Sedimentary Petrology **11** (2), pp 64–72.

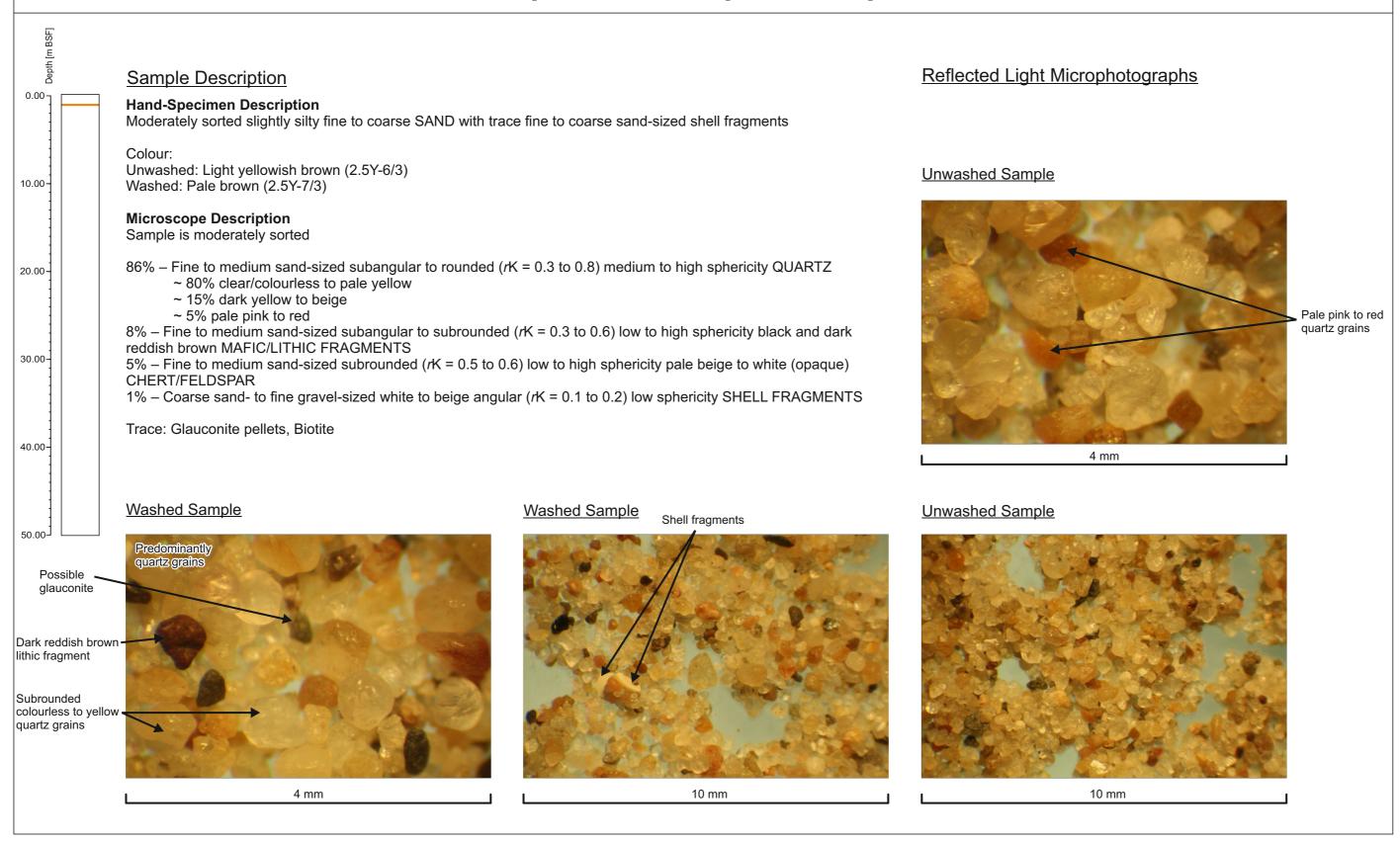
TERRY, R. D and CHILINGAR, G. V., 1955. Summary of "Concerning some additional aids in studying sedimentary formations' In. SHESTOV, M.S., 1955. Studying Sedimentary Formations, Journal of Sedimentary Petrology, **25** (3), pp 229–234.


LIST OF PLATES


Title	Plate No.
Southern Bight Soil Unit	
Detailed Microscope Description: BH-WFS1-1 Sample 2 BAG A	1.1
Detailed Microscope Description: BH-WFS1-1 Sample 2 BAG B	1.2
Detailed Microscope Description: BH-WFS1-3 Sample 2 BAG A	1.3
Detailed Microscope Description: BH-WFS1-3 Sample 2 BAG B	1.4
Detailed Microscope Description: BH-WFS1-4 Sample 2 BAG A	1.5
Detailed Microscope Description: BH-WFS1-4 Sample 2 BAG B	1.6
Detailed Microscope Description: BH-WFS2-4 Sample 3 BAG A	1.7
Detailed Microscope Description: BH-WFS2-5 Sample 2 BAG A	1.8
Detailed Microscope Description: BH-WFS2-5 Sample 2 BAG B	1.9
Detailed Microscope Description: BH-WFS2-5 Sample 4 BAG A	1.10
Eem/Kreftenheye Soil Unit	
Detailed Microscope Description: BH-WFS1-6a Sample 7 BAG A	2.1
Detailed Microscope Description: BH-WFS1-6a Sample 10 BAG A	2.2
Detailed Microscope Description: BH-WFS1-6a Sample 11 BAG A	2.3
Detailed Microscope Description: BH-WFS1-6a Sample 12 BAG A	2.4
Detailed Microscope Description: BH-WFS2-3 Sample 4 BAG A	2.5
Detailed Microscope Description: BH-WFS2-3 Sample 5 BAG A	2.6
Detailed Microscope Description: BH-WFS2-4 Sample 8 BAG A	2.7
Detailed Microscope Description: BH-WFS2-4 Sample 9 BAG A	2.8
Detailed Microscope Description: BH-WFS2-4 Sample 10 BAG A	2.9
Detailed Microscope Description: BH-WFS2-6a Sample 4 BAG A	2.10
Detailed Microscope Description: BH-WFS2-6a Sample 5 BAG A	2.11
Tongeren Soil Unit	
Detailed Microscope Description: BH-WFS1-3 Sample 14 BAG B	3.1
Detailed Microscope Description: BH-WFS1-3 Sample 16 BAG A	3.2
Detailed Microscope Description: BH-WFS1-5a Sample 17 BAG B	3.3
Detailed Microscope Description: BH-WFS1-6 Sample 25 BAG C	3.4
Detailed Microscope Description: BH-WFS2-1a Sample 16 BAG A	3.5
Detailed Microscope Description: BH-WES2-3 Sample 16 BAG A	3.6

J11286 - N6016 Borssele
Detailed Microscope Description

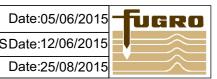
Sample Location: BH-WFS1-1 Sample Name: 2 BAG A Depth [m BSF]: 3.00 Soil Unit: Southern Bight Plate Number: 1.1 Logged by: ASW Date:05/06/2015
Checked by: LA/CES Date:12/06/2015
Approved by: GML Date:25/08/2015


J11286 - N6016 Borssele
Detailed Microscope Description

Sample Location: BH-WFS1-1 Sample Name: 2 BAG B Depth [m BSF]: 3.00 Soil Unit: Southern Bight Plate Number: 1.2 Logged by: LM Date:05/06/2015

Checked by:LA/CES Date:12/06/2015

Approved by: GML Date:25/08/2015



J11286 - N6016 Borssele
Detailed Microscope Description

Sample Location: BH-WFS1-3 Sample Name: 2 BAG A Depth [m BSF]: 1.00 Soil Unit: Southern Bight

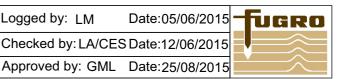
Plate Number: 1.3 Logged by: ASW Date:05/06/2015
Checked by: LA/CESDate:12/06/2015
Approved by: GML Date:25/08/2015

Depth [m BSF] Reflected Light Microphotographs Sample Description 0.00¬ **Hand-Specimen Description** Well sorted slightly silty medium SAND with few angular shell fragments Unwashed: Pale brown (2.5Y-7/4) Washed: Light yellowish brown (2.5Y-6/4) **Unwashed Sample** 10.00 **Microscope Description** Sample is moderately to well sorted 70% – Medium sand-sized subangular to subrounded (rK = 0.3 to 0.6) medium sphericity QUARTZ ~ 50% clear, colourless 20.00-~ 20% light pink to orange ~ 20% beige to yellow ~ 10% frosted, colourless 15% – Fine to coarse sand-sized angular to subangular (rK = 0.1 to 0.4) low to high sphericity black to dark grey and dark brown MAFIC/LITHIC FRAGMENTS 30.00-10% – Fine to coarse sand-sized angular to subangular (rK = 0.1 to 0.4) low to high sphericity pink to beige LITHIC FRAGMENTS 2% – Medium to coarse sand-sized angular (rK = 0.1 to 0.2) low sphericity pink and beige SHELL FRAGMENTS 2% - Fine to medium sand-sized subangular to rounded (rK = 0.3 to 0.8) low to high sphericity dark grey LITHIC FRAGMENTS 1% - Fine to medium sand-sized subangular to subrounded (rK = 0.3 to 0.6) low to medium sphericity milky white CALCITE Trace: Feldspar, Glauconite pellets, Mica 40.00-4 mm Washed Sample Washed Sample **Unwashed Sample** 50.00-**Predominantly** quartz grains Dark brown Z lithic fragments

J11286 - N6016 Borssele **Detailed Microscope Description**

4 mm

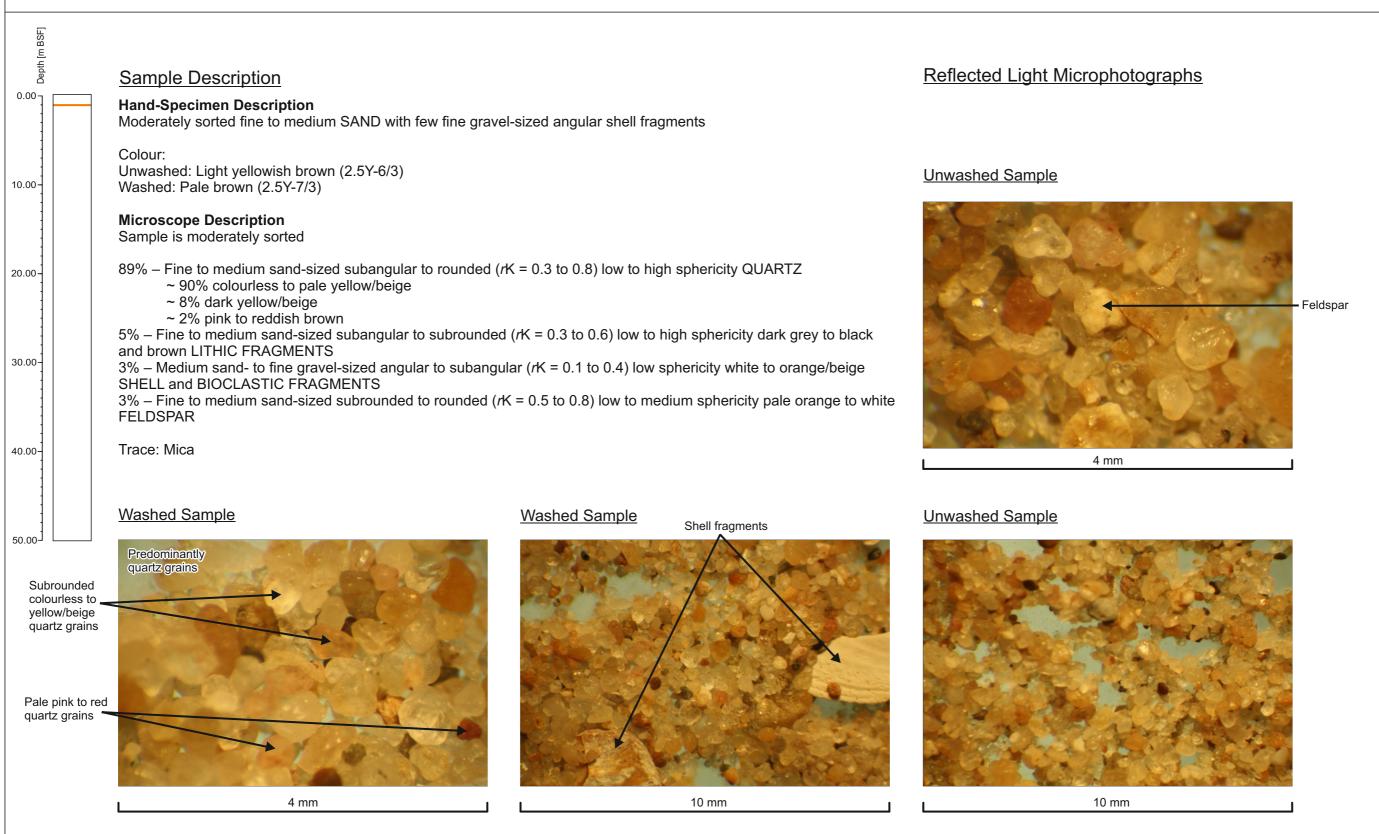
Sample Location: BH-WFS1-3 Sample Name: 2 BAG B


Depth [m BSF]: 1.00 Soil Unit: Southern Bight

10 mm

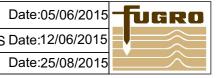
Plate Number:

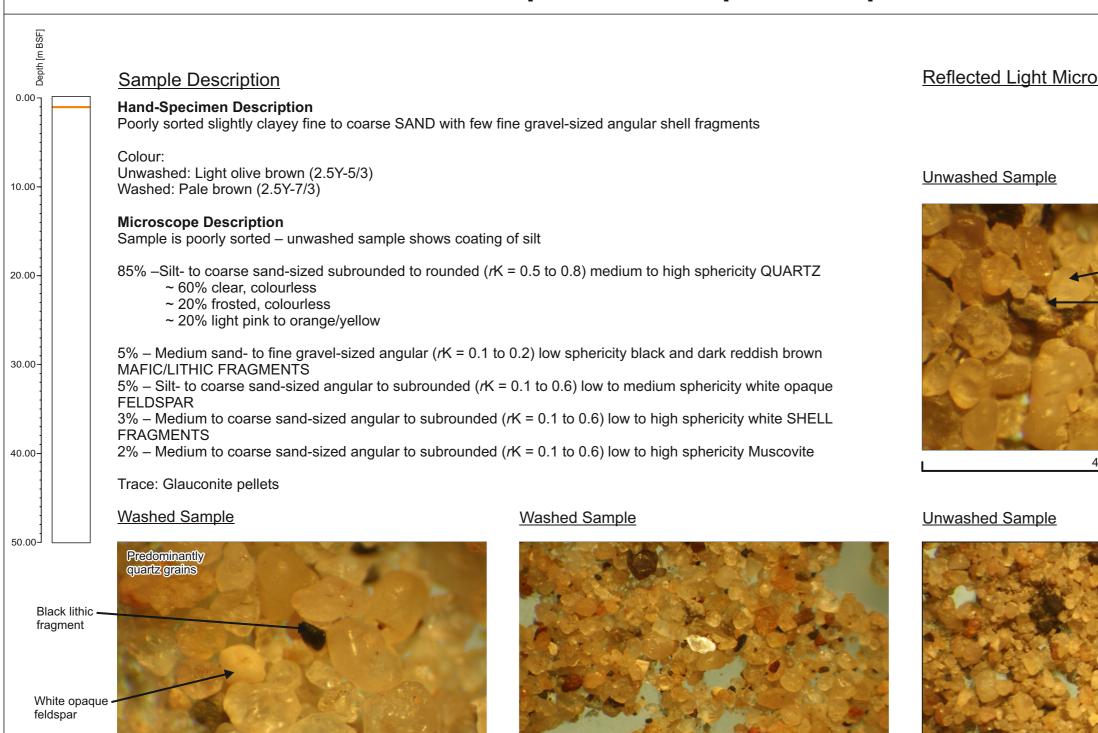
Logged by: LM Checked by: LA/CES Date:12/06/2015


10 mm

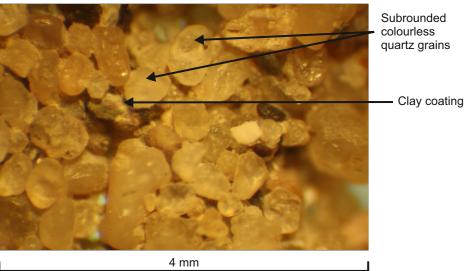
Shell fragments

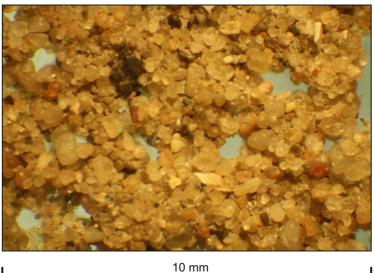
Black lithic


fragment



J11286 - N6016 Borssele
Detailed Microscope Description

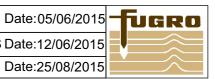

Sample Location: BH-WFS1-4 Sample Name: 2 BAG A Depth [m BSF]: 1.00 Soil Unit: Southern Bight

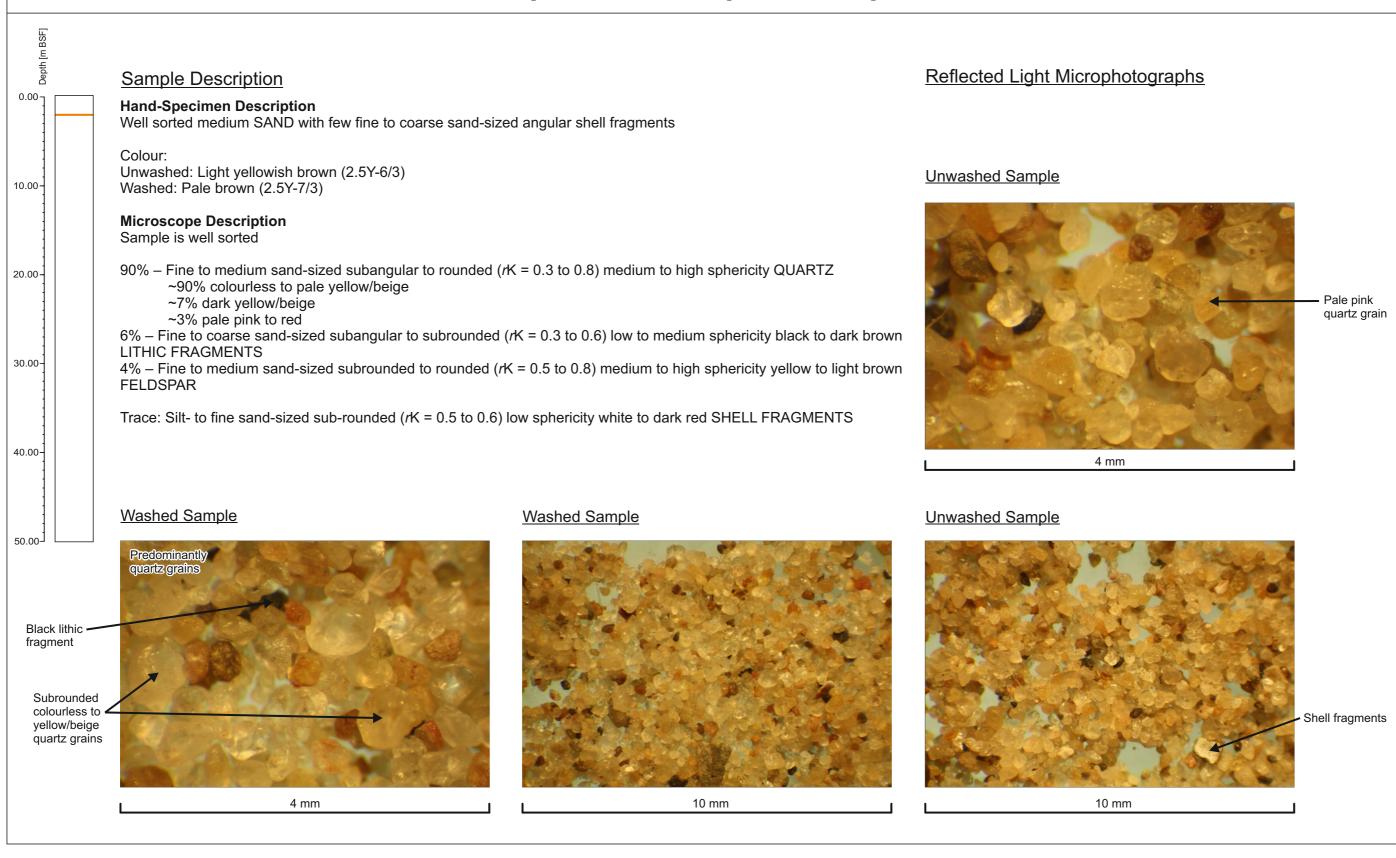

Plate Number: 1.5 Logged by: ASW Date:05/06/2015
Checked by: LA/CES Date:12/06/2015
Approved by: GML Date:25/08/2015

Reflected Light Microphotographs

J11286 - N6016 Borssele **Detailed Microscope Description**

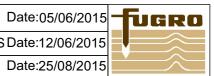
4 mm

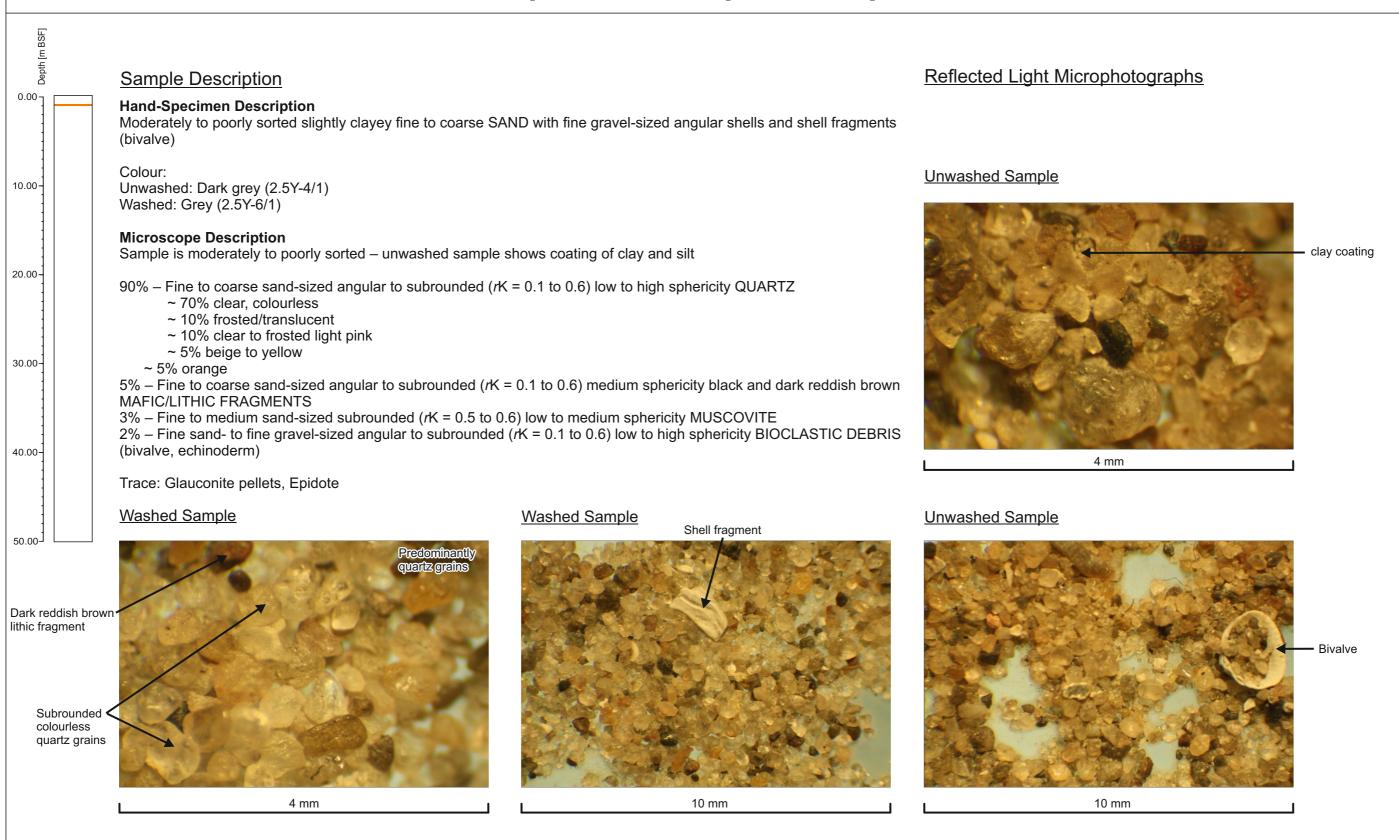

Sample Location: BH-WFS1-4 Sample Name: 2 BAG B


Depth [m BSF]: 1.00 Soil Unit: Southern Bight

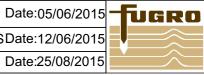
10 mm

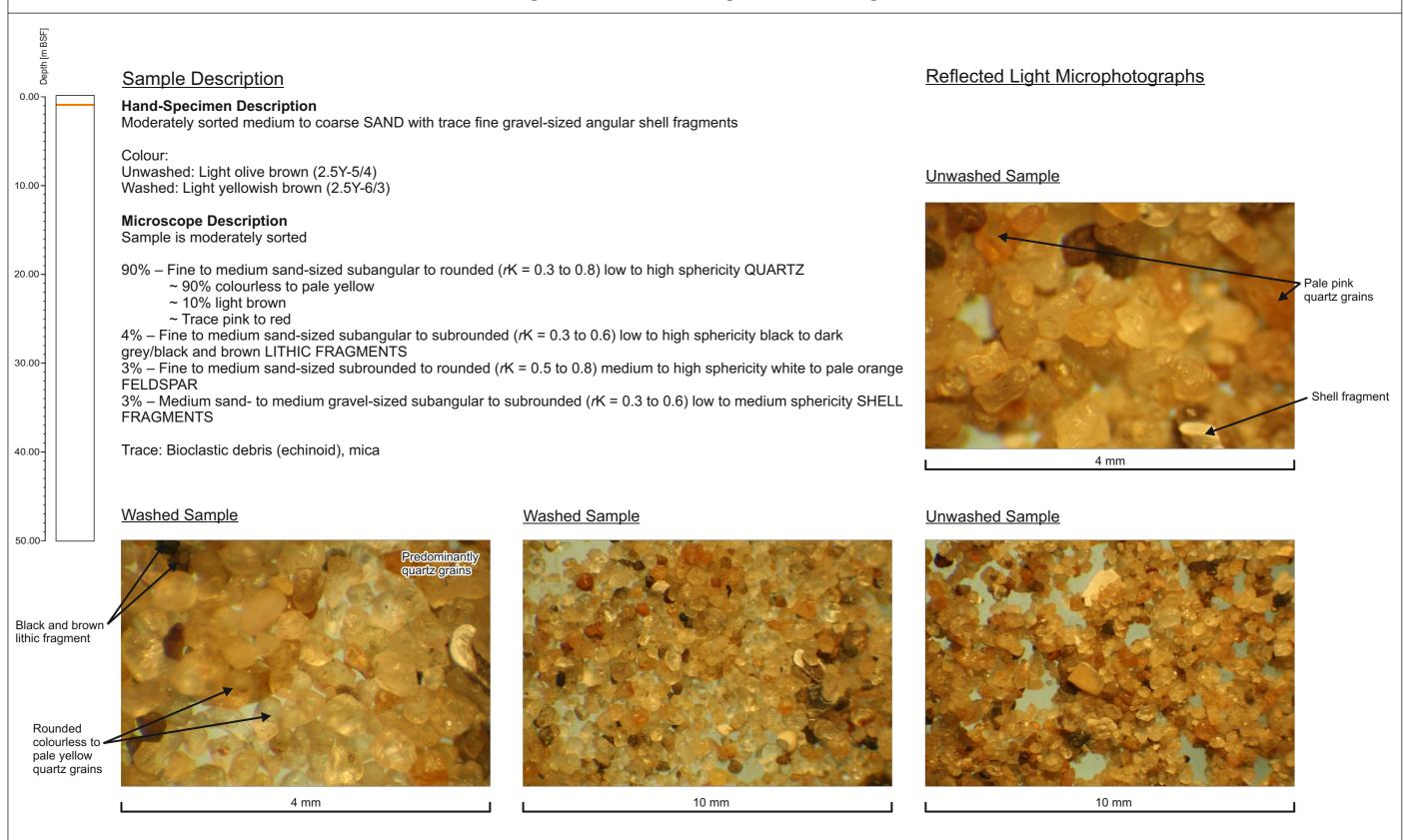
Plate Number: 1.6


Logged by: LM Checked by:LA/CES Date:12/06/2015 Approved by: GML Date:25/08/2015

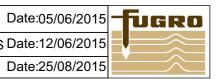


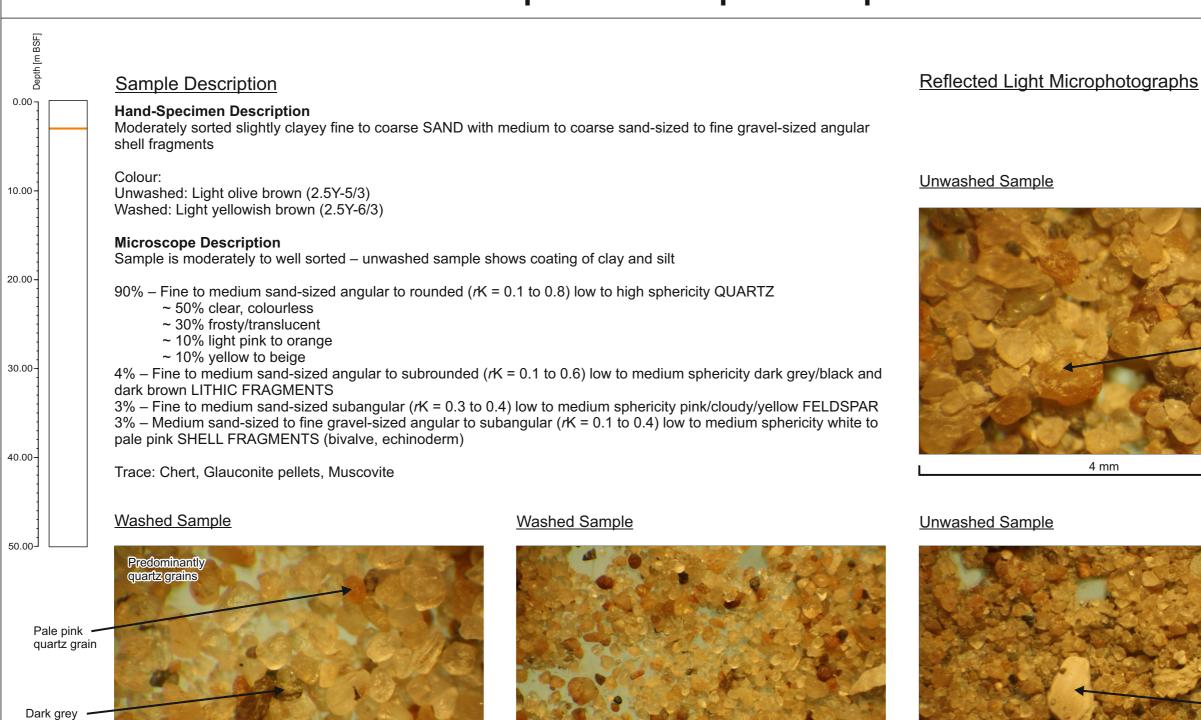
J11286 - N6016 Borssele Detailed Microscope Description Sample Location: BH-WFS2-4 Sample Name: 3 BAG A Depth [m BSF]: 2.00 Soil Unit: Southern Bight


Plate Number: 1.7 Logged by: ASW Date:05/06/2015
Checked by: LA/CES Date:12/06/2015
Approved by: GML Date:25/08/2015



J11286 - N6016 Borssele
Detailed Microscope Description


Sample Location: BH-WFS2-5 Sample Name: 2 BAG A Depth [m BSF]: 1.00 Soil Unit: Southern Bight Plate Number: 1.8 Logged by: LM Date:05/06/2015
Checked by: LA/CESDate:12/06/2015
Approved by: GML Date:25/08/2015



J11286 - N6016 Borssele
Detailed Microscope Description

Sample Location: BH-WFS2-5 Sample Name: 2 BAG B Depth [m BSF]: 1.00 Soil Unit: Southern Bight Plate Number: 1.9 Logged by: ASW Date:05/06/2015
Checked by: LA/CES Date:12/06/2015
Approved by: GML Date:25/08/2015

J11286 - N6016 Borssele **Detailed Microscope Description**

4 mm

lithic fragment

Subrounded colourless quartz grains

> Sample Location: BH-WFS2-5 Sample Name: 4 BAG A

Depth [m BSF]: 3.00 Soil Unit: Southern Bight

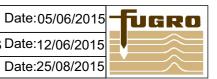
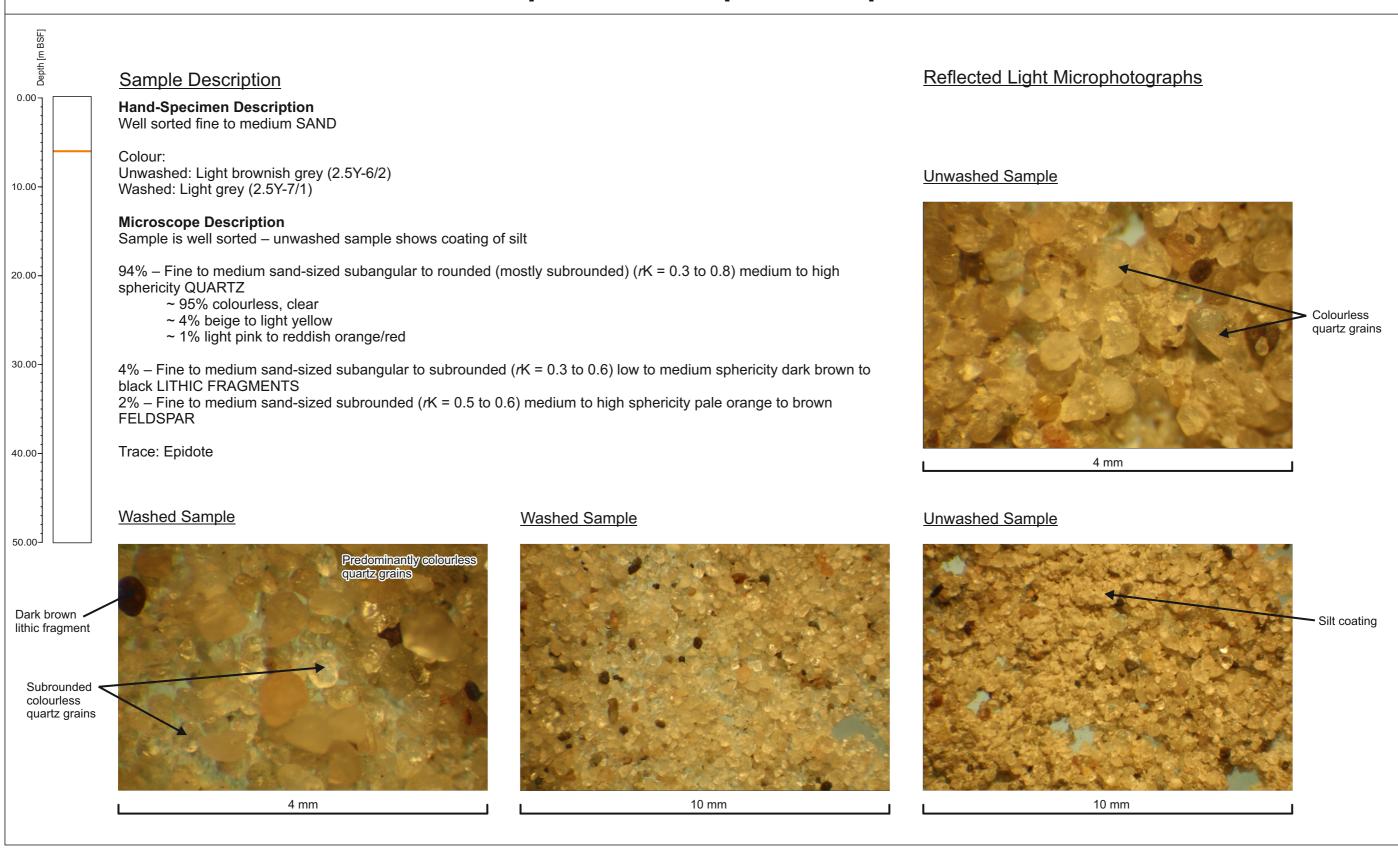

10 mm

Plate Number: 1.10


Logged by: LM Checked by: LA/CES Date: 12/06/2015 Approved by: GML Date:25/08/2015

4 mm

10 mm

Shell fragments

J11286 - N6016 Borssele **Detailed Microscope Description** Sample Location: BH-WFS1-6a Sample Name: 7 BAG A

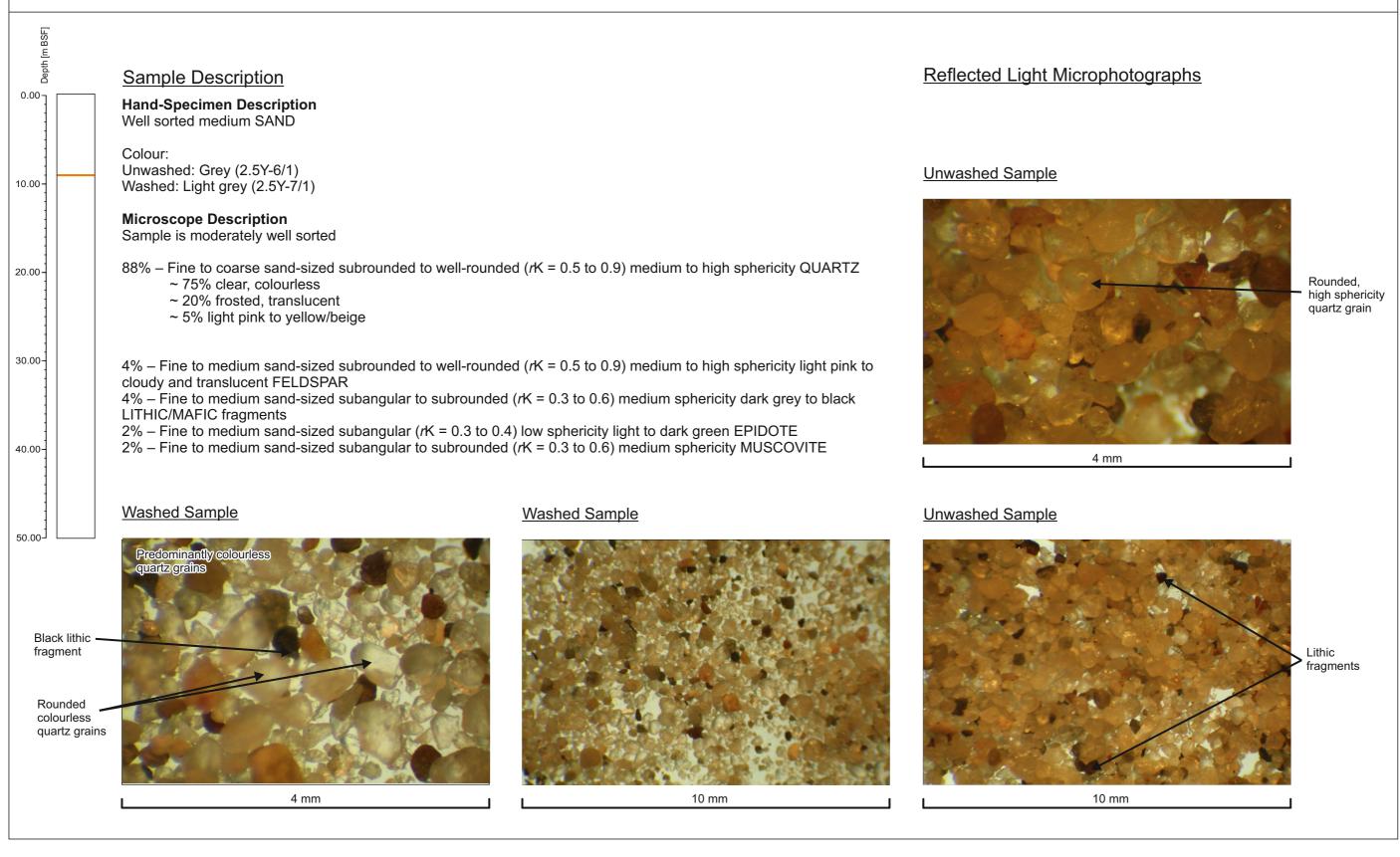
Depth [m BSF]: 6.0 Soil Unit: Eem/Kreftenheye

Plate Number: 2.1

Logged by: ASW Date: 09/06/2015 Checked by: LA/CES Date: 12/06/2015 Approved by: GML Date: 25/08/2015

Sample Microscope Description Depth [m BSF] Reflected Light Microphotographs Sample Description 0.00¬ **Hand-Specimen Description** Well sorted fine to medium SAND Colour: Unwashed: Light yellowish brown (2.5Y-6/3) **Unwashed Sample** Washed: Light grey (2.5Y-7/2) 10.00 **Microscope Description** Sample is well sorted – unwashed sample shows trace coating of silt 85% – Fine to coarse sand-sized angular to subrounded (rK = 0.1 to 0.6) low to high sphericity QUARTZ 20.00-Black lithic ~ 80% clear, colourless fragment ~ 10% beige to light yellowish ~ 10% frosted, translucent 5% – Fine to medium sand-sized angular to subrounded (rK = 0.1 to 0.6) dark grey to black MAFIC/LITHIC 30.00-**FRAGMENTS** 5% – Fine to coarse sand-sized subangular to subrounded (rK = 0.3 to 0.6) medium sphericity pink to cloudy translucent **FELDSPAR** 5% – Fine to medium sand-sized subrounded (rK = 0.5 to 0.6) low to high sphericity light green EPIDOTE Trace: Muscovite 40.00-4 mm Washed Sample Washed Sample **Unwashed Sample** 50.00-Predominantly colourless quartz grains Dark brown lithic fragment Subrounded Feldspar grain colourless quartz grains 4 mm 10 mm 10 mm

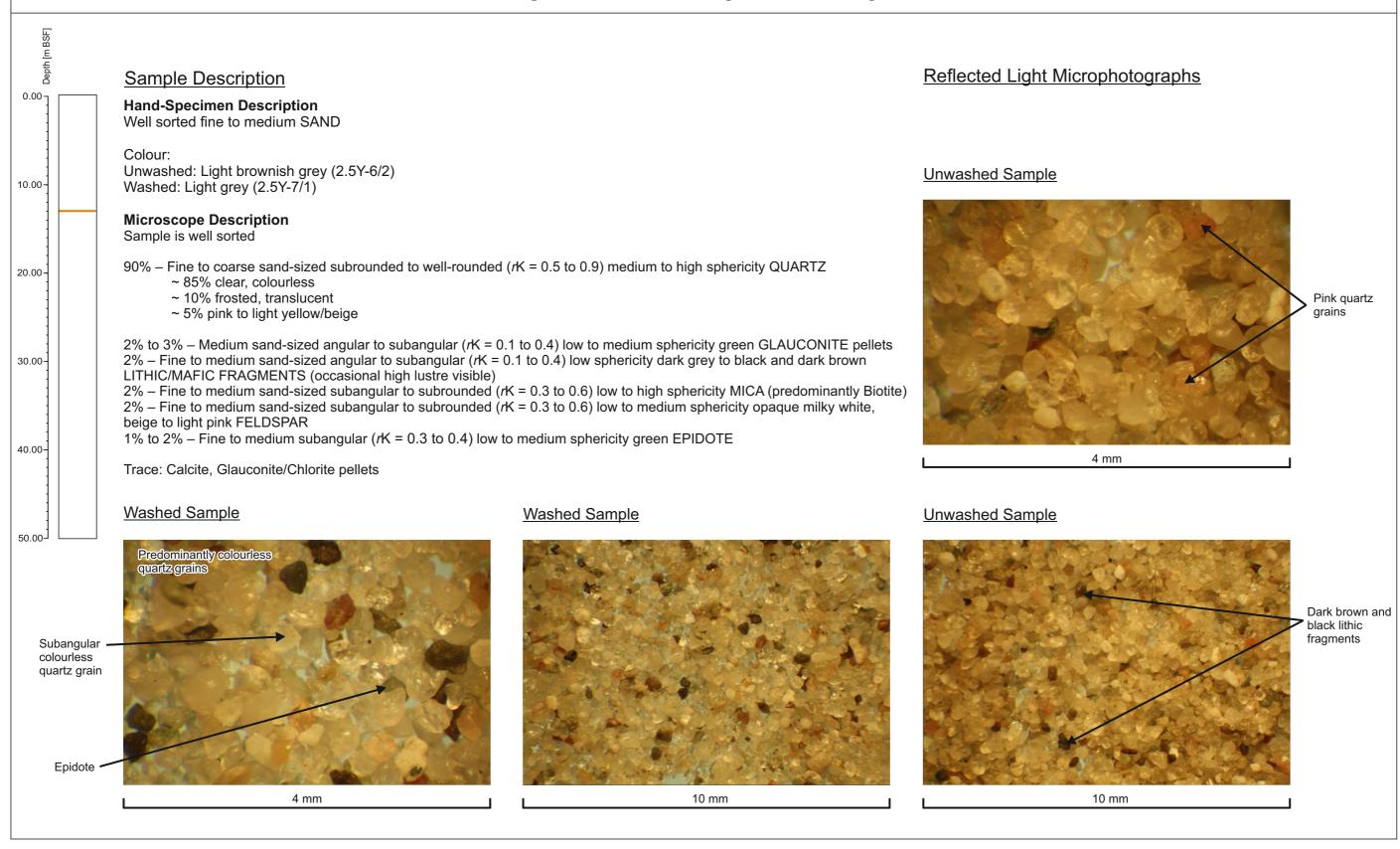

J11286 - N6016 Borssele **Detailed Microscope Description**


Sample Location: BH-WFS1-6a Sample Name: 10 BAG A

Depth [m BSF]: 8.0 Soil Unit: Eem/Kreftenheye

Plate Number: 2.2

Date:08/06/2015 **- FUGRO** Logged by: LM Checked by:LA/CES Date:12/06/2015

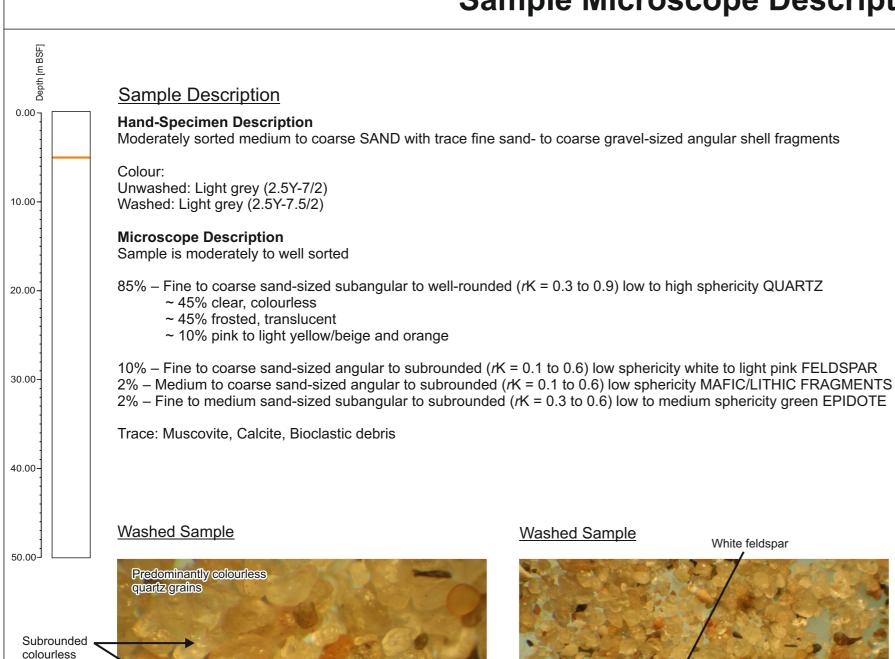


J11286 - N6016 Borssele **Detailed Microscope Description** Sample Location: BH-WFS1-6a Sample Name: 11 BAG A

Depth [m BSF]: 9.0 Soil Unit: Eem/Kreftenheye **Plate** Number: 2.3

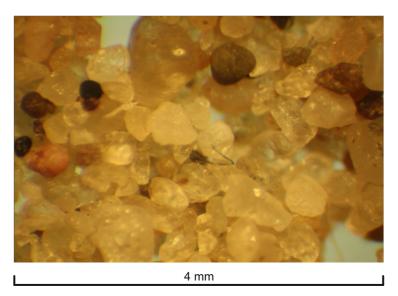
Logged by: LM Checked by:LA/CES Date:12/06/2015

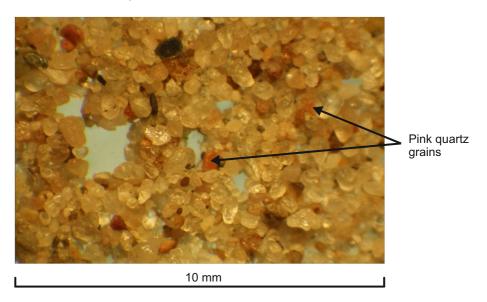
J11286 - N6016 Borssele
Detailed Microscope Description


Sample Location: BH-WFS1-6a Sample Name: 12 BAG A

Depth [m BSF]: 13.0 Soil Unit: Eem/Kreftenheye Plate Number: 2.4 Logged by: LM Date:08/06/2015

Checked by:LA/CES Date:12/06/2015


Approved by: GML Date:25/08/2015



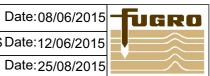
Reflected Light Microphotographs

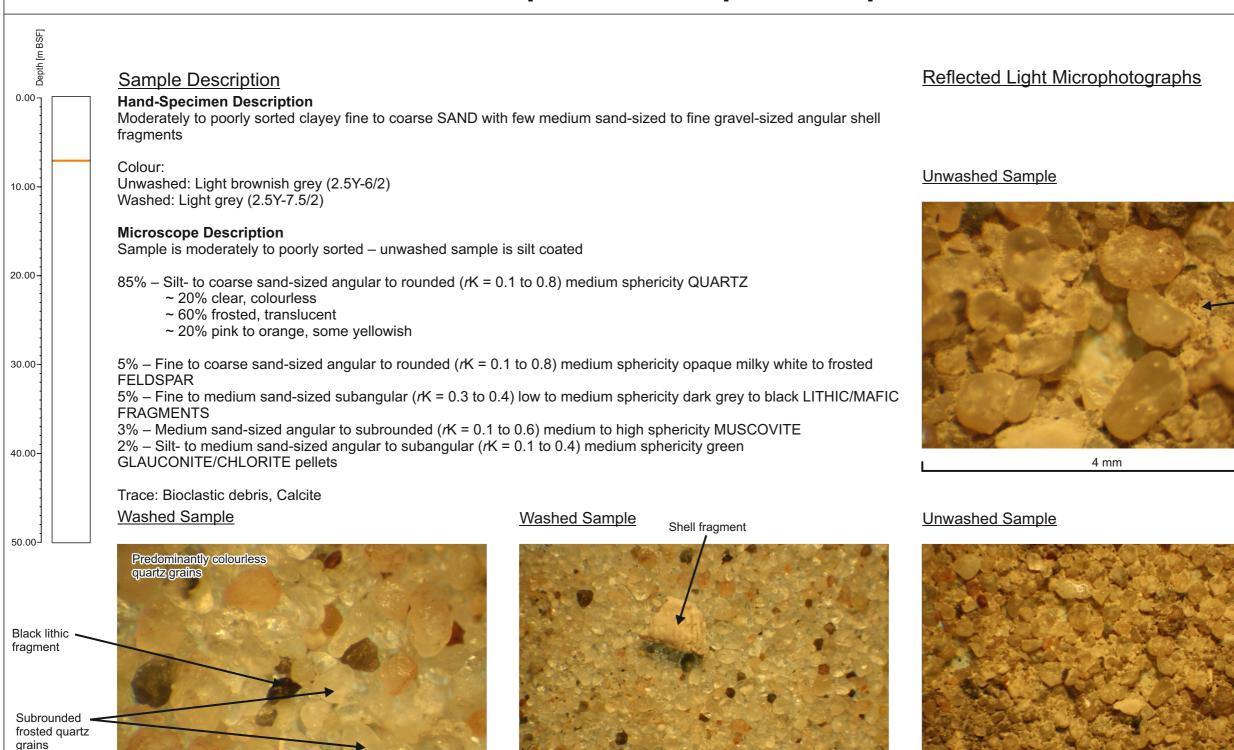
Unwashed Sample

Unwashed Sample

J11286 - N6016 Borssele
Detailed Microscope Description

4 mm


quartz grains


Dark grey to black lithic fragment

Sample Location: BH-WFS2-3 Sample Name: 4 BAG A Depth [m BSF]: 5.0 Soil Unit: Eem/Kreftenheye

10 mm

Plate Number: 2.5 Logged by: LM Date: 08/06/2015
Checked by: LA/CES Date: 12/06/2015
Approved by: GML Date: 25/08/2015

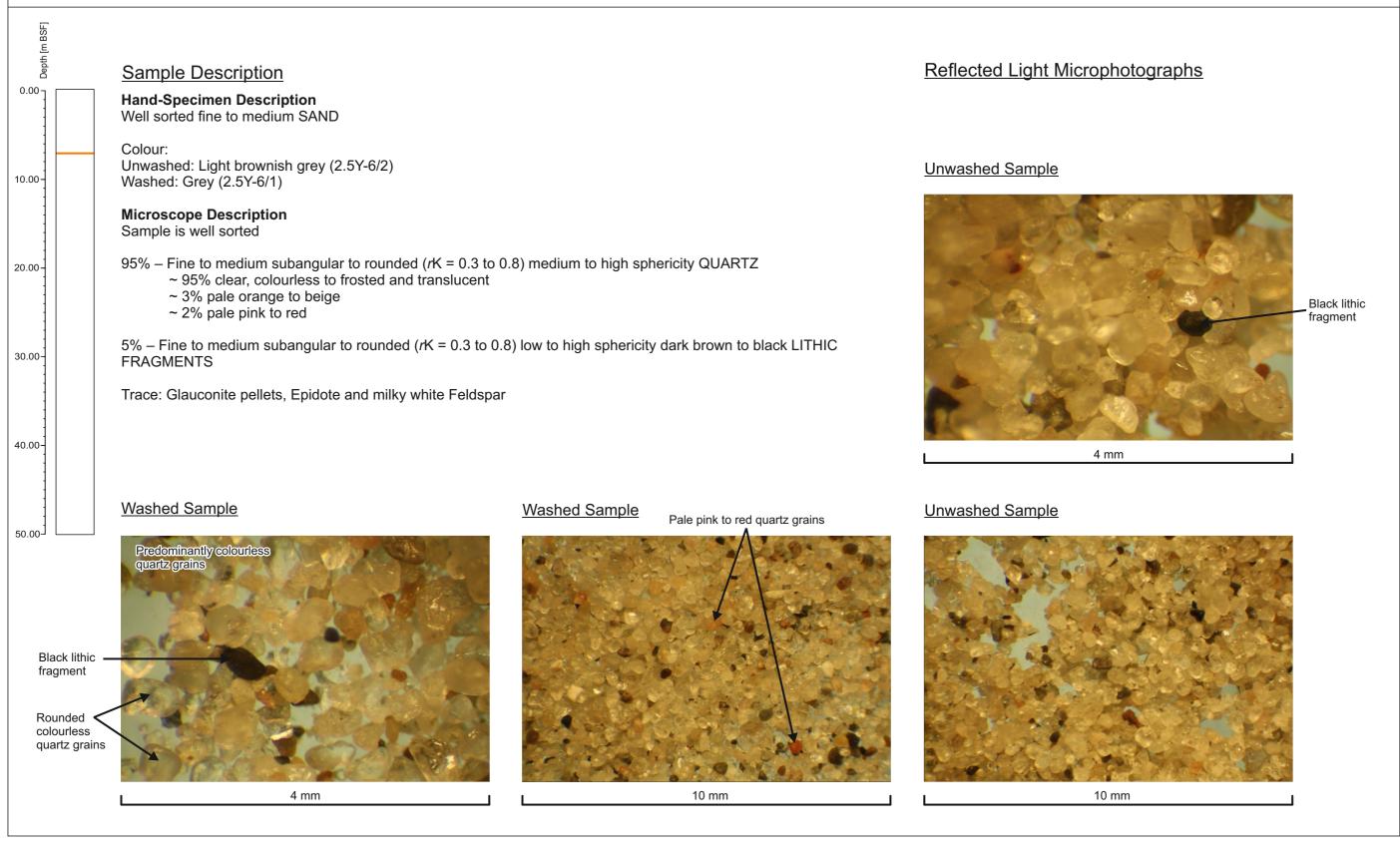
J11286 - N6016 Borssele **Detailed Microscope Description**

4 mm

Sample Location: BH-WFS2-3 Sample Name: 5 BAG A

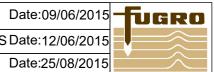
Depth [m BSF]: 7.0 Soil Unit: Eem/Kreftenheye

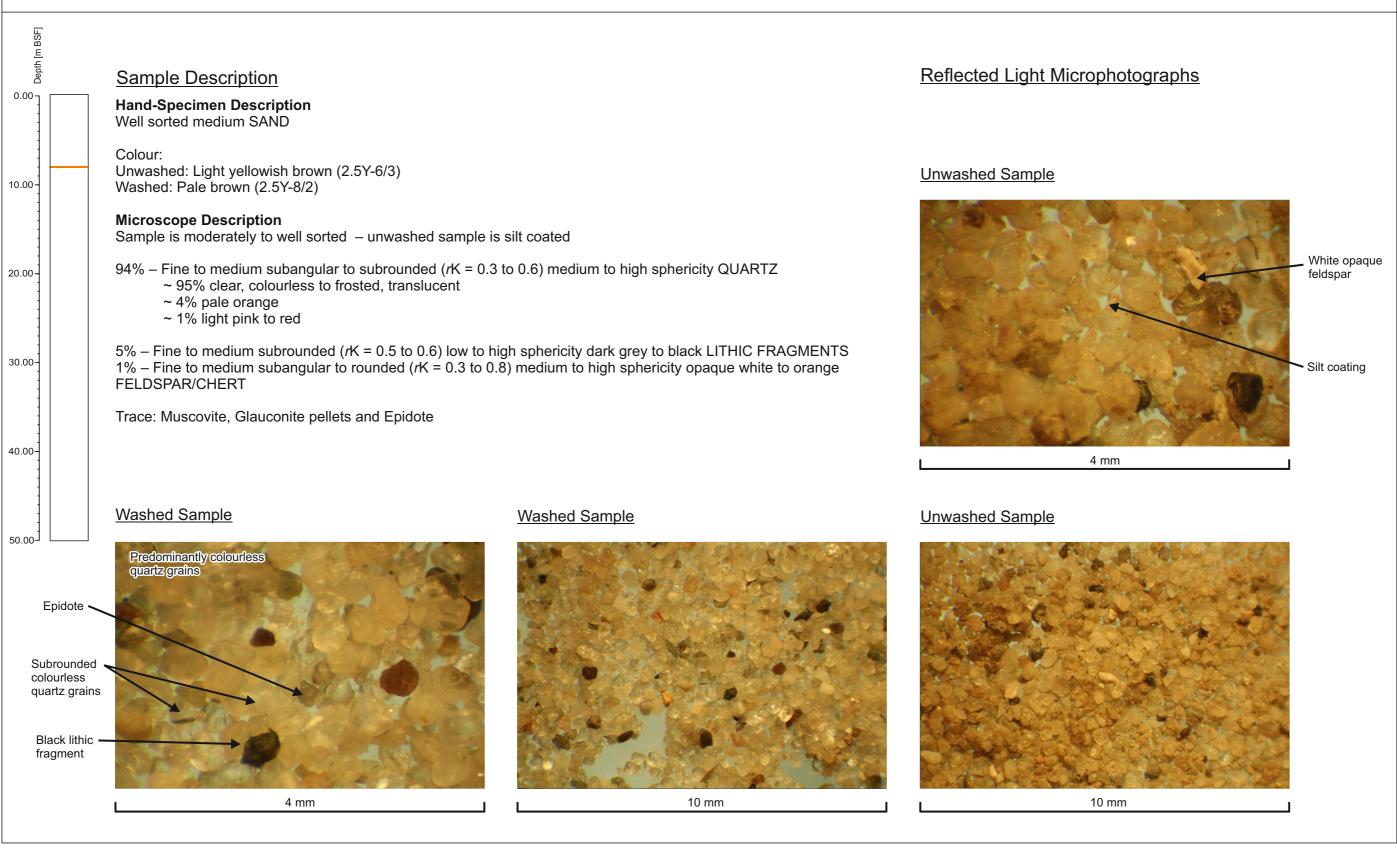
10 mm


Plate Number: 2.6

Date:08/06/2015 Logged by: LM Checked by: LA/CES Date: 12/06/2015

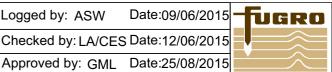
10 mm

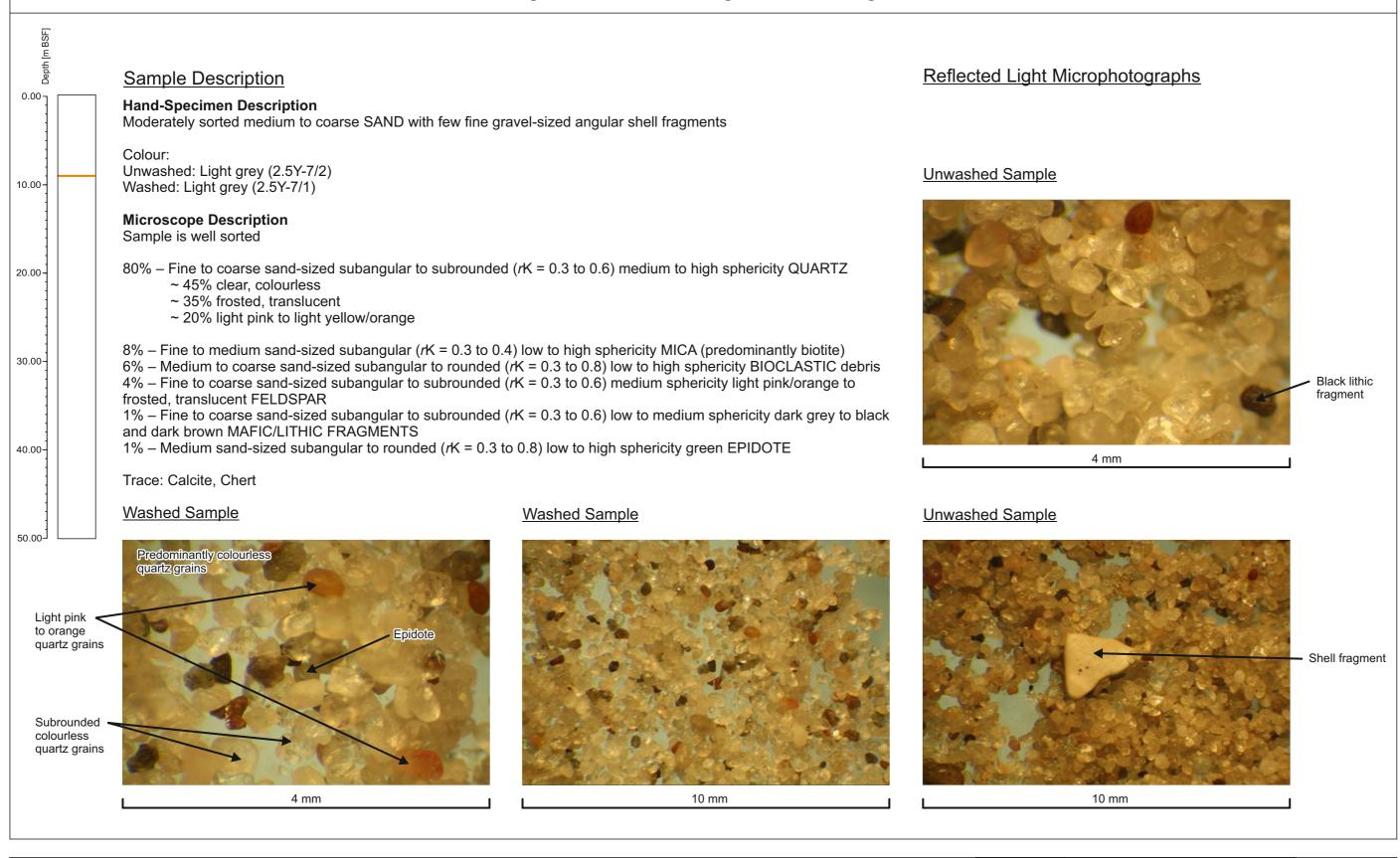



Silt coating

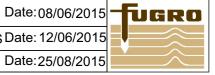
J11286 - N6016 Borssele
Detailed Microscope Description

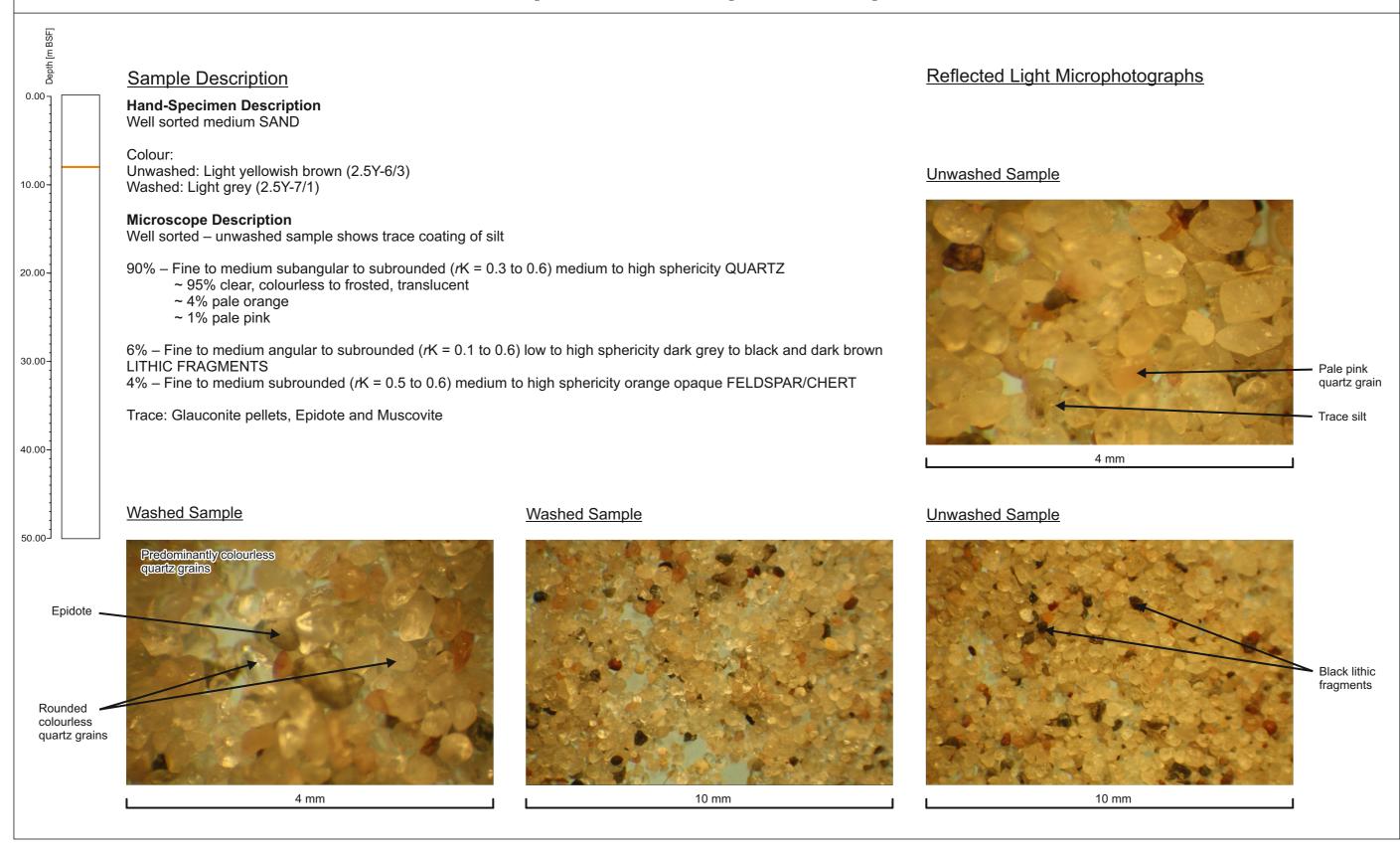
Sample Location: BH-WFS2-4 Sample Name: 8 BAG A Depth [m BSF]: 7.0 Soil Unit: Eem/Kreftenheye Plate Number: 2.7 Logged by: ASW Date:09/06/2015
Checked by: LA/CES Date:12/06/2015
Approved by: GML Date:25/08/2015



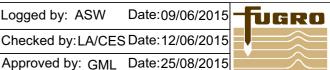

J11286 - N6016 Borssele **Detailed Microscope Description**

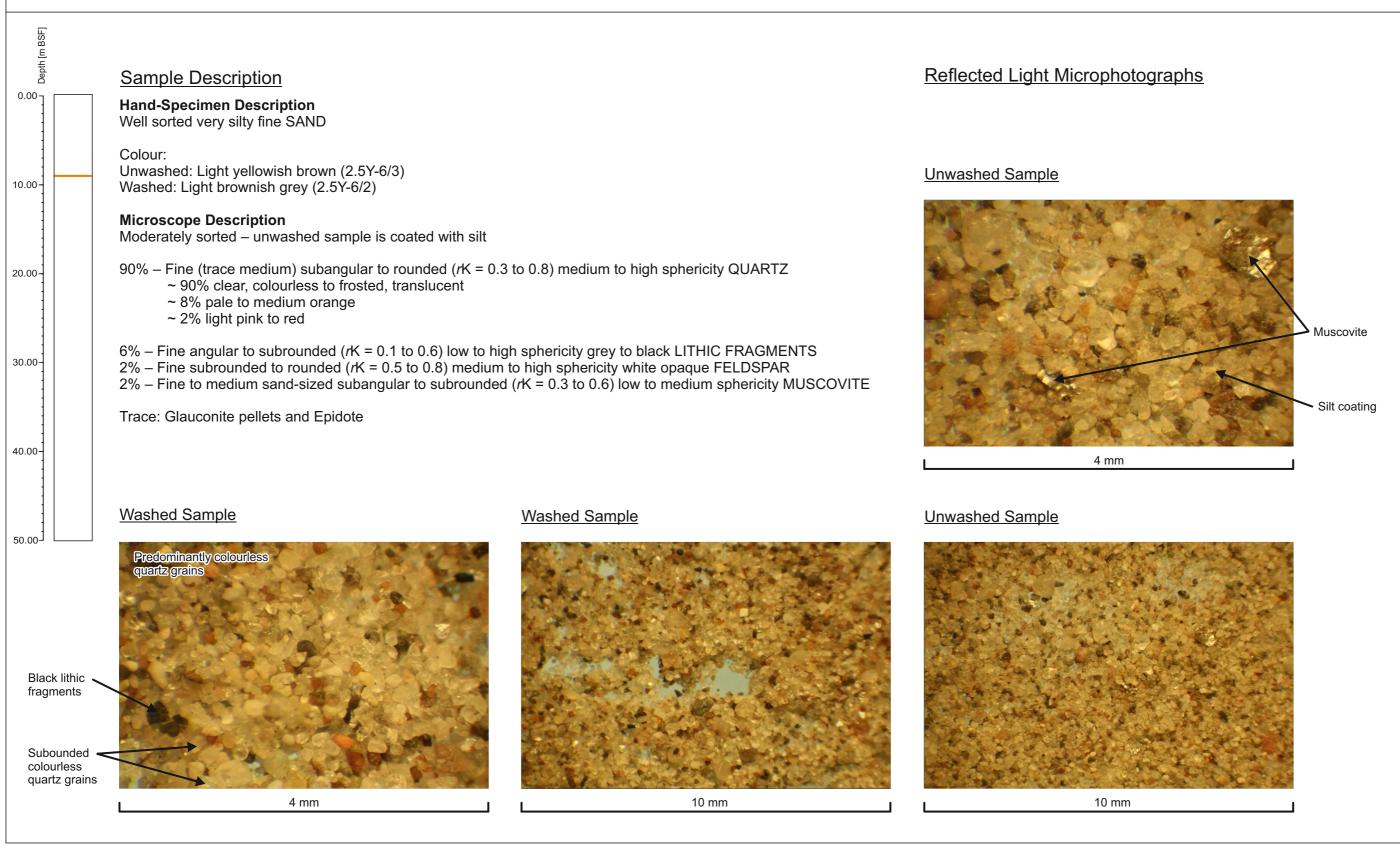
Sample Location: BH-WFS2-4 Sample Name: 9 BAG A


Depth [m BSF]: 8.0 Soil Unit: Eem/Kreftenheye **Plate** Number: 2.8


Logged by: ASW Checked by: LA/CES Date:12/06/2015

J11286 - N6016 Borssele Detailed Microscope Description Sample Location: BH-WFS2-4 Sample Name: 10 BAG A Depth [m BSF]: 9.0 Soil Unit: Eem/Kreftenheye Plate Number: 2.9 Logged by: LM Date: 08/06/2015
Checked by: LA/CES Date: 12/06/2015
Approved by: GML Date: 25/08/2015

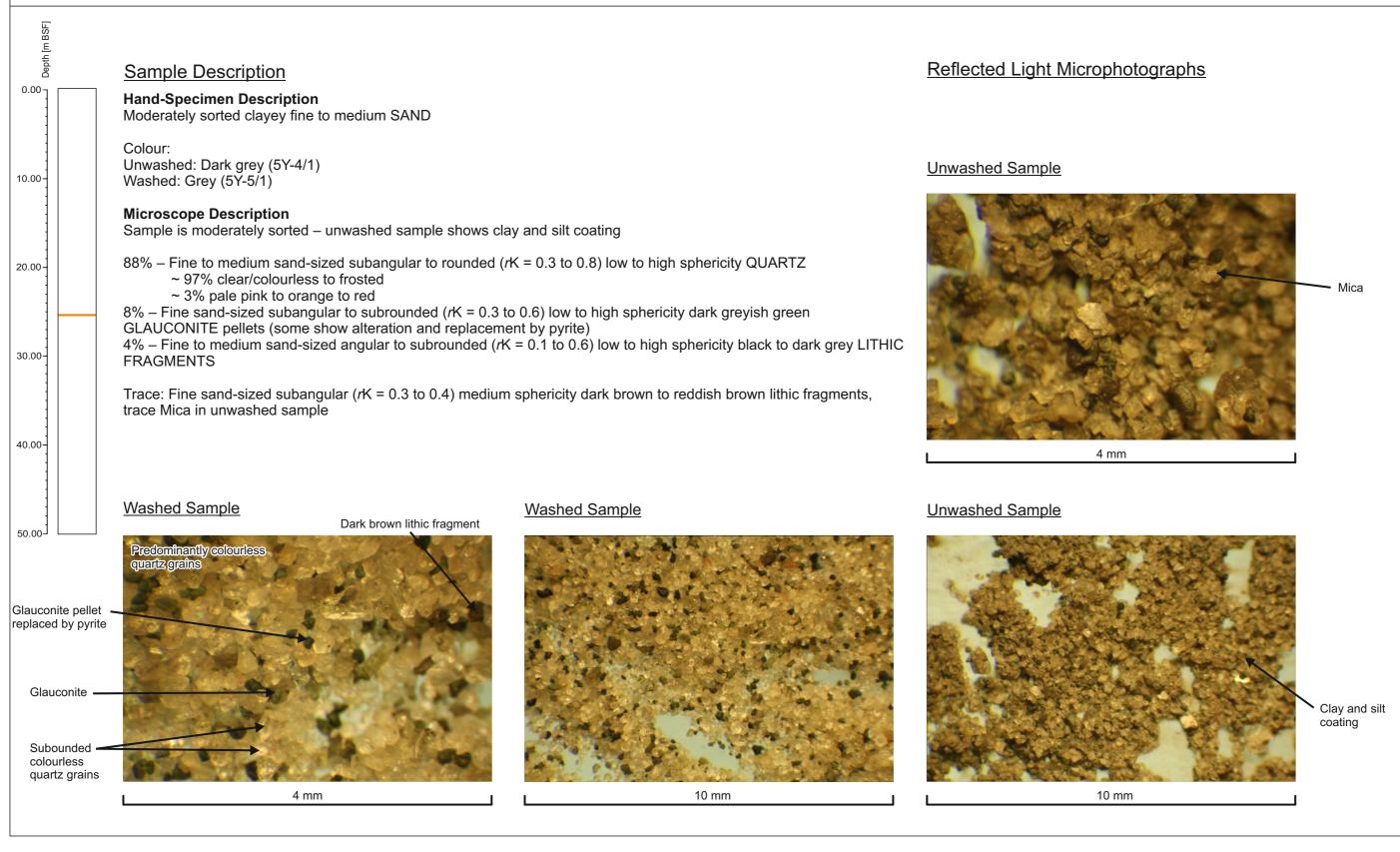



J11286 - N6016 Borssele **Detailed Microscope Description**

Sample Location: BH-WFS2-6a Sample Name: 4 BAG A

Depth [m BSF]: 8.0 Soil Unit: Eem/Kreftenheye **Plate** Number: 2.10

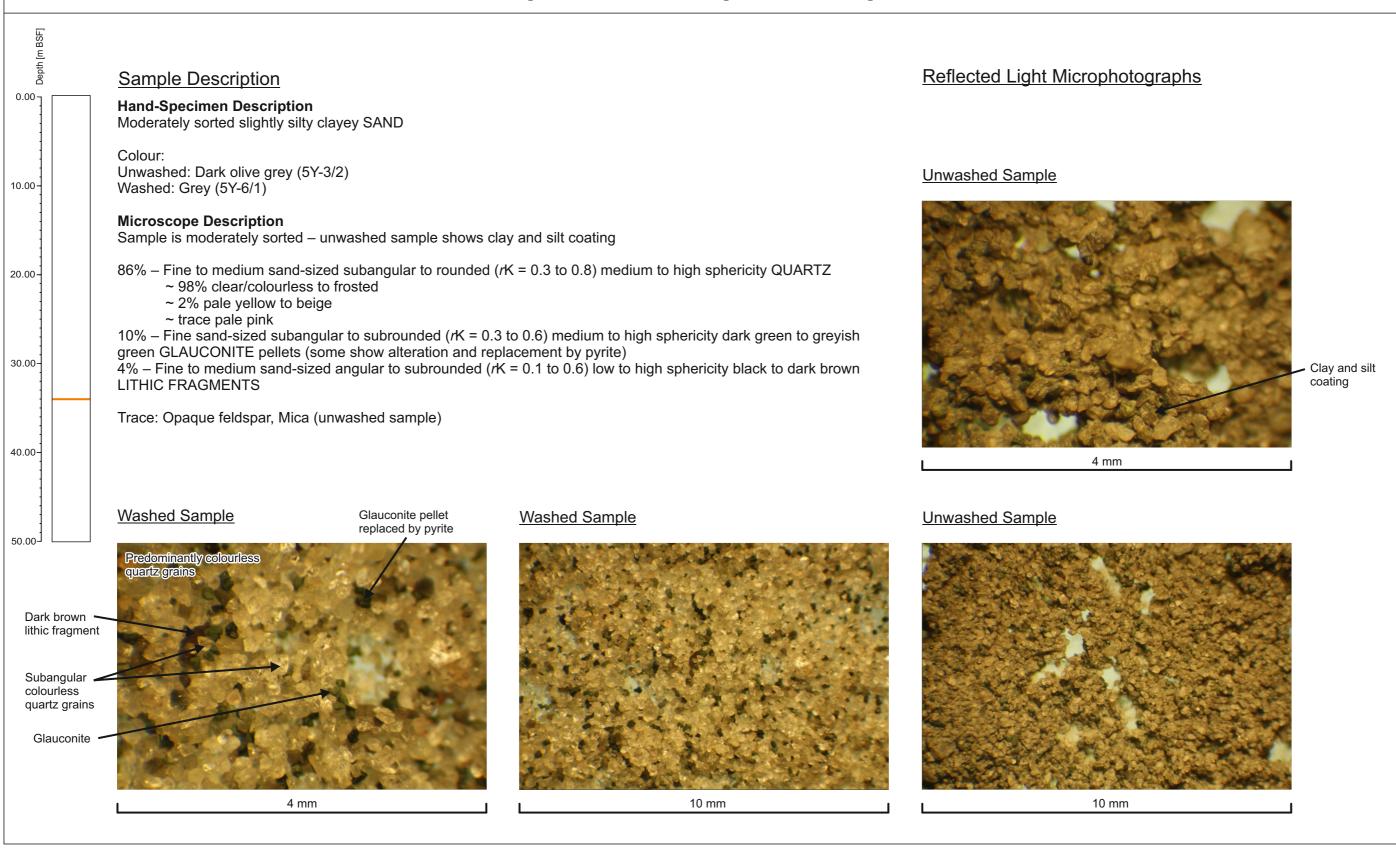
Logged by: ASW Checked by:LA/CES Date:12/06/2015



J11286 - N6016 Borssele **Detailed Microscope Description** Sample Location: BH-WFS2-6a Sample Name: 5 BAG A

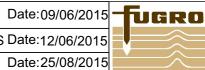
Depth [m BSF]: 9.0 Soil Unit: Eem/Kreftenheye **Plate** Number: 2.11

Logged by: ASW Date:09/06/2015 Checked by:LA/CES Date:12/06/2015 Approved by: GML Date:25/08/2015

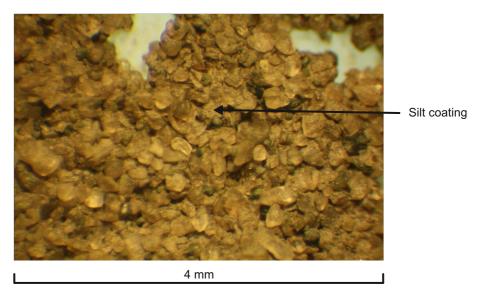

J11286 - N6016 Borssele **Detailed Microscope Description** Sample Location: BH-WFS1-3 Sample Name: 14 BAG B

Depth [m BSF]: 25.40 Soil Unit: Tongeren

Plate Number:


Logged by: ASW Date:09/06/2015 Checked by: LA/CESDate:12/06/2015 Approved by: GML Date:25/08/2015

J11286 - N6016 Borssele
Detailed Microscope Description


Sample Location: BH-WFS1-3 Sample Name: 16 BAG A Depth [m BSF]: 34.00 Soil Unit: Tongeren Plate Number: 3.2 Logged by: ASW Date:09/06/2015
Checked by:LA/CES Date:12/06/2015
Approved by: GML Date:25/08/2015

Sample Microscope Description Depth [m BSF] Sample Description 0.00¬ **Hand-Specimen Description** Well sorted fine SAND

Reflected Light Microphotographs

Unwashed Sample

Colour:

10.00

20.00-

30.00-

40.00-

50.00-

Glauconite

Pink to orange quartz grain

Subrounded colourless quartz grains Unwashed: Olive grey (5Y-4/2) Washed: Olive grey (5Y-5/2)

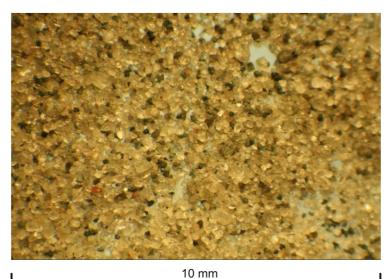
Microscope Description

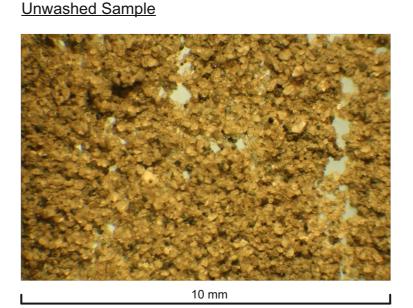
Sample is moderately to well sorted – unwashed sample shows silt coating

88% – Fine (occasionally medium) sand-sized subangular to rounded (rK = 0.3 to 0.8) low to high sphericity QUARTZ

- ~ 98% clear/colourless to frosted
- ~ 2% pale pink to pale orange

8% – Fine sand-sized subangular to subrounded (rK = 0.3 to 0.6) low to high sphericity dark greyish green GLAUCONITE pellets (some show alteration and replacement by pyrite)


3% – Fine sand-sized angular to subrounded (rK = 0.1 to 0.6) low to high sphericity black and dark grey LITHIC **FRAGMENTS**


1% – Medium sand-sized subangular (rK = 0.3 to 0.4) medium sphericity dark brown to black LITHIC FRAGMENTS

Trace: Mica

Washed Sample Washed Sample

4 mm


J11286 - N6016 Borssele **Detailed Microscope Description**

Sample Location: BH-WFS1-5a Sample Name: 17 BAG B

Depth [m BSF]: 56.45 Soil Unit: Tongeren

Plate Number: 3.3

Logged by: ASW Checked by: LA/CES Date:12/06/2015

Sample Microscope Description Depth [m BSF] Reflected Light Microphotographs Sample Description 0.00¬ **Hand-Specimen Description** Well sorted slightly clayey silty fine SAND Colour: Unwashed: Olive grey (5Y-4/2) Washed: Grey (5Y-5/1) **Unwashed Sample** 10.00 **Microscope Description** Sample is well sorted – unwashed sample shows silt coating 85% – Fine sand-sized angular to subrounded (rK = 0.1 to 0.6) medium to high sphericity QUARTZ 20.00-~ 95% clear/colourless to frosted ~ 5% pale beige ~ trace pale pink 10% – Fine sand-sized subangular to subrounded (rK = 0.3 to 0.6) medium to high sphericity dark green to greyish green GLAUCONITE pellets (some show alteration and replacement by pyrite) 30.00-5% – Fine sand-sized angular to subrounded (rK = 0.1 to 0.6) low to high sphericity black to dark grey LITHIC **FRAGMENTS** Trace: Mica (unwashed sample) 40.00-4 mm Washed Sample Washed Sample **Unwashed Sample** 50.0 Glauconite Glauconite pellet replaced by pyrite Subrounded

10 mm

J11286 - N6016 Borssele **Detailed Microscope Description**

4 mm

colourless quartz grain

> Sample Location: BH-WFS1-6 Sample Name: 25 BAG C

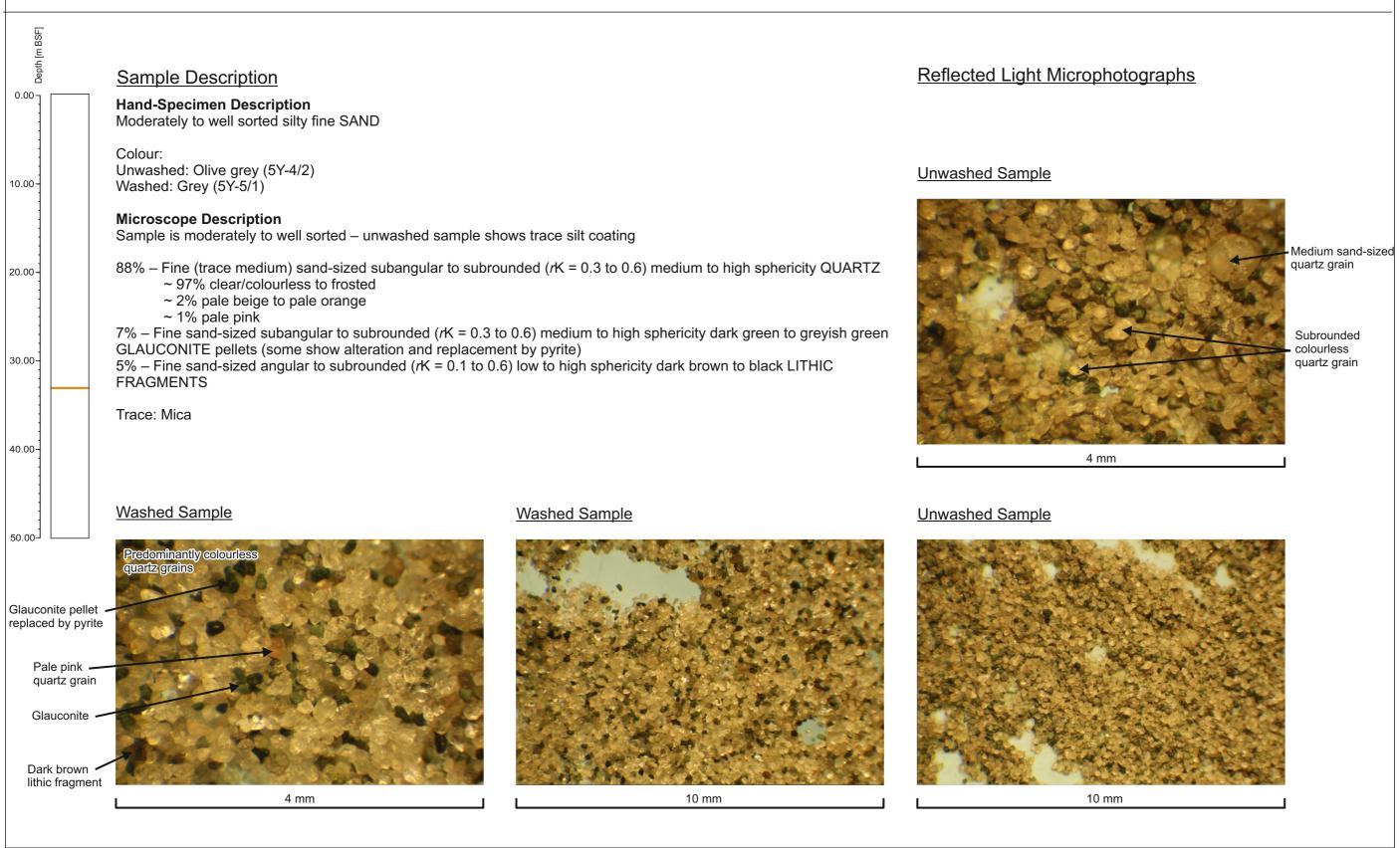
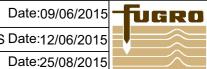
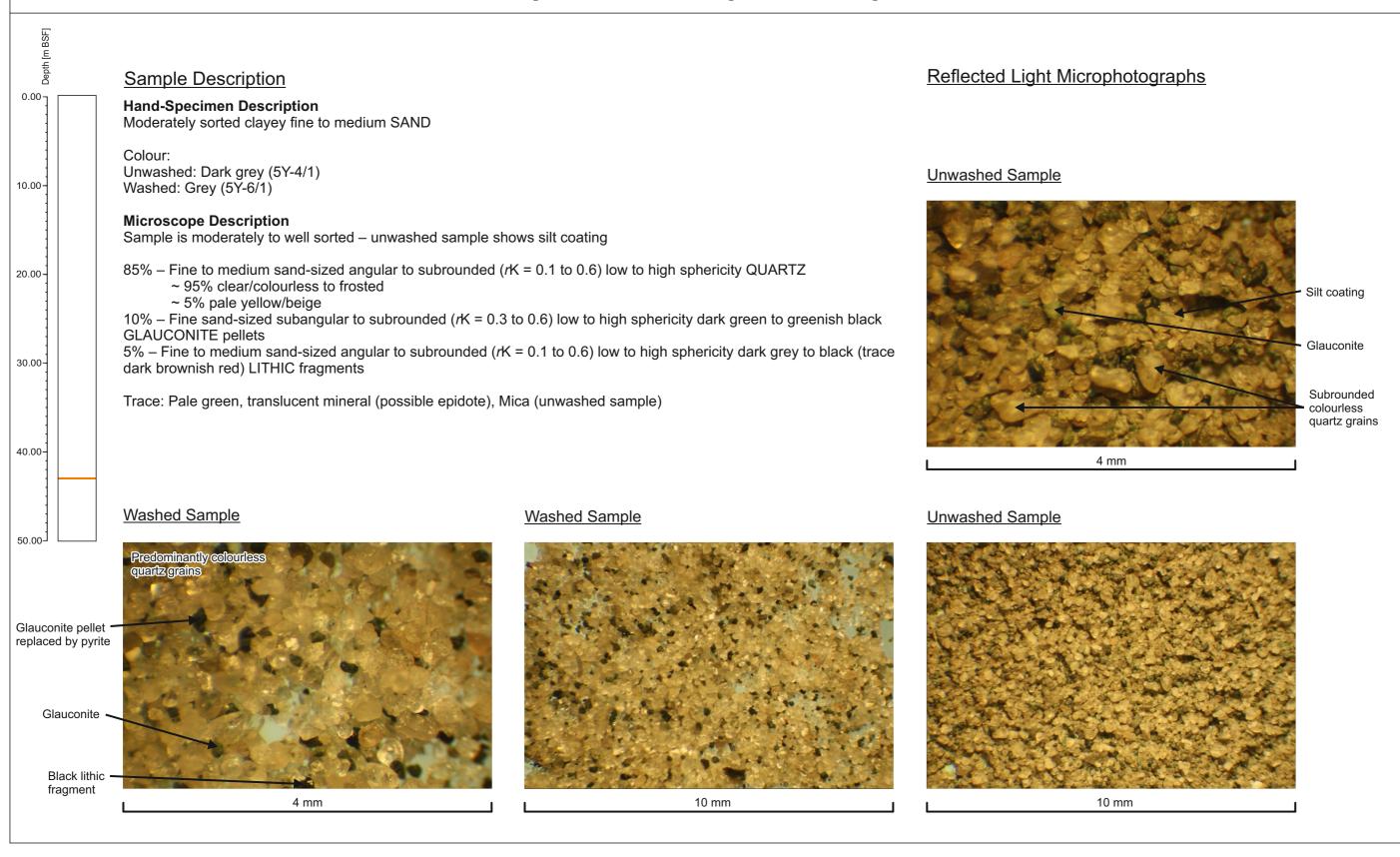

Depth [m BSF]: 53.60 Soil Unit: Tongeren

Plate Number:

Logged by: ASW Checked by:LA/CES Date:12/06/2015

10 mm




J11286 - N6016 Borssele
Detailed Microscope Description

Sample Location: BH-WFS2-1a Sample Name: 16 BAG A

Depth [m BSF]: 33.00 Soil Unit: Tongeren

Plate Number: 3.5 Logged by: ASW Date:09/06/2015
Checked by: LA/CES Date:12/06/2015
Approved by: GML Date:25/08/2015

J11286 - N6016 Borssele **Detailed Microscope Description** **Sample Location: BH-WFS2-3** Sample Name: 16 BAG A

Depth [m BSF]: 43.00 **Soil Unit: Tongeren**

Plate Number: 3.6

Logged by: ASW Checked by: LA/CES Date: 12/06/2015

SECTION A4: STATIC TRIAXIAL TESTS

LIST OF PLATES IN SECTION A4:

Plate

Isotropically Consolidated Undrained Triaxial Compression Test Results (Coarse grained)
Isotropically Consolidated Undrained Triaxial Compression Test Results (Fine grained)
Isotropically Consolidated Undrained Triaxial Extension Test Results (Fine grained)

A4-1 to A4-54 A4-55 to A4-93 A4-94 to A4-116

VISUAL DESCRIPTION

Brown medium SAND with shell fragments and some fine gravel.

GENERAL	
Date test started	03/07/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.4	
Length	[mm]	144.0	
Moisture content	[%]	10.7	
Bulk density	[Mg/m³]	1.79	
Dry density	[Mg/m³]	1.62	
Void ratio	[-]	0.637	
Degree of saturation	[%]	45	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	BS1377: Part 8: 1990 Clause 4
	Fugro testing procedure L-T-023 Clause 5.2.2
Saturation	Fugro testing procedure L-T-023 Clause 5.2.3
	BS1377: Part 8: 1990 Clause 5.3
Consolidation - Isotropic	BS1377: Part 8: 1990 Clause 6
Consolidation - Anisotropic	Not applicable
Shearing	BS1377: Part 8: 1990 Clause 7
Note:	
Fugro testing procedures are available up	pon request

QUALITY ASSURANCE		
Template Issue	1.0	
Filename	J11286 \ Batch_Southern Bight_CIUc	
Processed by	PH	
Date	05/08/2015	
Checked by	LJ	
Date	11/08/2015	
Approved by	DT	
Date	12/08/2015	

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CIU01

SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT

SATURATION		
Pressure increments applied	[kPa]	Drained ramp to 800 kPa, 100 kPa thereafter
Differential pressure used	[kPa]	10
Cell pressure	[kPa]	1025
Base PWP	[kPa]	1014
Mid height PWP	[kPa]	-
B value achieved	[-]	0.99

S _{VH} BENDER ELEMENT DETERMINATIONS - POST SATURATION			
Peak to Peak			
Distance	[mm]	138.99	
Time	[ms]	1.33	
Velocity	[m/s]	104.90	
Bulk density	[Mg/m ³]	2.01	
Frequency	[Hz]	3571.00	
G_{max}	[MPa]	22.09	

CONSOLIDATION: ISOTROPIC		
Cell pressure	[kPa]	1025
Back pressure	[kPa]	999
Base PWP	[kPa]	999
Mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	26
Effective axial pressure	[kPa]	26
Deviator stress	[kPa]	0
Volumetric strain	[%]	0.24
External axial strain	[%]	0.04
Local axial strain	[%]	-0.01
Local radial strain	[%]	-
Moisture content	[%]	23.9
Bulk density	[Mg/m³]	2.01
Dry density	[Mg/m³]	1.62
Void ratio	[-]	0.634
Degree of saturation	[%]	100

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CIU01

SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

S _{VH} BENDER ELEMENT DETERMINATIONS - POST ISOTROPIC			
Peak to Peak			
Distance	[mm]	138.94	
Time	[ms]	1.02	
Velocity	[m/s]	135.68	
Bulk density	[Mg/m ³]	2.01	
Frequency	[Hz]	3571.00	
G_{max}	[MPa]	37.00	

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CIU01

SHEARING STAGE		
Initial effective radial pressure	[kPa]	26
Initial effective axial pressure	[kPa]	26
Rate of strain	[%/hour]	0.50
At peak deviator stress		
Corrected deviator stress	[kPa]	420
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	5.90
Local axial strain	[%]	4.54
Local radial strain	[%]	-
Excess base PWP	[kPa]	-119
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	144
Effective axial pressure	[kPa]	564
Principal effective stress ratio	[-]	3.91
ε ₅₀	[%]	1.61
Secant modulus (E ₅₀) at ϵ_{50}	[kPa]	13037
At peak principal effective stress r	atio	
Corrected deviator stress	[kPa]	115
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.82
Local axial strain	[%]	0.53
Local radial strain	[%]	-
Excess base PWP	[kPa]	-7
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	32
Effective axial pressure	[kPa]	148
Principal effective stress ratio	[-]	4.55
At 10% axial strain		
Corrected deviator stress	[kPa]	374
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	7.69
Local radial strain	[%]	-
Excess base PWP	[kPa]	-114
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	139
Effective axial pressure	[kPa]	514
Principal effective stress ratio	[-]	3.69

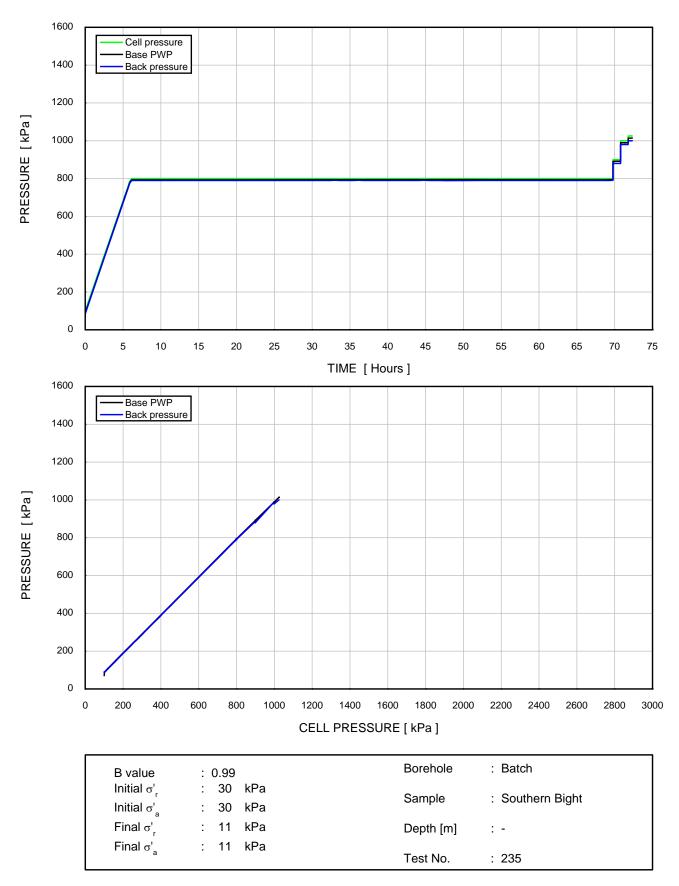
TEST IDENTIFICATION		
Borehole	Batch	
Sample	Southern Bight	
Depth [m]	-	
Test number	CIU01	

At 0.01% axial strain		
Corrected deviator stress	[kPa]	15
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.04
Local axial strain	[%]	0.01
Local radial strain	[%]	-
Excess base PWP	[kPa]	4
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	22
Effective axial pressure	[kPa]	36
Principal effective stress ratio	[-]	1.67
At 0.1% axial strain		
Corrected deviator stress	[kPa]	42
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.20
Local axial strain	[%]	0.10
Local radial strain	[%]	-
Excess base PWP	[kPa]	8
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	18
Effective axial pressure	[kPa]	60
Principal effective stress ratio	[-]	3.38

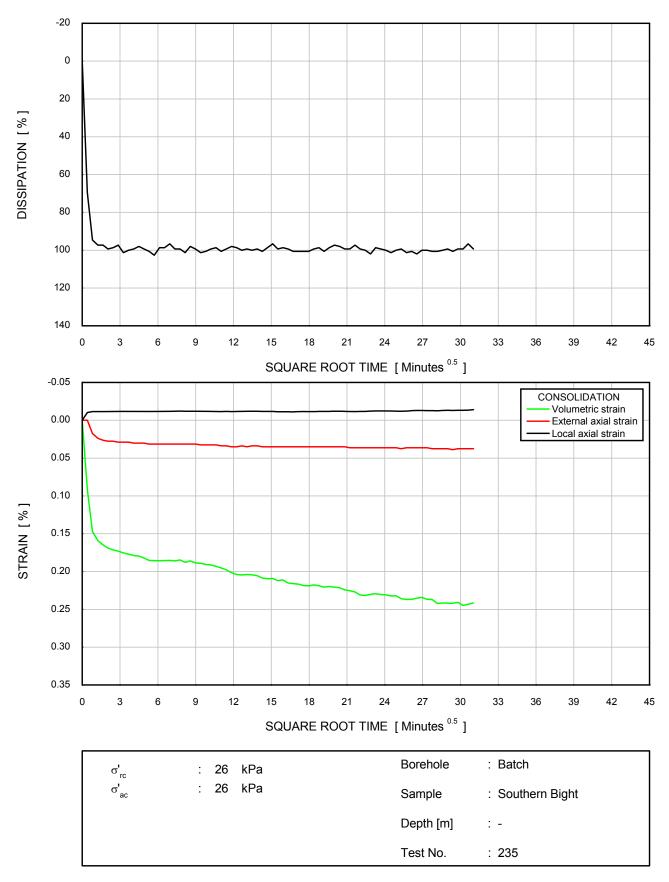
TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CIU01

SPECIMEN PHOTOGRAPHS		
Г		
	Photograph unavailable	
<u> </u>	<u> </u>	
	Photograph unavailable	
FINAL CONDITION	IS	
Moisture content	[%]	23.9
Bulk density	[Mg/m³]	2.01
Dry density	[Mg/m³]	1.62
TEST IDENTIFICAT	TION	
Borehole		Batch

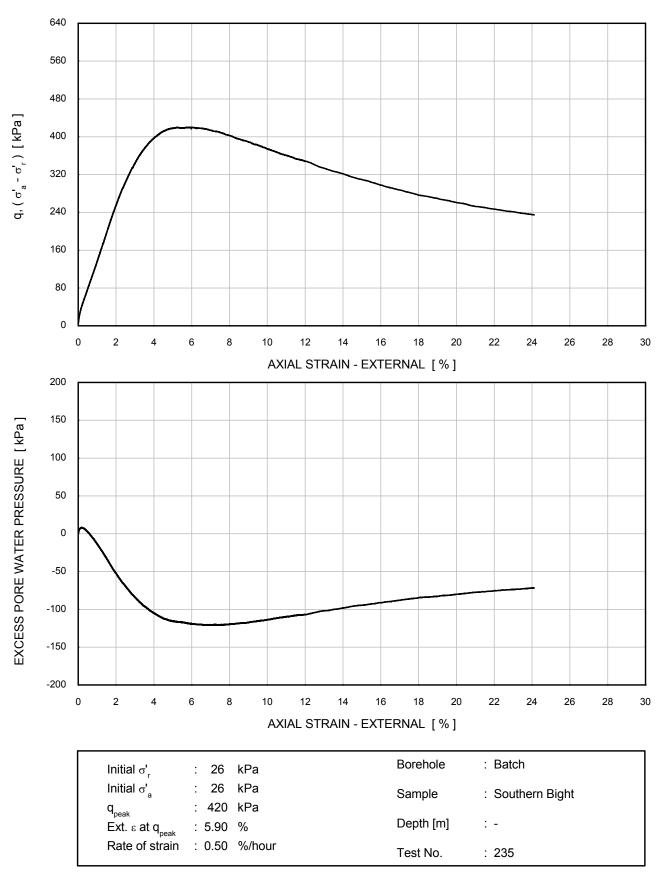
BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

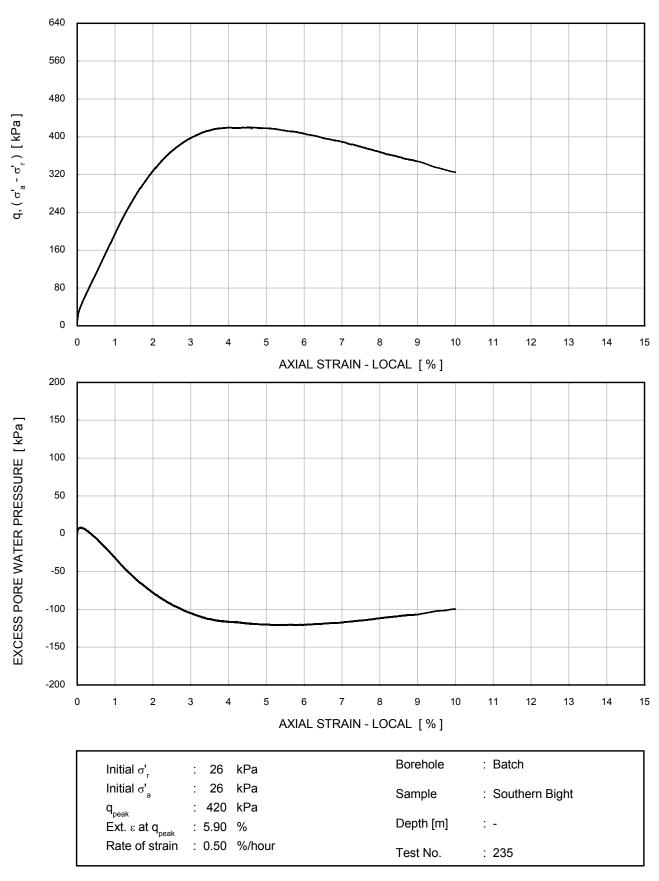

Sample

Depth [m]

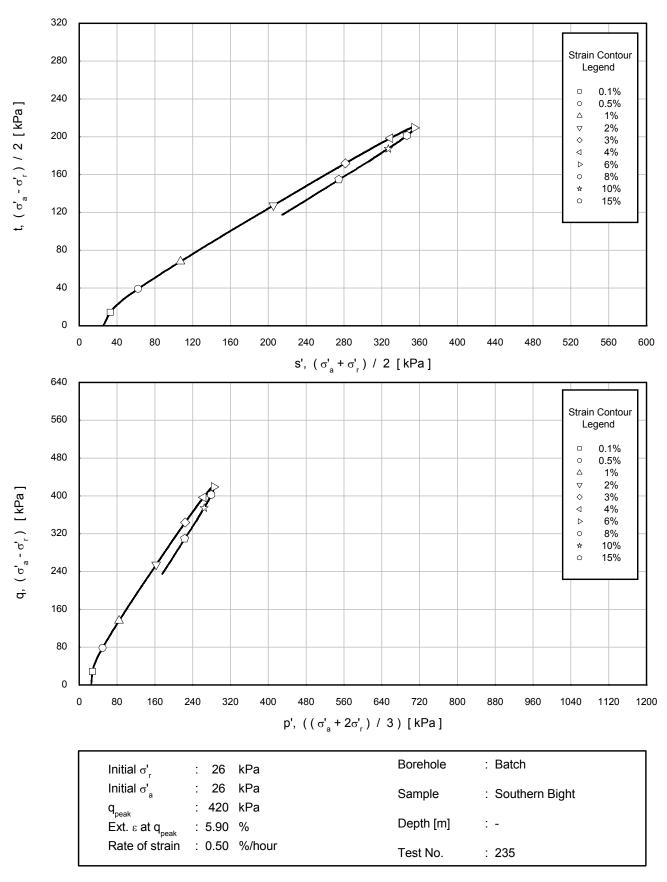

Test number

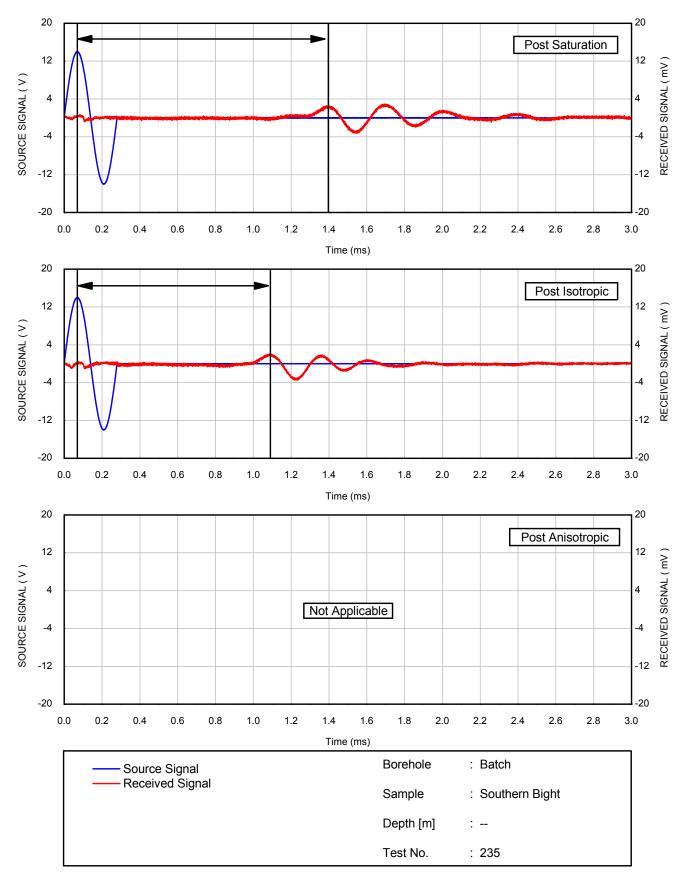
Southern Bight


CIU01




ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST SATURATION STAGE - DRAINED




ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT ISOTROPIC CONSOLIDATION STAGE

ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT SVH BENDER ELEMENT DETERMINATIONS (PEAK TO PEAK)

Filename: J11286 / EFFECTIV / Southern Bight_Batch_CU.XLS

Date: 07/08/2015

VISUAL DESCRIPTION

Yellowish brown fine to medium SAND with fine to medium gravel and shell fragments.

GENERAL	
Date test started	06/08/2015
Type of sample	Recompacted
Specimen orientation	Vertical
Type of drains fitted	One end

INITIAL		
Diameter	(mm)	72.1
Length	(mm)	135.0
Moisture content	(%)	10.8
Bulk density	(Mg/m³)	1.79
Dry density	(Mg/m³)	1.62
Void ratio		0.639
Degree of saturation	(%)	45

SATURATION		
Pressure increments applied	(kPa)	50
Differential pressure used	(kPa)	10
Pore pressure on completion	(kPa)	464
Cell pressure on completion	(kPa)	475
B value achieved	•	0.96

TESTING PROCEDURES USED		
Specimen Set-up	BS 1377: Part 8: 1990 Clause 4	
	Fugro testing procedure L-T-023 Clause 5.2.2	
Saturation	Fugro testing procedure L-T-023 Clause 5.2.3	
	BS 1377: Part 8: 1990: Clause 5.3	
Consolidation - Isotropic	BS 1377: Part 8: 1990 Clause 6	
Consolidation - Anisotropic	Not applicable	
Shearing	BS 1377: Part 8: 1990 Clause 7	
Note: Fugro testing procedures are available on request		

Borehole	Southern Bight
Sample	Batch
Depth (m)	CIU02

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Filename: J11286 / EFFECTIV / Southern Bight_Batch_CU.XLS

Date: 07/08/2015

Approved by: PH

Checked by: PH

CONSOLIDATION : ISOTROPIC	•	
Cell pressure	(kPa)	475
Back pressure	(kPa)	450
Effective cell pressure	(kPa)	25
Pore pressure on completion	(kPa)	450
Pore pressure dissipation	(%)	100
Moisture content	(%)	24.0
Bulk density	(Mg/m³)	2.01
Dry density	(Mg/m³)	1.62
Void ratio		0.636
Degree of saturation	(%)	100
Volumetric strain	(%)	0.19

Mode of failure: Compound failure

Borehole	Southern Bight
Sample	Batch
Depth (m)	CIU02

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

SHEARING

Initial pore pressure

Filename: J11286 / EFFECTIV / Southern Bight_Batch_CU.XLS

Date: 07/08/2015

표

Approved by:

initial porc pressure	(Ki a)	400
Initial effective cell pressure	(kPa)	25
Rate of strain	(%/hour)	0.91
	(//	
At peak deviator stress		
Corrected deviator stress	(kPa)	759
Membrane correction applied	(kPa)	1.3
Drain correction applied	(kPa)	0
Axial strain	(Ki a) (%)	20.00
	(kPa)	-348
Excess pore pressure	, ,	1132
Major principal effective stress	(kPa)	
Minor principal effective stress	(kPa)	373
Principal effective stress ratio	(0.1.)	3.03
Epsilon 50 (ε 50)	(%)	3.41
Secant modulus (E50) at ε 50	(kPa)	11125
At peak principal effective stres		
Corrected deviator stress	(kPa)	167
Membrane correction applied	(kPa)	0.1
Drain correction applied	(kPa)	0
Axial strain	(%)	1.37
Excess pore pressure	(kPa)	-37
Major principal effective stress	(kPa)	229
Minor principal effective stress	(kPa)	62
Principal effective stress ratio	,	3.68
<u>'</u>		
At 10% axial strain		
Corrected deviator stress	(kPa)	682
Membrane correction applied	(kPa)	0.8
Drain correction applied	(kPa)	0
Axial strain	(%)	10.00
Excess pore pressure	(kPa)	-283
Major principal effective stress	(kPa)	990
Minor principal effective stress	(kPa)	308
Principal effective stress ratio	(Ki u)	3.21
i inicipal chective stress fatto		J.Z I
FINAL CONDITIONS		
Moisture content	(%)	24.0
Bulk density	(Mg/m³)	2.01
la . "´	, , ,	4 00

450

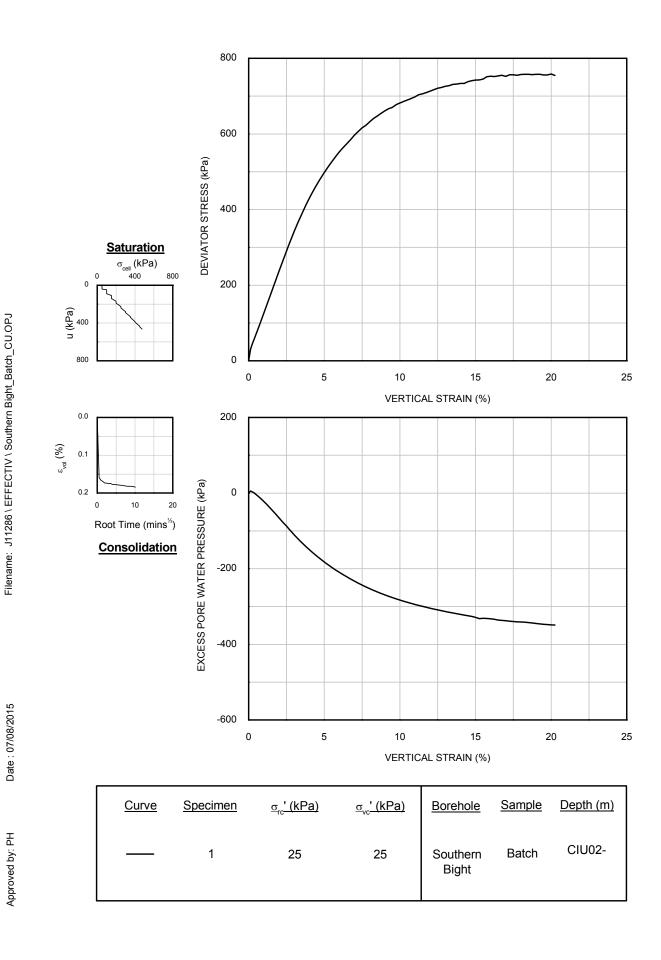
1.62

Southern Bight Batch

CIU02

(kPa)

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE 1&11 - DUTCH SECTOR, NORTH SEA


(Mg/m³)

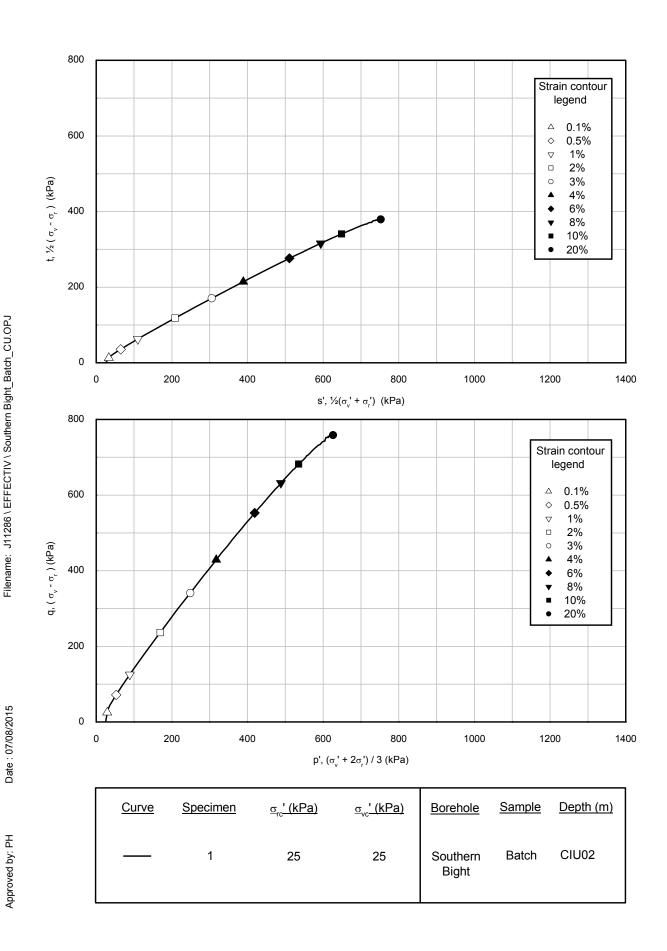
Dry density

Borehole

Sample

Depth (m)

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA


Date: 07/08/2015

Drawn by: ER

Template Issue: 4.1

Date: 07/08/2015

Checked by: PH

Date: 07/08/2015

Drawn by: ER

Template Issue: 4.1

Date: 07/08/2015

Checked by: PH

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

VISUAL DESCRIPTION

Brown medium SAND with numerous shells and shell fragments, and some fine to medium gravel.

GENERAL	
Date test started	07/03/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.4	
Length	[mm]	144.0	
Moisture content	[%]	11.3	
Bulk density	[Mg/m³]	1.87	
Dry density	[Mg/m³]	1.68	
Void ratio	[-]	0.579	
Degree of saturation	[%]	52	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	BS1377: Part 8: 1990 Clause 4
	Fugro testing procedure L-T-023 Clause 5.2.2
Saturation	Fugro testing procedure L-T-023 Clause 5.2.3
	BS1377: Part 8: 1990 Clause 5.3
Consolidation - Isotropic	BS1377: Part 8: 1990 Clause 6
Consolidation - Anisotropic	Not applicable
Shearing	BS1377: Part 8: 1990 Clause 7
Note:	
Fugro testing procedures are available upon requ	uest

QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ 0. BATCH_Eem Kreftenheye_CIUc_BELA
Processed by	PH
Date	04/08/2015
Checked by	LJ
Date	12/08/2015
Approved by	DT
Date	12/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CIU03

SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT

SATURATION		
Pressure increments applied	[kPa]	Drained ramp to 800 kPa, then 100 kPa thereafter
Differential pressure used	[kPa]	20
Cell pressure	[kPa]	1080
Base PWP	[kPa]	1045
Mid height PWP	[kPa]	-
B value achieved	[-]	0.96

S _{VH} BENDER ELEMENT DETERMINATIONS - POST SATURATION			
Peak to Peak			
Distance	[mm]	139.74	
Time	[ms]	0.89	
Velocity	[m/s]	156.22	
Bulk density	[Mg/m³]	2.04	
Frequency	[Hz]	5000.00	
G_{max}	[MPa]	49.90	

CONSOLIDATION: ISOTROPIC		
Cell pressure	[kPa]	1080
Back pressure	[kPa]	1000
Base PWP	[kPa]	1000
Mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	80
Effective axial pressure	[kPa]	80
Deviator stress	[kPa]	0
Volumetric strain	[%]	0.22
External axial strain	[%]	0.07
Local axial strain	[%]	0.03
Local radial strain	[%]	-
Moisture content	[%]	21.7
Bulk density	[Mg/m³]	2.05
Dry density	[Mg/m³]	1.68
Void ratio	[-]	0.576
Degree of saturation	[%]	100

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	
Test number	CIU03

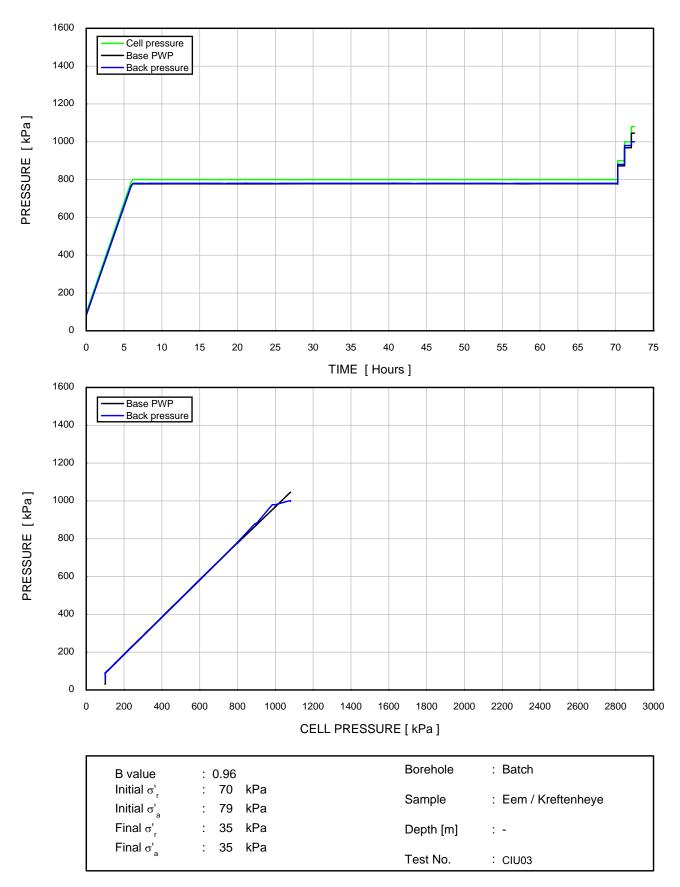
S _{VH} BENDER ELEMENT DETERMINATIONS - POST ISOTROPIC		
Peak to Peak		
Distance	[mm]	139.64
Time	[ms]	0.68
Velocity	[m/s]	204.15
Bulk density	[Mg/m ³]	2.05
Frequency	[Hz]	5000.00
G_{max}	[MPa]	85.32

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	
Test number	CIU03

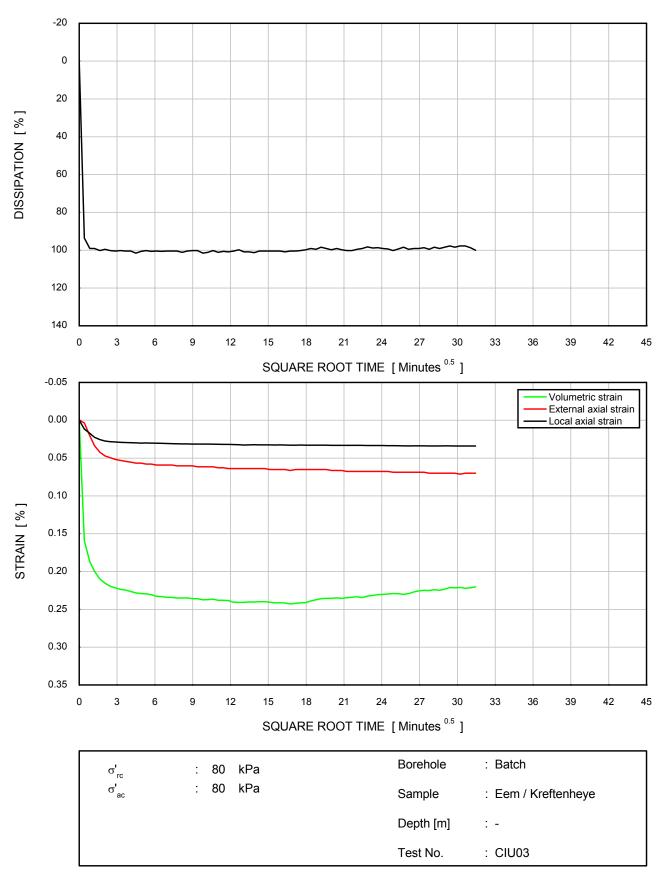
SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

SHEARING STAGE		
Initial effective radial pressure	[kPa]	80
Initial effective axial pressure	[kPa]	80
Rate of strain	[%/hour]	0.49
At peak deviator stress		
Corrected deviator stress	[kPa]	2430
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	12.20
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	-881
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	961
Effective axial pressure	[kPa]	3391
Principal effective stress ratio	[-]	3.53
ε ₅₀	[%]	2.96
Secant modulus (E ₅₀) at ϵ_{50}	[kPa]	41098
At peak principal effective stress r	atio	
Corrected deviator stress	[kPa]	384
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	1.07
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	-32
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	112
Effective axial pressure	[kPa]	496
Principal effective stress ratio	[-]	4.42
At 10% axial strain		
Corrected deviator stress	[kPa]	2413
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	-850
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	930
Effective axial pressure	[kPa]	3343
Principal effective stress ratio	[-]	3.60

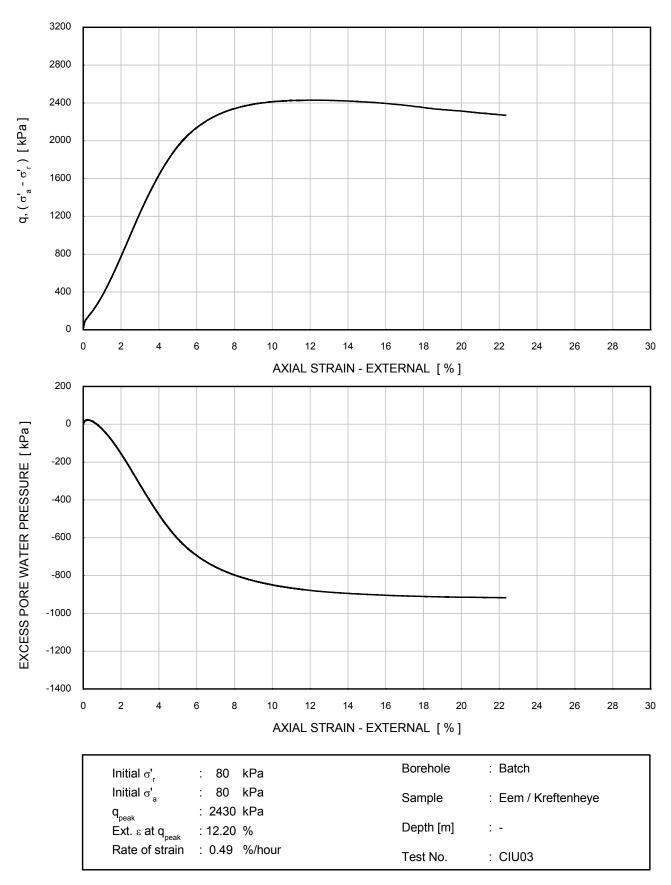
TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	<u>_</u>
Test number	CIU03


At 0.01% axial strain		
Corrected deviator stress	[kPa]	25
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.02
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	5
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	75
Effective axial pressure	[kPa]	99
Principal effective stress ratio	[-]	1.33
At 0.1% axial strain		
Corrected deviator stress	[kPa]	124
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.20
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	22
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	59
Effective axial pressure	[kPa]	183
Principal effective stress ratio	[-]	3.12

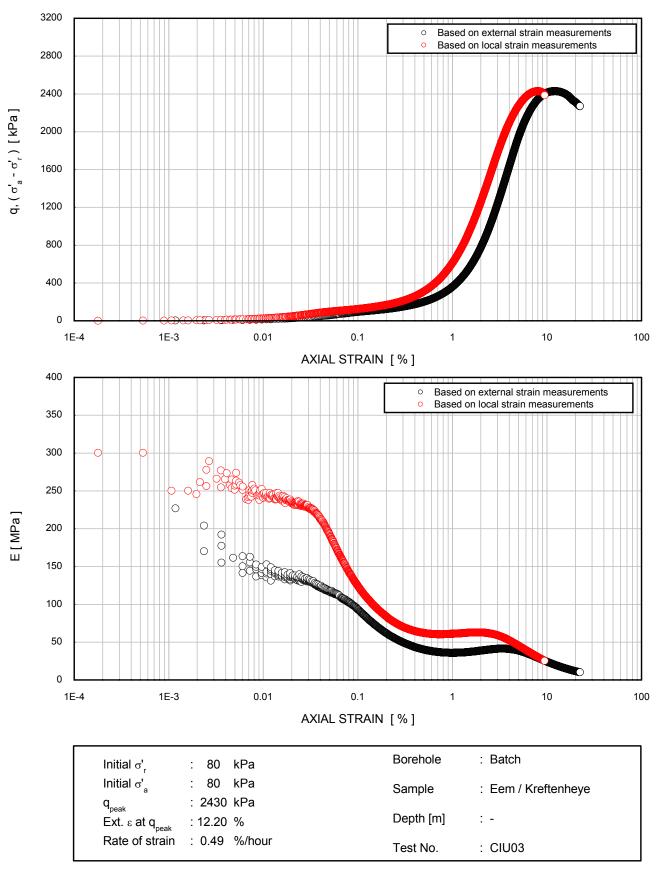
TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CIU03

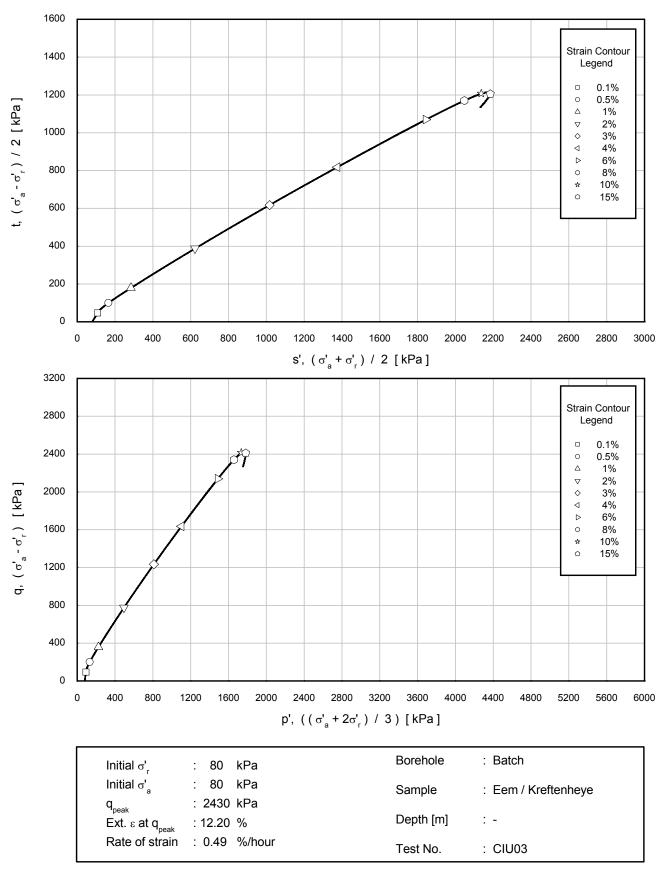

SPECIMEN PHOTOGRA	APHS		
	Photograph unavailable		
·	Photograph unavailable		
FINAL CONDITIONS			
Moisture content	[%]	21.7	,
Bulk density	[Mg/m³]	2.05	j
Dry density	[Mg/m³]	1.68	
TEST IDENTIFICATION			

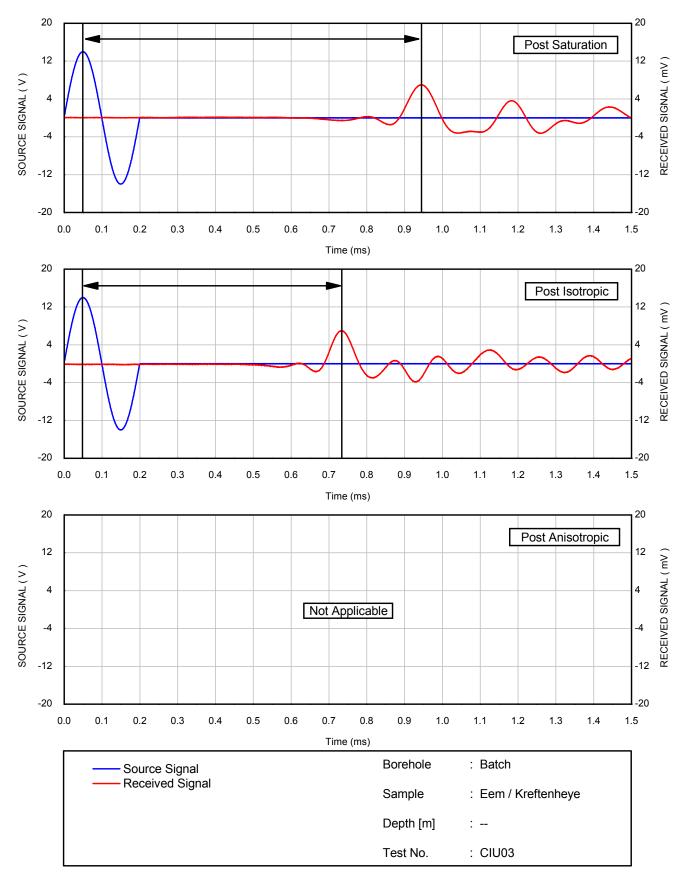
Borehole Batch Sample Eem / Kreftenheye Depth [m] CIU03


SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT




ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST SATURATION STAGE - DRAINED




ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT ISOTROPIC CONSOLIDATION STAGE

ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT SVH BENDER ELEMENT DETERMINATIONS (PEAK TO PEAK)

Filename: J11286 / EFFECTIV / Eem/ Kreftenheye_Batch_CU.XLS

Date: 07/08/2015
Н
Approved by:
Appr

VISI	ΙΔΙ	DESCRIPTION	
V 1.31	,,,		

Yellowish brown fine to medium SAND with fine to medium gravel and shell fragments.

GENERAL	
Date test started	06/08/2015
Type of sample	Recompacted
Specimen orientation	Vertical
Type of drains fitted	One end

INITIAL			
Diameter	(mm)	72.1	
Length	(mm)	135.0	
Moisture content	(%)	10.2	
Bulk density	(Mg/m³)	1.99	
Dry density	(Mg/m³)	1.81	
Void ratio		0.465	
Degree of saturation	(%)	58	

SATURATION		
Pressure increments applied	(kPa)	50
Differential pressure used	(kPa)	N/A
Pore pressure on completion	(kPa)	667
Cell pressure on completion	(kPa)	680
B value achieved		0.96

TESTING PROCEDURES USED	
Specimen Set-up	BS 1377: Part 8: 1990 Clause 4
	Fugro testing procedure L-T-023 Clause 5.2.2
Saturation	Fugro testing procedure L-T-023 Clause 5.2.3
	BS 1377: Part 8: 1990: Clause 5.3
Consolidation - Isotropic	BS 1377: Part 8: 1990 Clause 6
Consolidation - Anisotropic	Not applicable
Shearing	BS 1377: Part 8: 1990 Clause 7
Note: Fugro testing procedures are available on request	

Borehole	Eem/ Kreftenheye
Sample	Batch
Depth (m)	CIU04

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Filename: J11286 / EFFECTIV / Eem/ Kreftenheye_Batch_CU.XLS

	Date: 07/08/2015
Clieched by.	Approved by: PH

CONSOLIDATION: ISOTROPIC	•	
Cell pressure	(kPa)	680
Back pressure	(kPa)	600
Effective cell pressure	(kPa)	80
Pore pressure on completion	(kPa)	600
Pore pressure dissipation	(%)	100
Moisture content	(%)	17.4
Bulk density	(Mg/m³)	2.13
Dry density	(Mg/m³)	1.82
Void ratio		0.460
Degree of saturation	(%)	100
Volumetric strain	(%)	0.35

Mode of failure: Compound failure

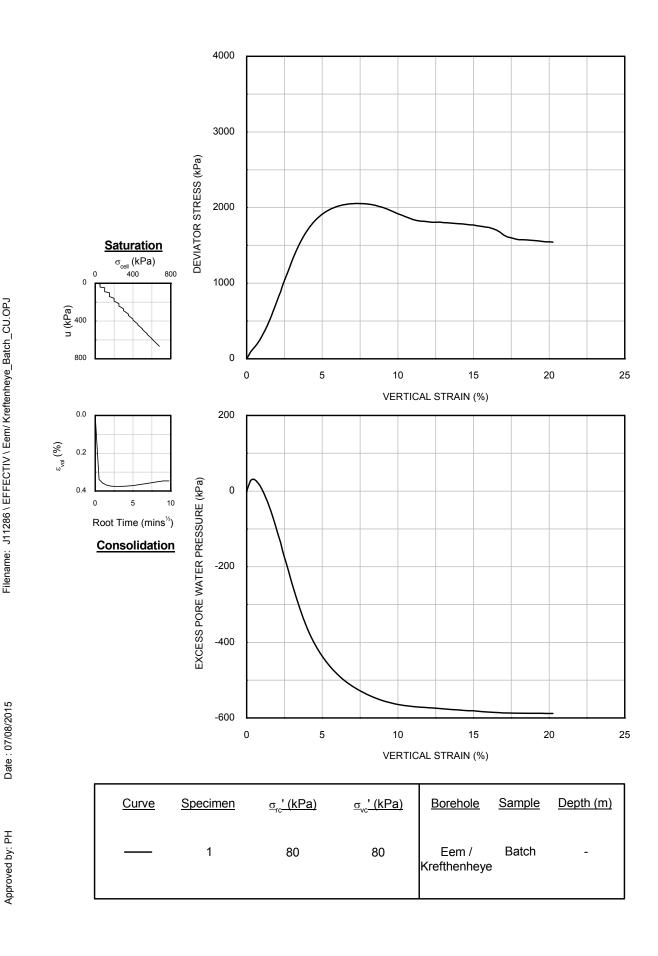
Borehole	Eem/ Kreftenheye
Sample	Batch
Depth (m)	CIU04

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Filename: J11286 / EFFECTIV / Eem/ Kreftenheye_Batch_CU.XLS

Date: 07/08/2015

H


Approved by:

SHEARING		
Initial pore pressure	(kPa)	600
Initial effective cell pressure	(kPa)	80
Rate of strain	(%/hour)	0.91
At peak deviator stress		
Corrected deviator stress	(kPa)	2054
Membrane correction applied	(kPa)	0.6
Drain correction applied	(kPa)	0
Axial strain	(%)	7.25
Excess pore pressure	(kPa)	-523
Major principal effective stress	(kPa)	2657
Minor principal effective stress	(kPa)	603
Principal effective stress ratio		4.41
Epsilon 50 (ε 50)	(%)	2.49
Secant modulus (E50) at ϵ 50	(kPa)	41328
At peak principal effective stress	s ratio	
Corrected deviator stress	(kPa)	627
Membrane correction applied	(kPa)	0.2
Drain correction applied	(kPa)	0
Axial strain	(%)	1.75
Excess pore pressure	(kPa)	-71
Major principal effective stress	(kPa)	778
Minor principal effective stress	(kPa)	151
Principal effective stress ratio		5.15
At 10% axial strain		
Corrected deviator stress	(kPa)	1918
Membrane correction applied	(kPa)	0.8
Drain correction applied	(kPa)	0
Axial strain	(%)	10.00
Excess pore pressure	(kPa)	-564
Major principal effective stress	(kPa)	2563
Minor principal effective stress	(kPa)	644
Principal effective stress ratio		3.98

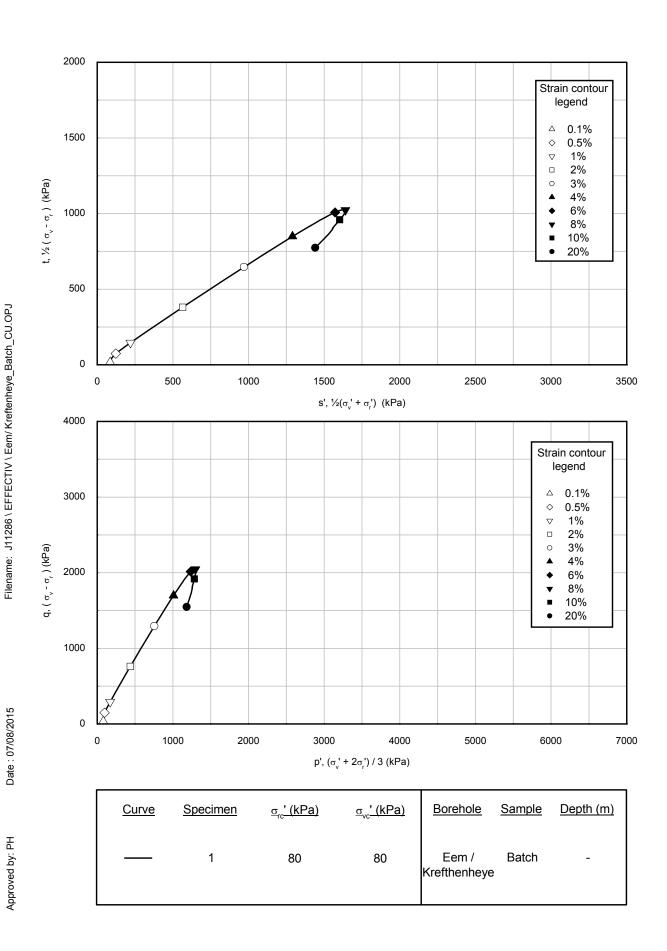
FINAL CONDITIONS		
Moisture content	(%)	17.4
Bulk density	(Mg/m³)	2.13
Dry density	(Mg/m³)	1.82

Borehole	Eem/ Kreftenheye
Sample	Batch
Depth (m)	CIU04

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 07/08/2015


Drawn by: ER

Filename: J11286 \ EFFECTIV \ Eem \ Kreftenheye Batch CU.OPJ

Template Issue: 4.1

Date: 07/08/2015

Checked by: PH

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 07/08/2015

Drawn by: ER

Template Issue: 4.1

Date: 07/08/2015

Checked by: PH

VISUAL DESCRIPTION Olive grey silty fine SAND

GENERAL	
Date test started	03/07/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.4	
Length	[mm]	144.0	
Moisture content	[%]	10.0	
Bulk density	[Mg/m³]	1.77	
Dry density	[Mg/m³]	1.61	
Void ratio	[-]	0.647	
Degree of saturation	[%]	41	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	BS1377: Part 8: 1990 Clause 4
	Fugro testing procedure L-T-023 Clause 5.2.2
Saturation	Fugro testing procedure L-T-023 Clause 5.2.3
	BS1377: Part 8: 1990 Clause 5.3
Consolidation - Isotropic	BS1377: Part 8: 1990 Clause 6
Consolidation - Anisotropic	Not applicable
Shearing	BS1377: Part 8: 1990 Clause 7
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Tongeren_CIUc
Processed by	PH
Date	05/08/2015
Checked by	LJ
Date	12/08/2015
Approved by	DT
Date	12/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CIU05

SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT

SATURATION		
Pressure increments applied	[kPa]	Drained ramp to 800 kPa, 100 kPa thereafter
Differential pressure used	[kPa]	10
Cell pressure	[kPa]	1400
Base PWP	[kPa]	1362
Mid height PWP	[kPa]	-
B value achieved	[-]	0.95

S _{VH} BENDER ELEMENT DETERMINATIONS - POST SATURATION			
Peak to Peak			
Distance	[mm]	139.05	
Time	[ms]	0.82	
Velocity	[m/s]	170.40	
Bulk density	[Mg/m³]	2.00	
Frequency	[Hz]	6250.00	
G_{max}	[MPa]	58.13	

CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	1400	
Back pressure	[kPa]	1000	
Base PWP	[kPa]	1000	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	400	
Effective axial pressure	[kPa]	400	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	2.45	
External axial strain	[%]	0.39	
Local axial strain	[%]	0.04	
Local radial strain	[%]	-	
Moisture content	[%]	22.9	
Bulk density	[Mg/m³]	2.03	
Dry density	[Mg/m³]	1.65	
Void ratio	[-]	0.606	
Degree of saturation	[%]	100	

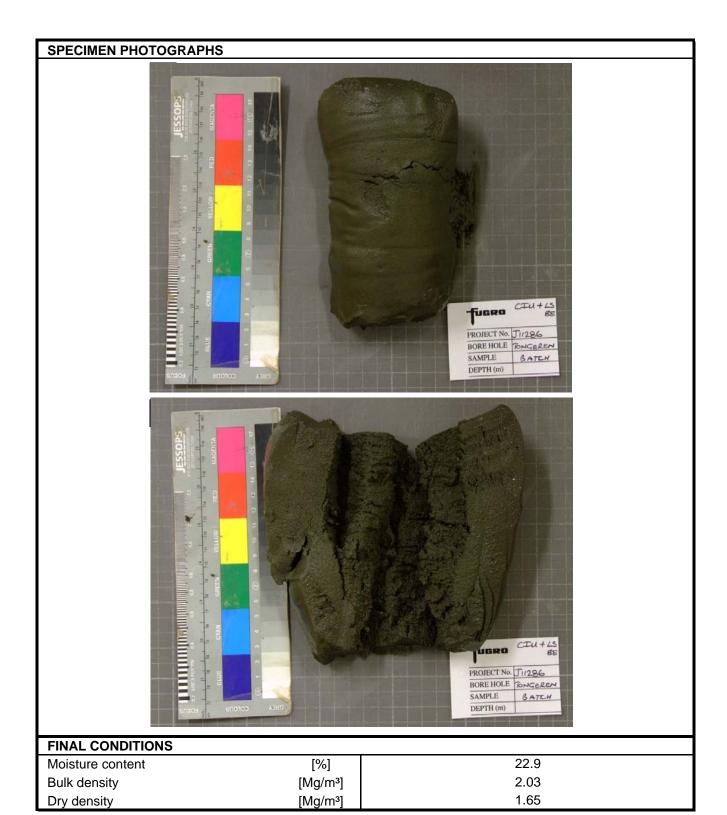
TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CIU05

SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

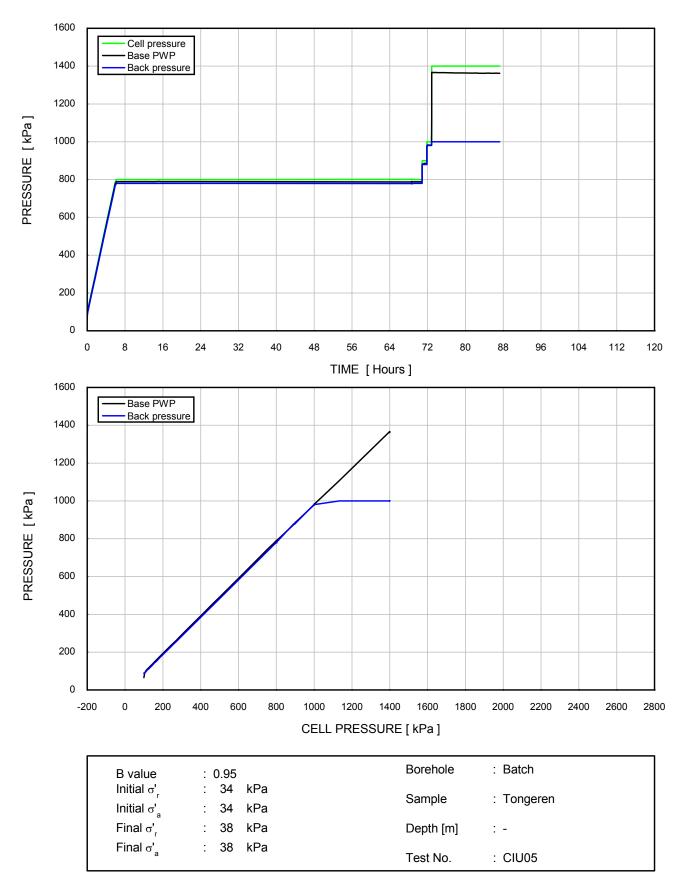
S _{VH} BENDER ELEMENT DETERMINATIONS - POST ISOTROPIC		
Peak to Peak		
Distance	[mm]	138.48
Time	[ms]	0.49
Velocity	[m/s]	282.27
Bulk density	[Mg/m ³]	2.03
Frequency	[Hz]	6250.00
G_{max}	[MPa]	161.51

TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CIU05

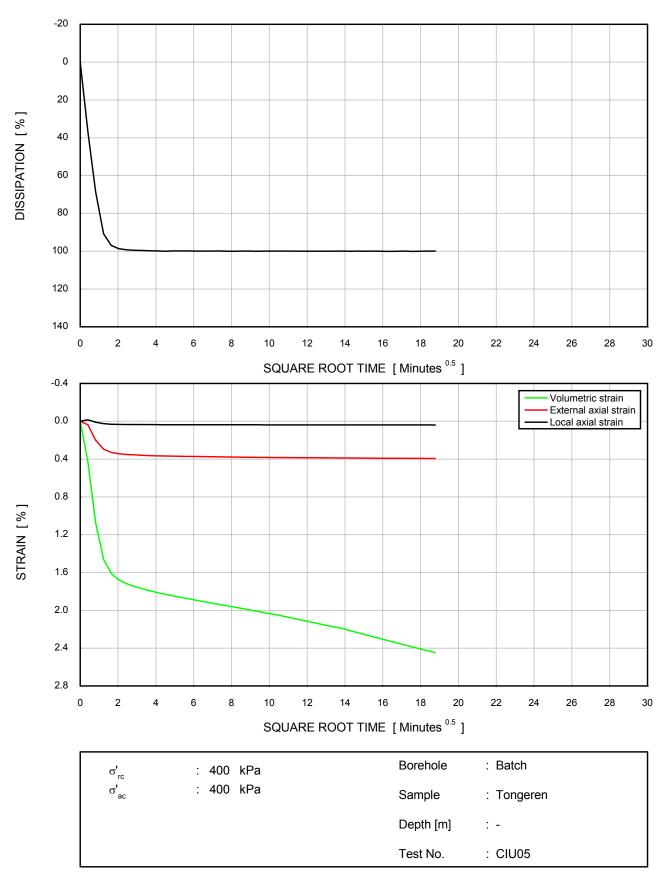
SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

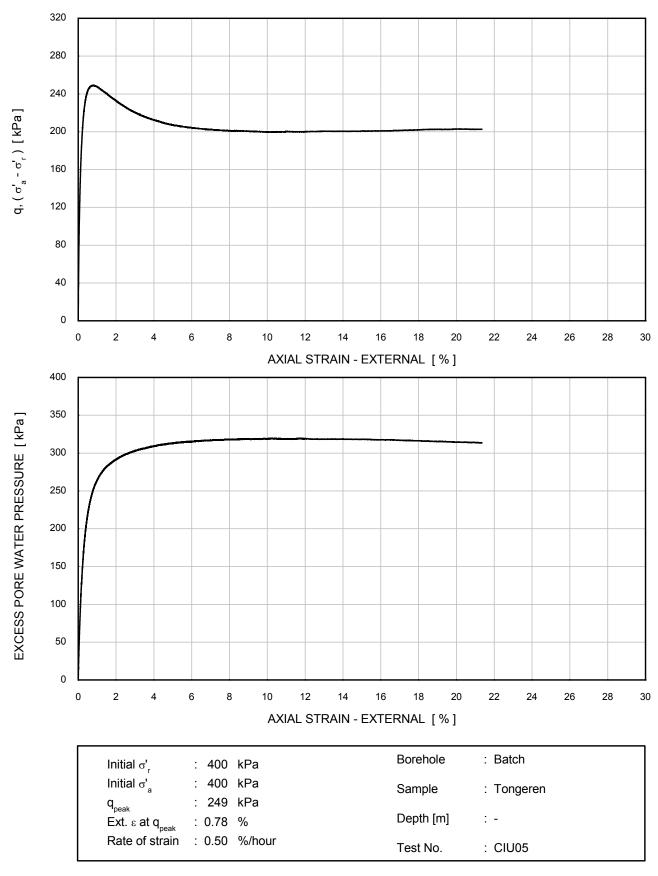

SHEARING STAGE		
Initial effective radial pressure	[kPa]	400
Initial effective axial pressure	[kPa]	401
Rate of strain	[%/hour]	0.50
At peak deviator stress		
Corrected deviator stress	[kPa]	249
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.78
Local axial strain	[%]	0.61
Local radial strain	[%]	-
Excess base PWP	[kPa]	250
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	150
Effective axial pressure	[kPa]	399
Principal effective stress ratio	[-]	2.66
ε ₅₀	[%]	0.08
Secant modulus (E $_{50}$) at ϵ_{50}	[kPa]	157960
At peak principal effective stress r	atio	
Corrected deviator stress	[kPa]	200
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.26
Local axial strain	[%]	9.35
Local radial strain	[%]	-
Excess base PWP	[kPa]	320
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	80
Effective axial pressure	[kPa]	280
Principal effective stress ratio	[-]	3.49
At 10% axial strain		
Corrected deviator stress	[kPa]	200
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	9.14
Local radial strain	[%]	-
Excess base PWP	[kPa]	319
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	81
Effective axial pressure	[kPa]	281
Principal effective stress ratio	[-]	3.45

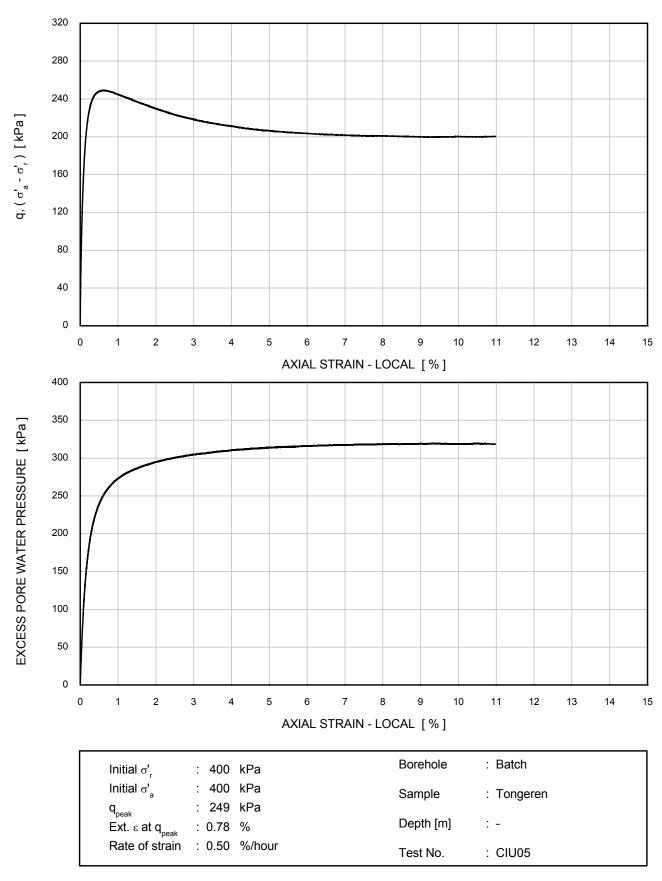
TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	01105
Test number	CIU05

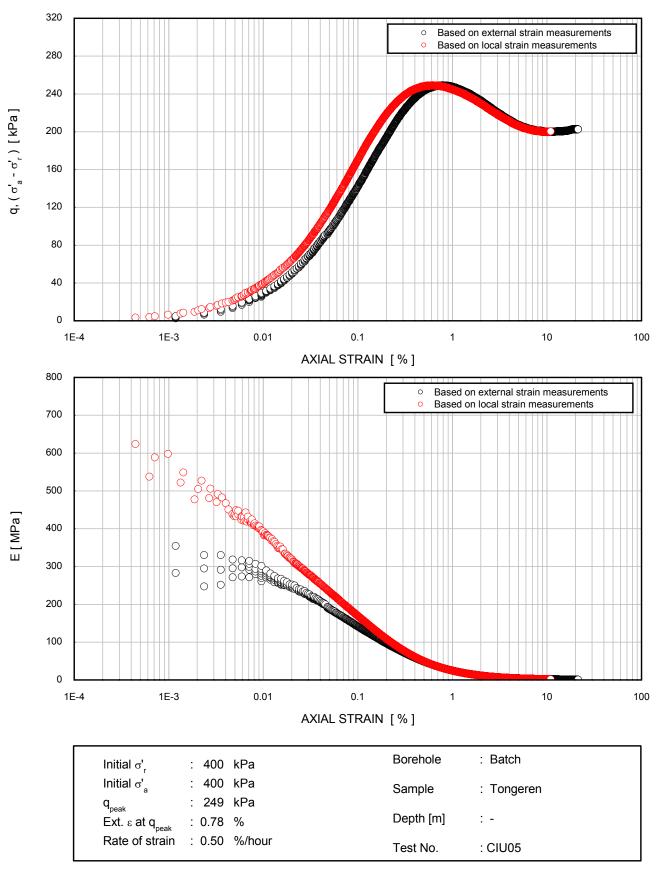

At 0.01% axial strain		
Corrected deviator stress	[kPa]	39
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.01
Local axial strain	[%]	0.01
Local radial strain	[%]	-
Excess base PWP	[kPa]	16
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	384
Effective axial pressure	[kPa]	423
Principal effective stress ratio	[-]	1.10
At 0.1% axial strain		
Corrected deviator stress	[kPa]	170
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.14
Local axial strain	[%]	0.10
Local radial strain	[%]	-
Excess base PWP	[kPa]	112
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	288
Effective axial pressure	[kPa]	458
Principal effective stress ratio	[-]	1.59

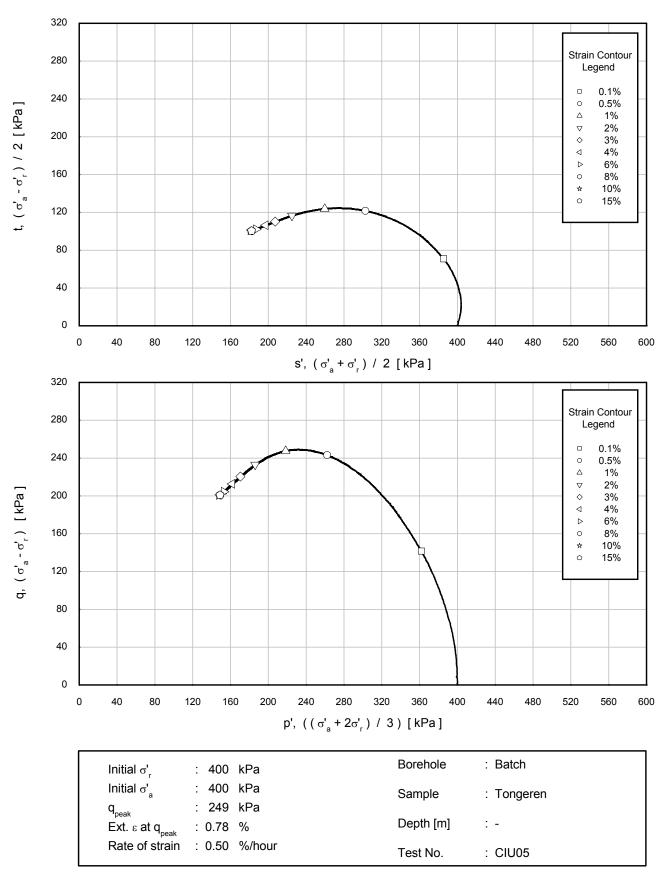
TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CIU05

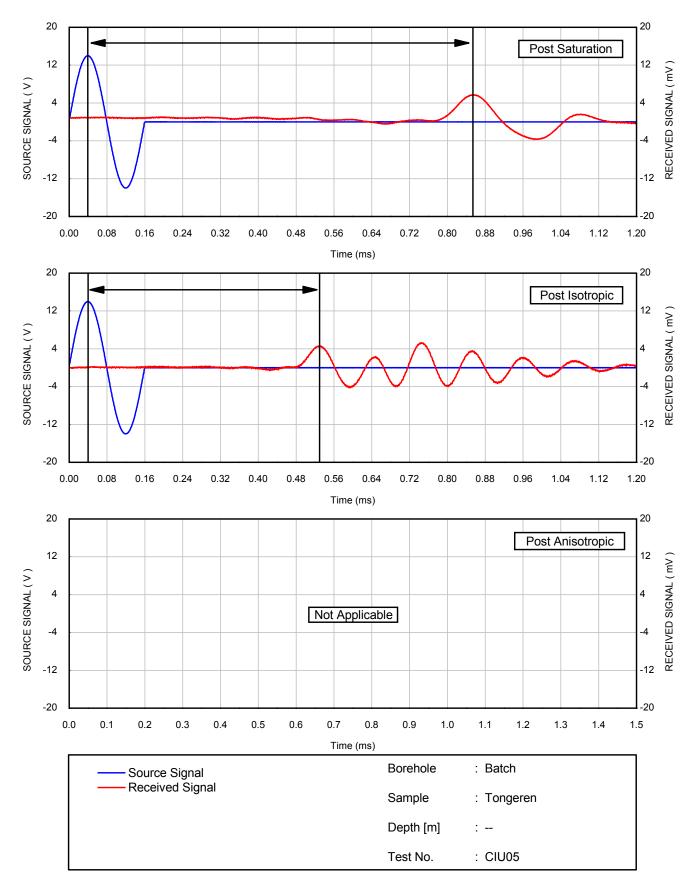

SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA


TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	
Test number	CIU05




ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST SATURATION STAGE - DRAINED




ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT ISOTROPIC CONSOLIDATION STAGE

ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT SVH BENDER ELEMENT DETERMINATIONS (PEAK TO PEAK)

Filename: J11286 / EFFECTIV / Tongeren_Batch_CU.XLS

Date: 07/08/2015

H

Approved by:

VISUAL DESCRIPTION

Dark grey fine SAND.

GENERAL	
Date test started	06/08/2015
Type of sample	Recompacted
Specimen orientation	Vertical
Type of drains fitted	One end

INITIAL		
Diameter	(mm)	72.1
Length	(mm)	135.0
Moisture content	(%)	10.0
Bulk density	(Mg/m³)	1.77
Dry density	(Mg/m³)	1.61
Void ratio		0.646
Degree of saturation	(%)	41

SATURATION		
Pressure increments applied	(kPa)	50
Differential pressure used	(kPa)	10
Pore pressure on completion	(kPa)	768
Cell pressure on completion	(kPa)	800
B value achieved		0.95

TESTING PROCEDURES USED	
Specimen Set-up	BS 1377: Part 8: 1990 Clause 4
	Fugro testing procedure L-T-023 Clause 5.2.2
Saturation	Fugro testing procedure L-T-023 Clause 5.2.3
	BS 1377: Part 8: 1990: Clause 5.3
Consolidation - Isotropic	BS 1377: Part 8: 1990 Clause 6
Consolidation - Anisotropic	Not applicable
Shearing	BS 1377: Part 8: 1990 Clause 7
Note: Fugro testing procedures are available on request	

Borehole	Tongeren
Sample	Batch
Depth (m)	CIU06

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE 1&II - DUTCH SECTOR, NORTH SEA

Filename: J11286 / EFFECTIV / Tongeren_Batch_CU.XLS Date: 07/08/2015 Approved by: PH

CONSOLIDATION : ISOTROPIC	,	
Cell pressure	(kPa)	800
Back pressure	(kPa)	400
Effective cell pressure	(kPa)	400
Pore pressure on completion	(kPa)	400
Pore pressure dissipation	(%)	100
Moisture content	(%)	22.8
Bulk density	(Mg/m³)	2.03
Dry density	(Mg/m³)	1.65
Void ratio		0.603
Degree of saturation	(%)	100
Volumetric strain	(%)	2.59

Mode of failure: Compound failure

Borehole	Tongeren
Sample	Batch
Depth (m)	CIU06

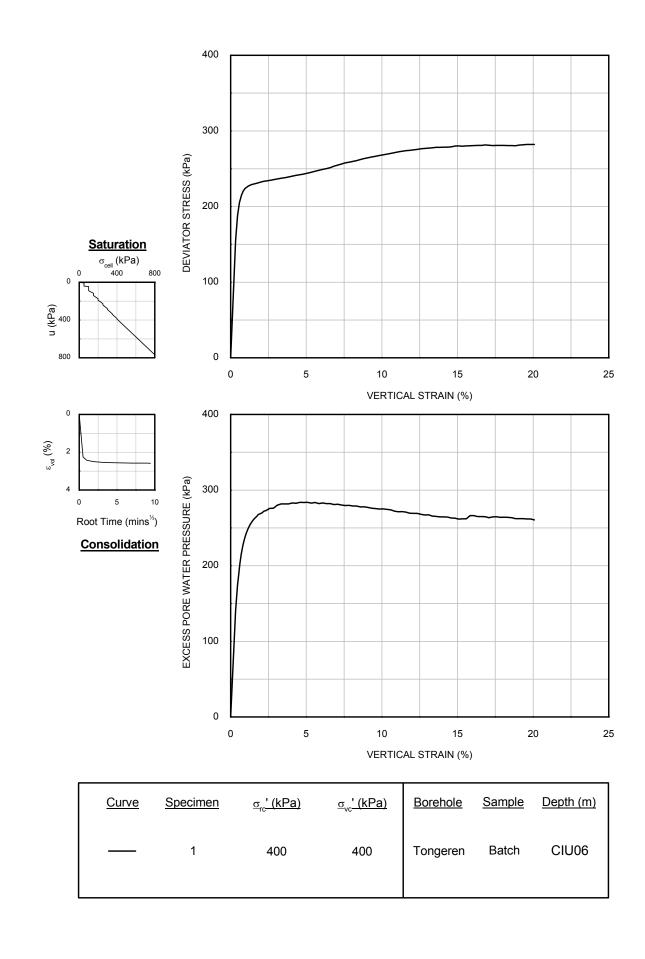
SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

SHEARING

Filename: J11286 / EFFECTIV / Tongeren_Batch_CU.XLS

Date: 07/08/2015

Ŧ


Approved by:

Initial para progues	(kDa)	400
Initial offective cell pressure	(kPa)	400
Initial effective cell pressure	(kPa)	400
Rate of strain	(%/hour)	0.91
At peak deviator stress		
Corrected deviator stress	(kPa)	282
Membrane correction applied	(kPa)	1.3
Drain correction applied	(kPa)	0
Axial strain	`(%)	19.83
Excess pore pressure	(kPa)	262
Major principal effective stress	(kPa)	420
Minor principal effective stress	(kPa)	138
Principal effective stress ratio	,	3.04
Epsilon 50 (ε 50)	(%)	0.30
Secant modulus (E50) at ε 50	(kPa)	47302
At peak principal effective stress		
Corrected deviator stress	(kPa)	263
Membrane correction applied	(kPa)	0.7
Drain correction applied	(kPa)	0
Axial strain	(%)	8.83
Excess pore pressure	(kPa)	278
Major principal effective stress	(kPa)	386
Minor principal effective stress	(kPa)	122
Principal effective stress ratio	, , , , , , , , , , , , , , , , , , ,	3.16
A4 400/ postal a4m-t		
At 10% axial strain	(LD-)	260
Corrected deviator stress	(kPa)	268
Membrane correction applied	(kPa)	0.8
Drain correction applied	(kPa)	0
Axial strain	(%)	10.00
Excess pore pressure	(kPa)	275
Major principal effective stress	(kPa)	393
Minor principal effective stress	(kPa)	125
Principal effective stress ratio		3.15

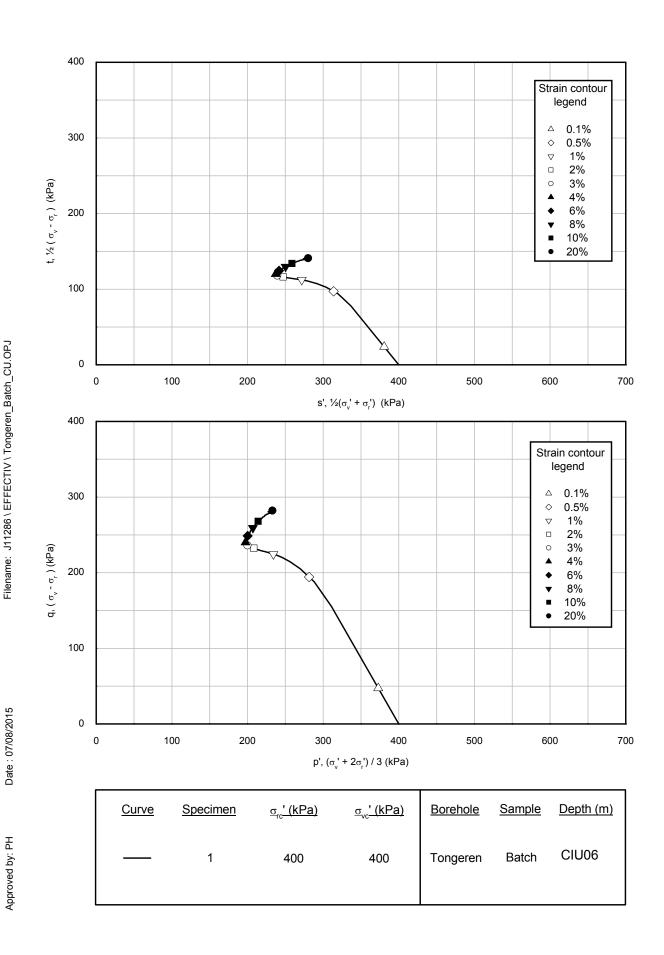
FINAL CONDITIONS		
Moisture content	(%)	22.8
Bulk density	(Mg/m³)	2.03
Dry density	(Mg/m³)	1.65

Borehole	Tongeren
Sample	Batch
Depth (m)	CIU06

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE 1&II - DUTCH SECTOR, NORTH SEA

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 07/08/2015


Drawn by: ER

Filename: J11286 \ EFFECTIV \ Tongeren_Batch_CU.OPJ

Template Issue: 4.1

Date: 07/08/2015 Date: 07/08/2015

Checked by: PH Approved by: PH

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 07/08/2015

Drawn by: ER

Template Issue: 4.1

Date: 07/08/2015

Checked by: PH

VISUAL DESCRIPTION

Very high strength dark grey CLAY with pockets of silt.

GENERAL	
Date test started	30/06/2015
Type of sample	Undisturbed
Type of drains fitted	Radial (spiral) & one end

INITIAL			
Diameter	[mm]	71.6	
Length	[mm]	145.9	
Moisture content	[%]	24.6	
Bulk density	[Mg/m³]	1.97	
Dry density	[Mg/m³]	1.58	
Void ratio	[-]	0.708	
Degree of saturation	[%]	94	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	500	

TESTING PROCEDURES USED	
Specimen Set-up	BS1377: Part 8: 1990 Clause 4
	Fugro testing procedure L-T-023 Clause 5.2.2
Saturation	Fugro testing procedure L-T-023 Clause 5.2.3
	BS1377: Part 8: 1990 Clause 5.3
Consolidation - Isotropic	BS1377: Part 8: 1990 Clause 6
Consolidation - Anisotropic	Not applicable
Shearing	BS1377: Part 8: 1990 Clause 7
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ BH-WFS1-1_18C_CIUc
Processed by	PH
Date	04/08/2015
Checked by	LJ
Date	10/08/2015
Approved by	DT
Date	12/08/2015

TEST IDENTIFICATION	
Borehole	BH-WFS1-1
Sample	18WAXC
Depth [m]	52.29
Test number	234

SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT

SATURATION		
Pressure increments applied	[kPa]	Undrained ramp to 800 kPa, 100 kPa thereafter
Differential pressure used	[kPa]	N/A
Cell pressure	[kPa]	1500
Base PWP	[kPa]	1082
Mid height PWP	[kPa]	-
B value achieved	[-]	0.97

S _{VH} BENDER ELEMENT DETERMINATIONS - POST SATURATION			
Peak to Peak			
Distance	[mm]	141.67	
Time	[ms]	0.56	
Velocity	[m/s]	252.98	
Bulk density	[Mg/m ³]	1.97	
Frequency	[Hz]	5000.00	
G _{max}	[MPa]	126.11	

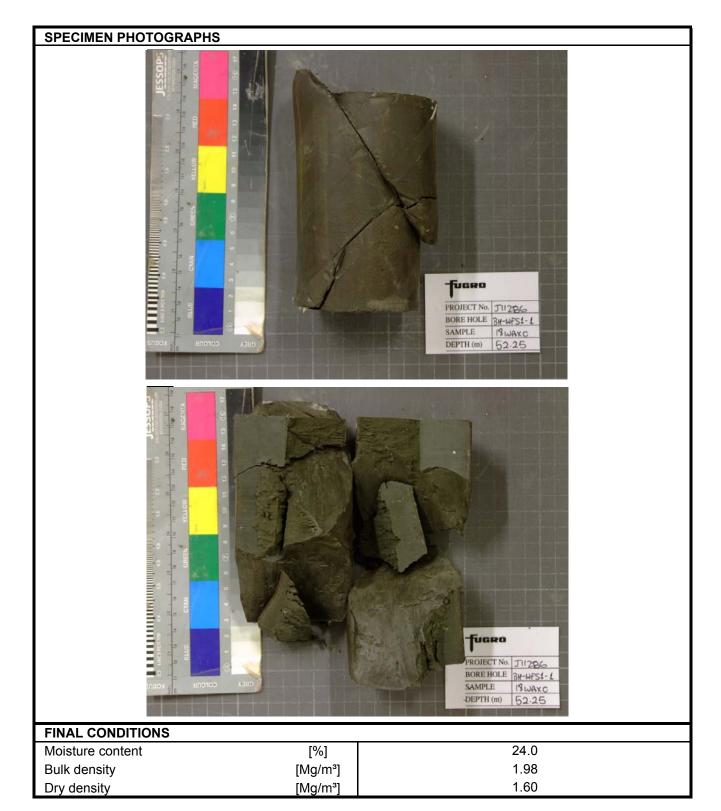
CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	1500	
Back pressure	[kPa]	1000	
Base PWP	[kPa]	1000	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	500	
Effective axial pressure	[kPa]	500	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	1.06	
External axial strain	[%]	0.22	
Local axial strain	[%]	0.08	
Local radial strain	[%]	-	
Moisture content	[%]	24.0	
Bulk density	[Mg/m³]	1.98	
Dry density	[Mg/m³]	1.60	
Void ratio	[-]	0.690	
Degree of saturation	[%]	94	

TEST IDENTIFICATION	
Borehole	BH-WFS1-1
Sample	18WAXC
Depth [m]	52.29
Test number	234

SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

S _{VH} BENDER ELEMENT DETERMINATIONS - POST ISOTROPIC			
Peak to Peak			
Distance	[mm]	141.35	
Time	[ms]	0.53	
Velocity	[m/s]	265.20	
Bulk density	[Mg/m ³]	1.98	
Frequency	[Hz]	5000.00	
G _{max}	[MPa]	139.32	

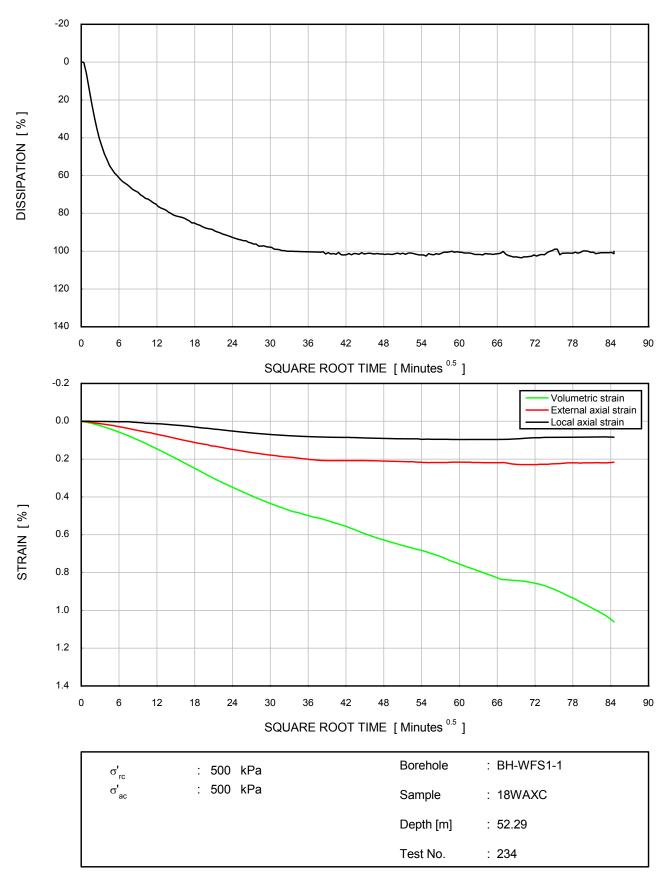
TEST IDENTIFICATION	
Borehole	BH-WFS1-1
Sample	18WAXC
Depth [m]	52.29
Test number	234

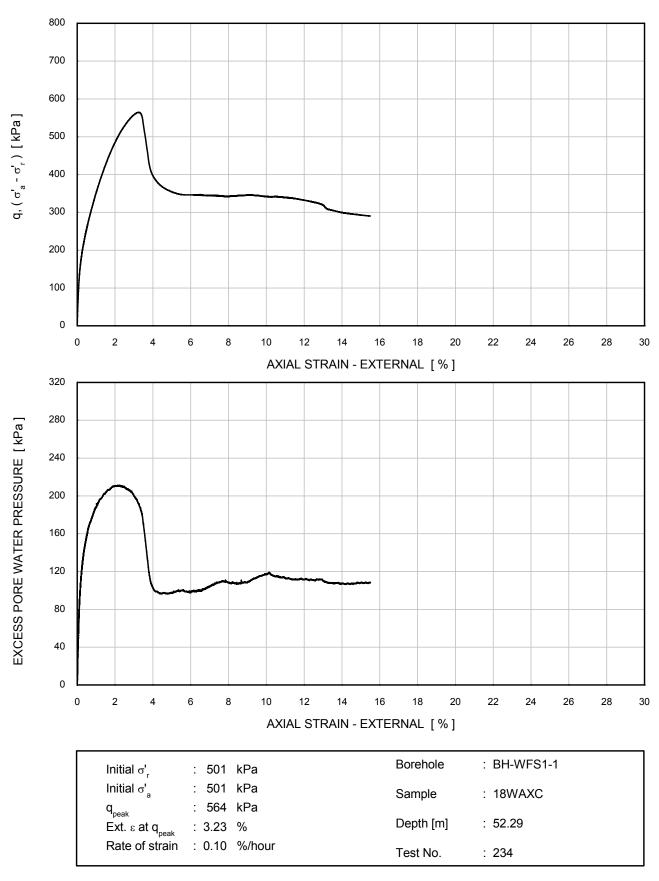

SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

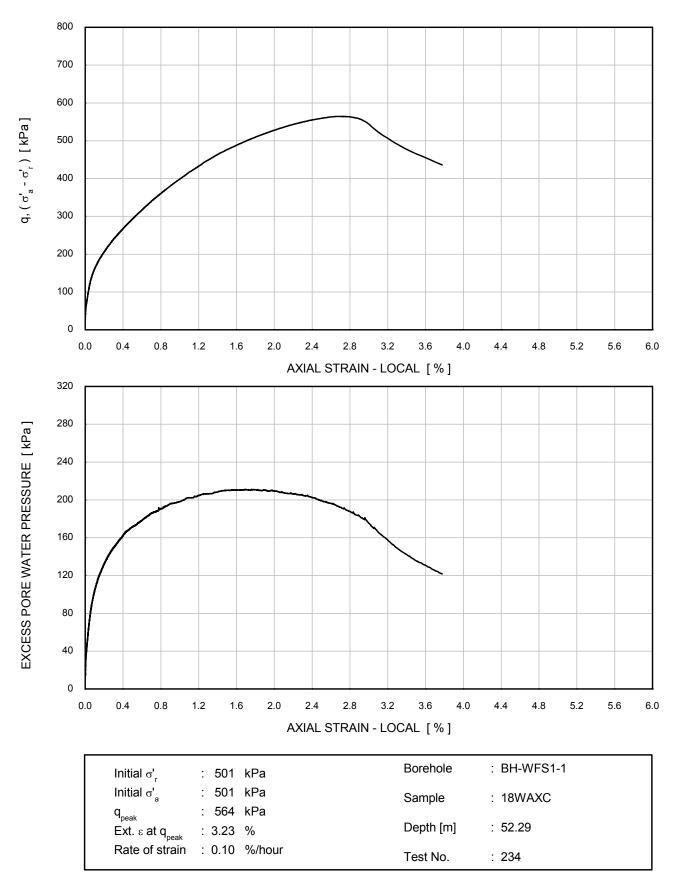
SHEARING STAGE		
Initial effective radial pressure	[kPa]	501
Initial effective axial pressure	[kPa]	501
Rate of strain	[%/hour]	0.10
At peak deviator stress		
Corrected deviator stress	[kPa]	564
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	3.23
Local axial strain	[%]	1.87
Local radial strain	[%]	-
Excess base PWP	[kPa]	192
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	308
Effective axial pressure	[kPa]	873
Principal effective stress ratio	[-]	2.83
ε ₅₀	[%]	0.62
Secant modulus (E $_{50}$) at ϵ_{50}	[kPa]	45539
At peak principal effective stress i	atio	
Corrected deviator stress	[kPa]	552
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	2.88
Local axial strain	[%]	1.66
Local radial strain	[%]	-
Excess base PWP	[kPa]	205
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	296
Effective axial pressure	[kPa]	848
Principal effective stress ratio	[-]	2.87
At 10% axial strain		
Corrected deviator stress	[kPa]	341
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	0.00
Local radial strain	[%]	-
Excess base PWP	[kPa]	117
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	384
Effective axial pressure	[kPa]	725
Principal effective stress ratio	[-]	1.89

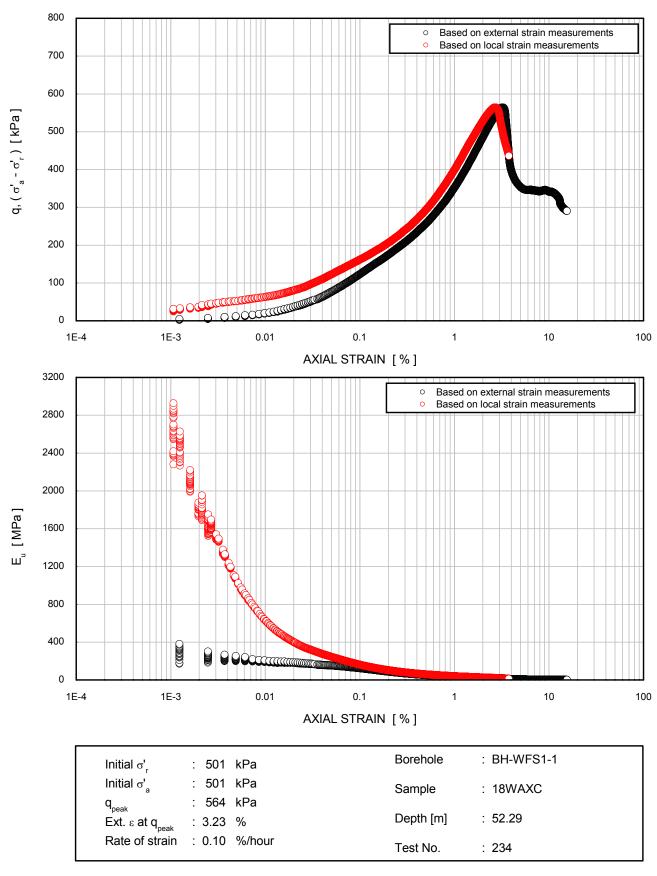

TEST IDENTIFICATION	
Borehole	BH-WFS1-1
Sample	18WAXC
Depth [m]	52.29
Test number	234

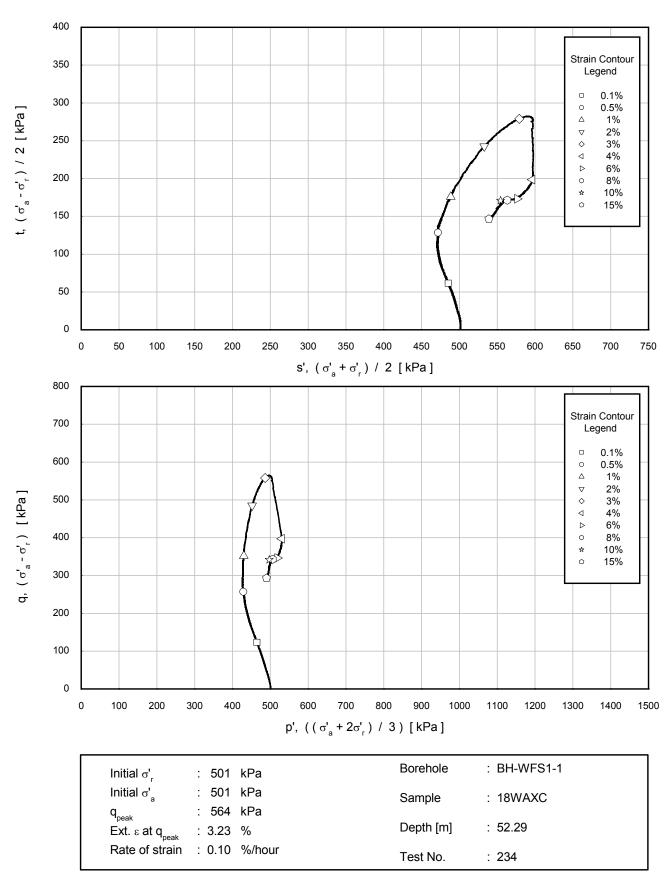
At 0.01% axial strain		
Corrected deviator stress	[kPa]	72
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.05
Local axial strain	[%]	0.01
Local radial strain	[%]	-
Excess base PWP	[kPa]	43
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	458
Effective axial pressure	[kPa]	530
Principal effective stress ratio	[-]	1.16
At 0.1% axial strain		
Corrected deviator stress	[kPa]	185
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.23
Local axial strain	[%]	0.10
Local radial strain	[%]	-
Excess base PWP	[kPa]	119
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	381
Effective axial pressure	[kPa]	566
Principal effective stress ratio	[-]	1.48

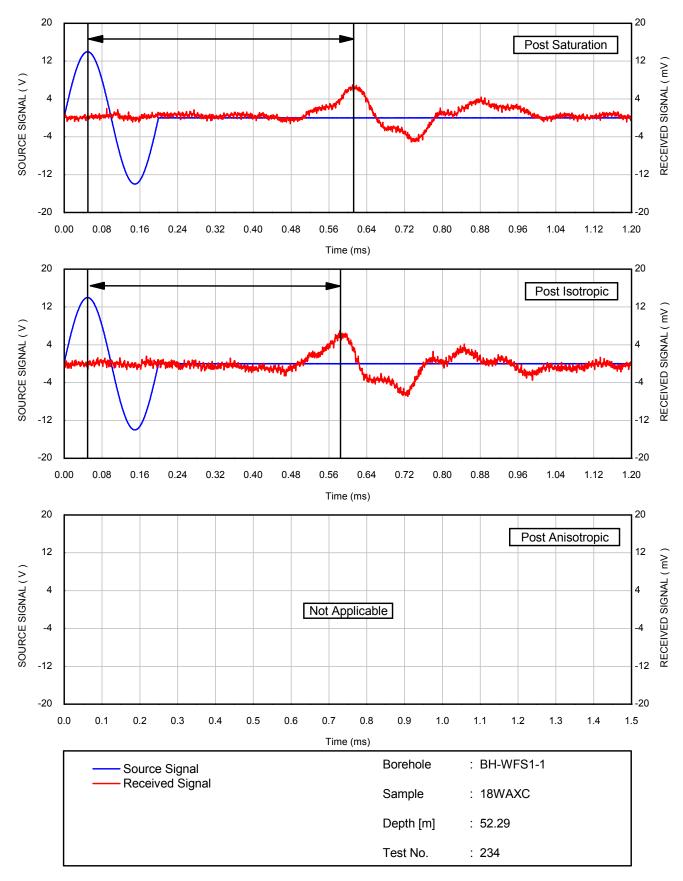

TEST IDENTIFICATION	
Borehole	BH-WFS1-1
Sample	18WAXC
Depth [m]	52.29
Test number	234


TEST IDENTIFICATION	
Borehole	BH-WFS1-1
Sample	18WAXC
Depth [m]	52.29
Test number	234




ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST SATURATION STAGE - UNDRAINED




ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT ISOTROPIC CONSOLIDATION STAGE

ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT SVH BENDER ELEMENT DETERMINATIONS (PEAK TO PEAK)

Filename: J11286 / EFFECTIV / BH-WFS1-4_20WAXB_CU.XLS

Date: 23/06/2015 Approved by: PH Checked by: PH

GENERAL	
Date test started	12/06/2015
Type of sample	Undisturbed
Specimen orientation	Vertical
Type of drains fitted	Radial & one end

INITIAL		
Diameter	(mm)	72.0
Length	(mm)	139.9
Moisture content	(%)	24.9
Bulk density	(Mg/m³)	2.01
Dry density	(Mg/m³)	1.61
Void ratio		0.675
Degree of saturation	(%)	100

SATURATION		
Pressure increments applied	(kPa)	50
Differential pressure used	(kPa)	N/A
Pore pressure on completion	(kPa)	602
Cell pressure on completion	(kPa)	1000
B value achieved		0.99

TESTING PROCEDURES USED	
Specimen Set-up	BS 1377: Part 8: 1990 Clause 4
	Fugro testing procedure L-T-023 Clause 5.2.2
Saturation	Fugro testing procedure L-T-023 Clause 5.2.3
	BS 1377: Part 8: 1990: Clause 5.4
Consolidation - Isotropic	BS 1377: Part 8: 1990 Clause 6
Consolidation - Anisotropic	Not applicable
Shearing	BS 1377: Part 8: 1990 Clause 7
Note: Fugro testing procedures are available on request	

Borehole	BH-WFS1-4
Sample	20WAXB
Depth (m)	40.56

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN

Filename: J11286 / EFFECTIV / BH-WFS1-4_20WAXB_CU.XLS

Date: 23/06/2015

Approved by: PH

CONSOLIDATION : ISOTROPIC	,	
Cell pressure	(kPa)	1000
Back pressure	(kPa)	600
Effective cell pressure	(kPa)	400
Pore pressure on completion	(kPa)	600
Pore pressure dissipation	(%)	100
Moisture content	(%)	24.9
Bulk density	(Mg/m³)	2.01
Dry density	(Mg/m³)	1.61
Void ratio		0.675
Degree of saturation	(%)	100
Volumetric strain	(%)	0.01

Mode of failure: Compound Failure

Borehole	BH-WFS1-4
Sample	20WAXB
Depth (m)	40.56

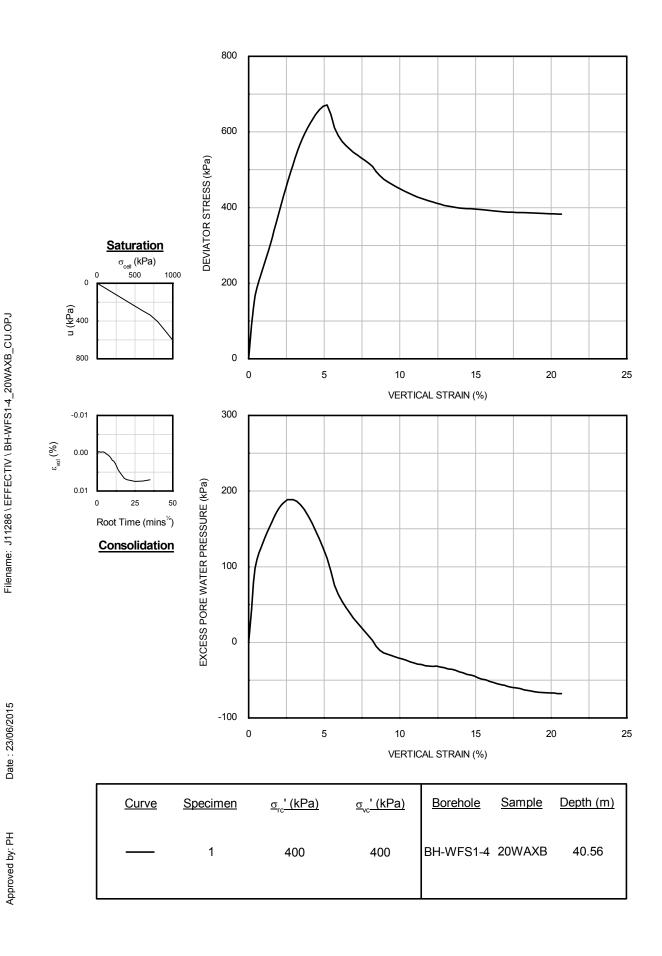
SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN

Date: 23/06/2015

Approved by: PH

SHEARING		
Initial pore pressure	(kPa)	600
Initial effective cell pressure	(kPa)	400
Rate of strain	(%/hour)	0.42
At peak deviator stress		
Corrected deviator stress	(kPa)	671
Membrane correction applied	(kPa)	0.5
Drain correction applied	(kPa)	0
Axial strain	(%)	5.18
Excess pore pressure	(kPa)	111
Major principal effective stress	(kPa)	960
Minor principal effective stress	(kPa)	289
Principal effective stress ratio		3.32
Epsilon 50 (ϵ 50)	(%)	1.66
Secant modulus (E50) at ϵ 50	(kPa)	20197
At peak principal effective stres	s ratio	
Corrected deviator stress	(kPa)	593
Membrane correction applied	(kPa)	0.3
Drain correction applied	(kPa)	0
Axial strain	(%)	3.68
Excess pore pressure	(kPa)	175
Major principal effective stress	(kPa)	818
Minor principal effective stress	(kPa)	225
Principal effective stress ratio		3.64
At 10% axial strain	<i>"</i>	
Corrected deviator stress	(kPa)	450
Membrane correction applied	(kPa)	0.8
Drain correction applied	(kPa)	0
Axial strain	(%)	10.00
Excess pore pressure	(kPa)	-21
Major principal effective stress	(kPa)	871
Minor principal effective stress	(kPa)	421
Principal effective stress ratio		2.07

FINAL CONDITIONS		
Moisture content	(%)	24.9
Bulk density	(Mg/m³)	2.01
Dry density	(Mg/m³)	1.61


Borehole	BH-WFS1-4
Sample	20WAXB
Depth (m)	40.56

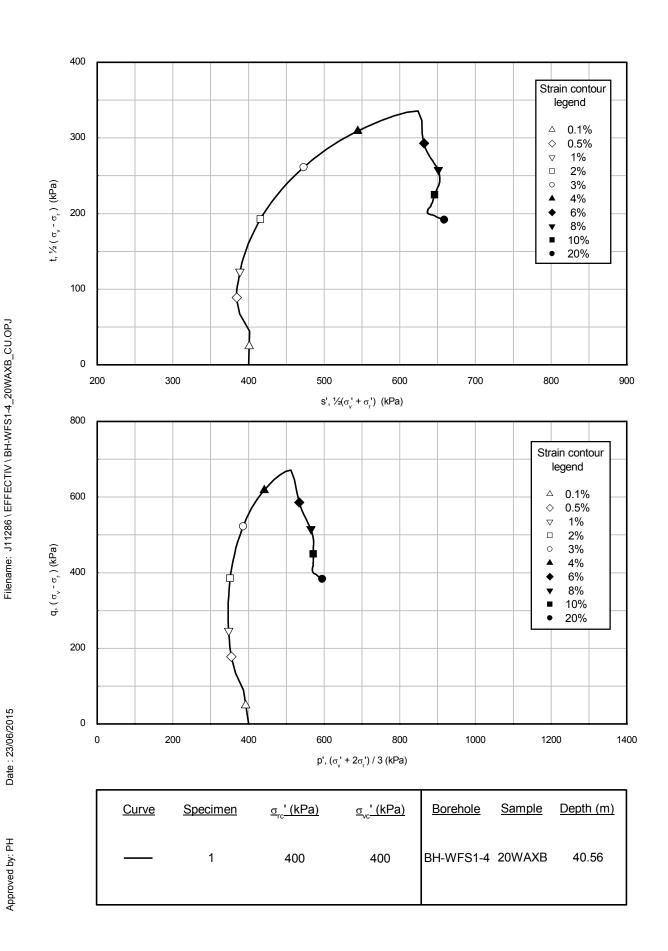
SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN

BH-WFS1-4 Borehole 20WAXB Sample Depth (m) 40.56

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 19/06/2015


 \mathbb{H}

Drawn by:

Template Issue: 4.1

Date: 23/06/2015

Checked by: PH

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN

BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 19/06/2015

 \mathbb{H}

Drawn by:

Template Issue: 4.1

Date: 23/06/2015

Checked by: PH

VISUAL DESCRIPTION

High strength olive grey fissured CLAY.

GENERAL	
Date test started	30/06/2015
Type of sample	Undisturbed
Type of drains fitted	Radial (spiral) & one end

INITIAL			
Diameter	[mm]	71.6	
Length	[mm]	145.9	
Moisture content	[%]	44.3	
Bulk density	[Mg/m³]	1.77	
Dry density	[Mg/m³]	1.23	
Void ratio	[-]	1.199	
Degree of saturation	[%]	100	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	215	

TESTING PROCEDURES USED	
Specimen Set-up	BS1377: Part 8: 1990 Clause 4
	Fugro testing procedure L-T-023 Clause 5.2.2
Saturation	Fugro testing procedure L-T-023 Clause 5.2.3
	BS1377: Part 8: 1990 Clause 5.3
Consolidation - Isotropic	BS1377: Part 8: 1990 Clause 6
Consolidation - Anisotropic	Not applicable
Shearing	BS1377: Part 8: 1990 Clause 7
Note:	
Fugro testing procedures are available up	oon request

QUALITY ASSURANCE		
Template Issue	1.0	
Filename	J11286 \ BH-WFS2-6_18D_CIUc	
Processed by	PH	
Date	04/08/2015	
Checked by	LJ	
Date	10/08/2015	
Approved by	DT	
Date	12/08/2015	

TEST IDENTIFICATION	
Borehole	BH-WFS2-6A
Sample	18WAXD
Depth [m]	49.44
Test number	-

SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT

SATURATION		
Pressure increments applied	[kPa]	Undrained ramp to 800 kPa, 100 kPa thereafter
Differential pressure used	[kPa]	N/A
Cell pressure	[kPa]	1480
Base PWP	[kPa]	1313
Mid height PWP	[kPa]	-
B value achieved	[-]	1.00

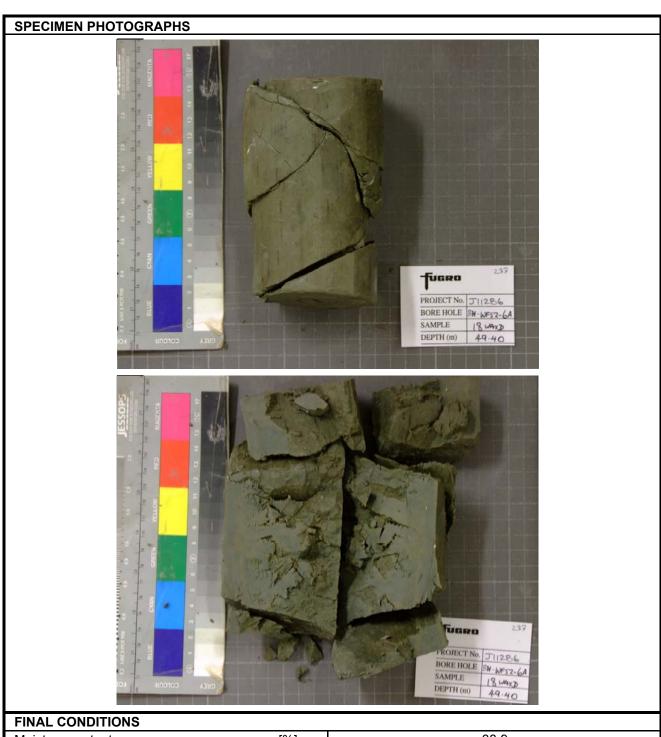
S _{VH} BENDER ELEMENT DETERMINATIONS - POST SATURATION			
Peak to Peak			
Distance	[mm]	141.66	
Time	[ms]	0.74	
Velocity	[m/s]	191.17	
Bulk density	[Mg/m³]	1.77	
Frequency	[Hz]	5000.00	
G_{max}	[MPa]	64.76	

CONSOLIDATION: ISOTROPIC		
Cell pressure	[kPa]	1480
Back pressure	[kPa]	1002
Base PWP	[kPa]	1000
Mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	480
Effective axial pressure	[kPa]	480
Deviator stress	[kPa]	0
Volumetric strain	[%]	6.64
External axial strain	[%]	1.20
Local axial strain	[%]	0.91
Local radial strain	[%]	-
Moisture content	[%]	38.9
Bulk density	[Mg/m³]	1.83
Dry density	[Mg/m³]	1.32
Void ratio	[-]	1.052
Degree of saturation	[%]	100

TEST IDENTIFICATION	
Borehole	BH-WFS2-6A
Sample	18WAXD
Depth [m]	49.44
Test number	-

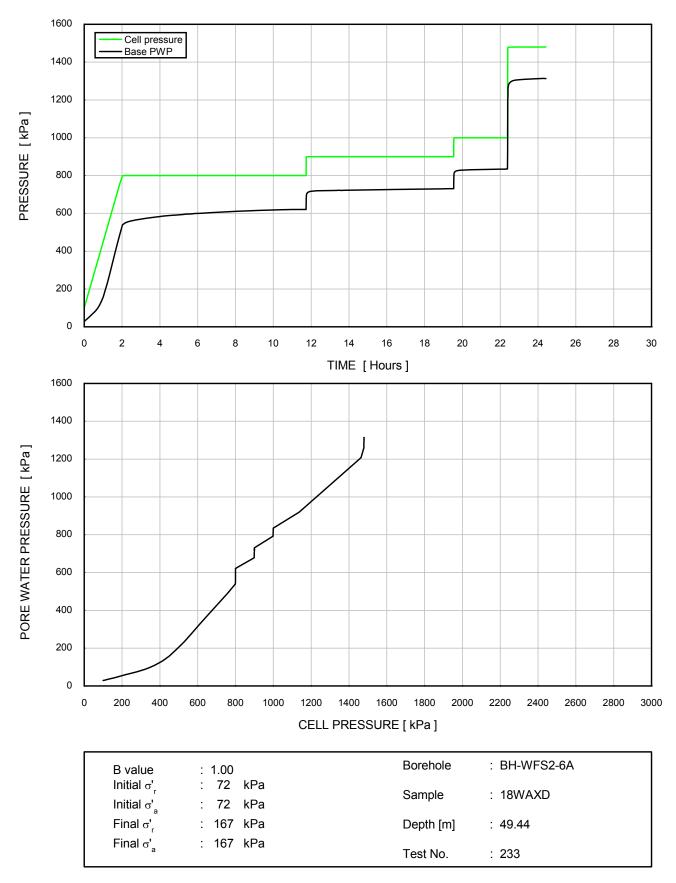
SUMMARY OF ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

S _{VH} BENDER ELEMENT DETERMINATIONS - POST ISOTROPIC		
Peak to Peak		
Distance	[mm]	139.91
Time	[ms]	0.62
Velocity	[m/s]	224.57
Bulk density	[Mg/m ³]	1.83
Frequency	[Hz]	5000.00
G_{max}	[MPa]	92.14

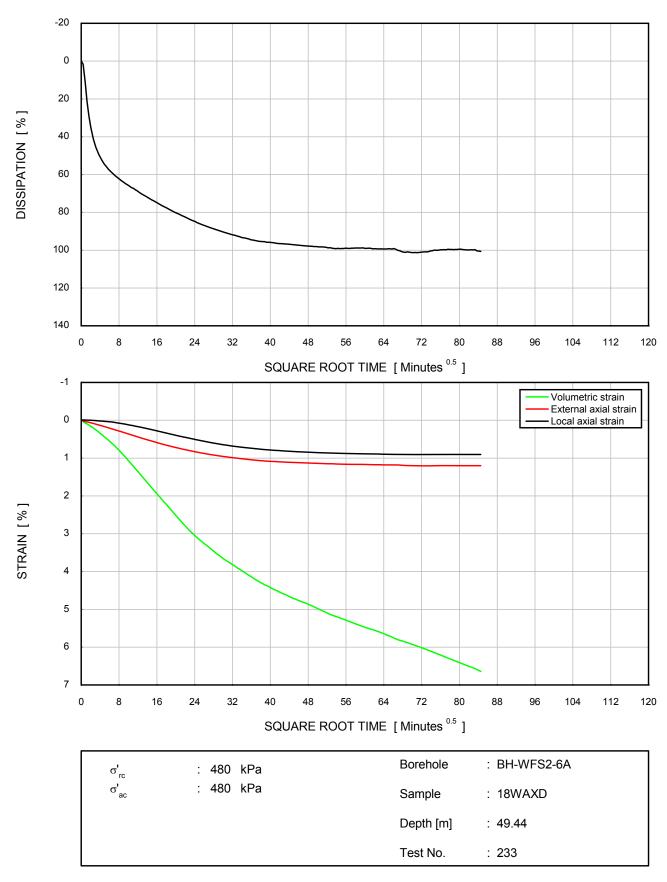

TEST IDENTIFICATION	
Borehole	BH-WFS2-6A
Sample	18WAXD
Depth [m]	49.44
Test number	-

SHEARING STAGE		
Initial effective radial pressure	[kPa]	480
Initial effective axial pressure	[kPa]	480
Rate of strain	[%/hour]	0.10
At peak deviator stress		
Corrected deviator stress	[kPa]	298
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	1.44
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	176
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	304
Effective axial pressure	[kPa]	602
Principal effective stress ratio	[-]	1.98
ε ₅₀	[%]	0.16
Secant modulus (E $_{50}$) at ϵ_{50}	[kPa]	91284
At peak principal effective stress i	atio	
Corrected deviator stress	[kPa]	289
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	5.46
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	189
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	291
Effective axial pressure	[kPa]	580
Principal effective stress ratio	[-]	1.99
At 10% axial strain		
Corrected deviator stress	[kPa]	261
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	191
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	289
Effective axial pressure	[kPa]	551
Principal effective stress ratio	[-]	1.90

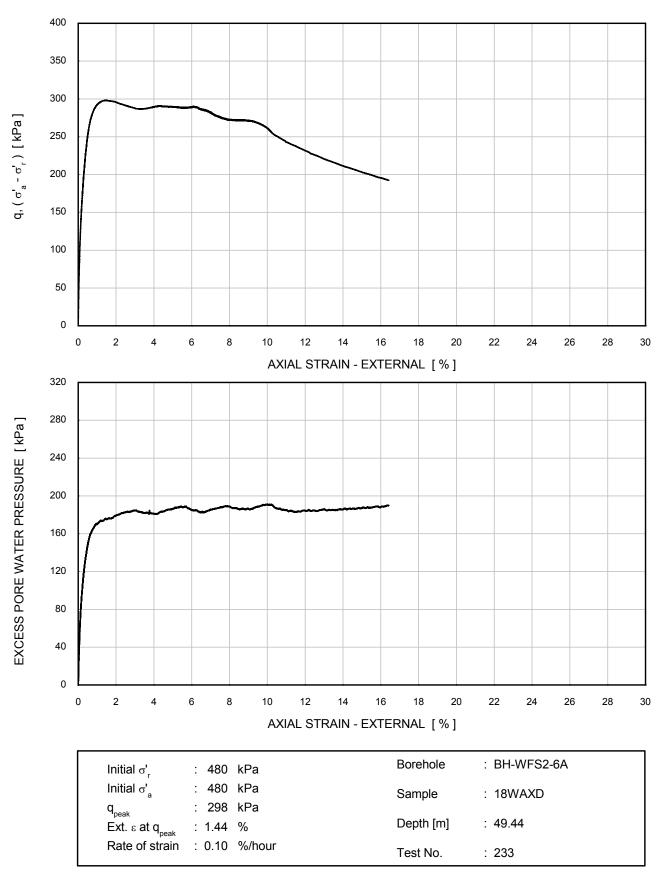
TEST IDENTIFICATION	
Borehole	BH-WFS2-6A
Sample	18WAXD
Depth [m]	49.44
Test number	-

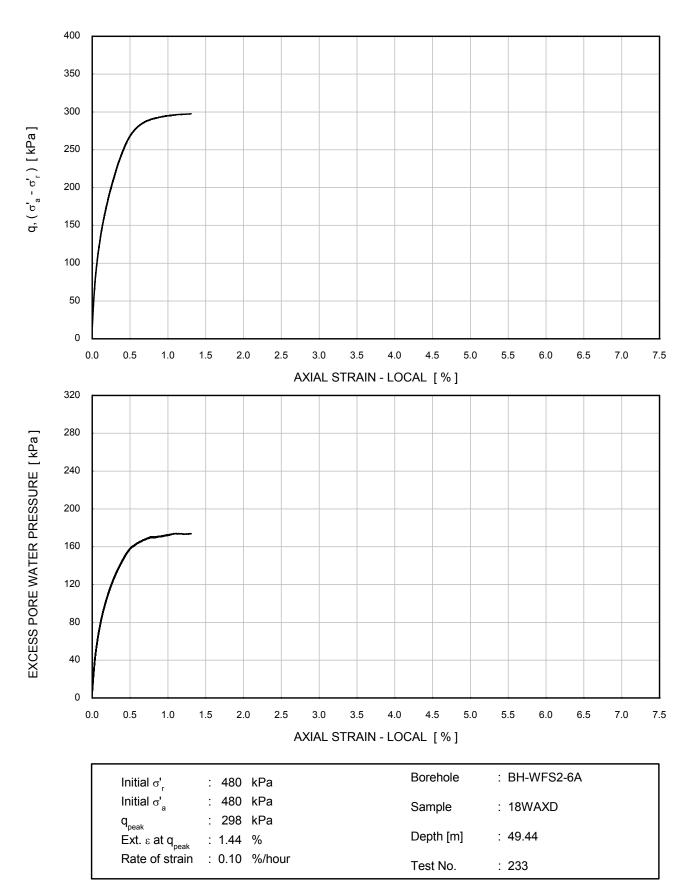

At 0.01% axial strain		
Corrected deviator stress	[kPa]	33
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.02
Local axial strain	[%]	0.01
Local radial strain	[%]	-
Excess base PWP	[kPa]	17
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	463
Effective axial pressure	[kPa]	497
Principal effective stress ratio	[-]	1.07
At 0.1% axial strain		
Corrected deviator stress	[kPa]	128
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.12
Local axial strain	[%]	0.10
Local radial strain	[%]	-
Excess base PWP	[kPa]	75
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	405
Effective axial pressure	[kPa]	533
Principal effective stress ratio	[-]	1.32

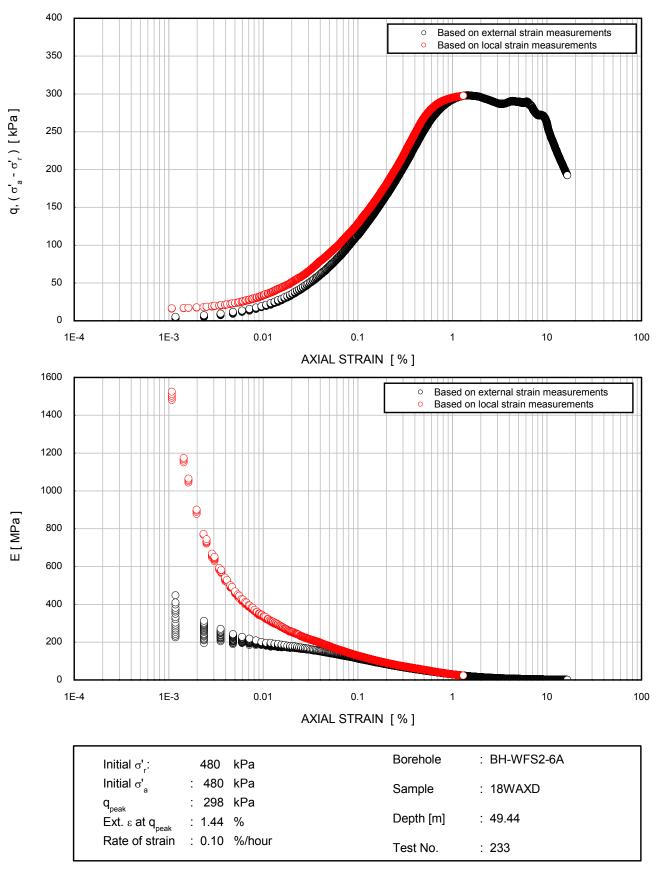
TEST IDENTIFICATION	
Borehole	BH-WFS2-6A
Sample	18WAXD
Depth [m]	49.44
Test number	-

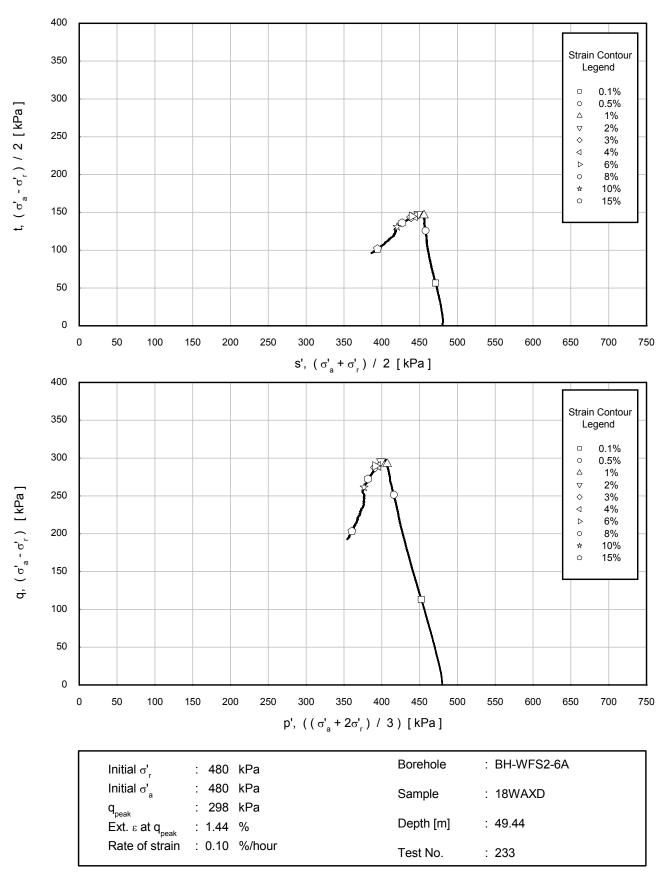


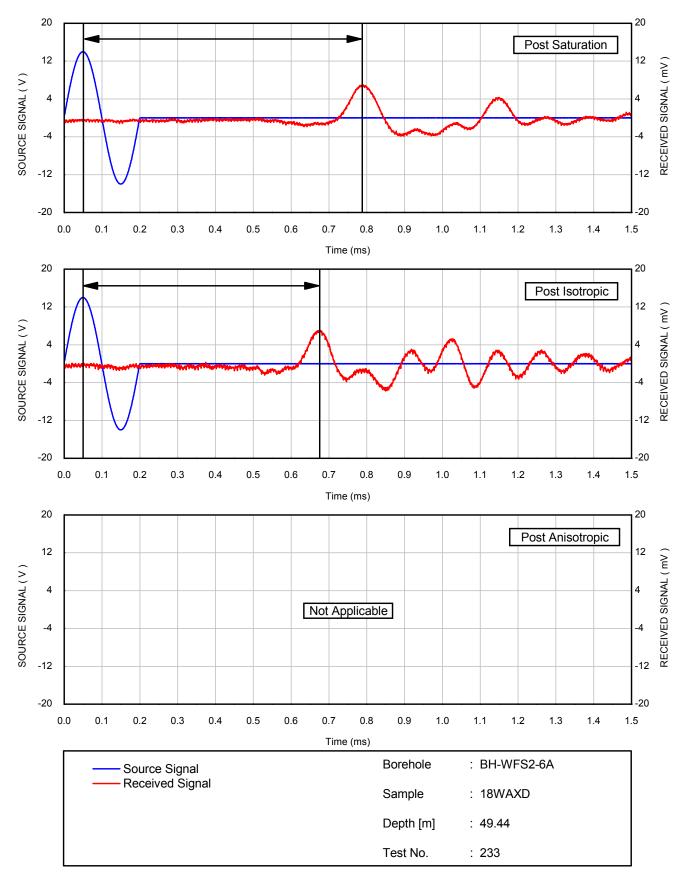
FINAL CONDITIONS			
Moisture content	[%]	38.9	
Bulk density	[Mg/m³]	1.83	
Dry density	[Mg/m³]	1.32	


TEST IDENTIFICATION	
Borehole	BH-WFS2-6A
Sample	18WAXD
Depth [m]	49.44
Test number	-




ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST SATURATION STAGE - UNDRAINED




ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT ISOTROPIC CONSOLIDATION STAGE

ISOTROPICALLY CONSOLIDATED TRIAXIAL TEST WITH LOCAL STRAIN MEASUREMENT SVH BENDER ELEMENT DETERMINATIONS (PEAK TO PEAK)

Filename: J11286 / EFFECTIV / BH-WFS2-7_22WAXD_CU.XLS

Date: 24/06/2015 Approved by: PH

VISUAL DESCRIPTION	
High strength greenish grey CLAY.	
GENERAL	
Date test started	12/06/2015
Type of sample	Undisturbed
Specimen orientation	Vertical
Type of drains fitted	Radial & one end

INITIAL		
Diameter	(mm)	71.9
Length	(mm)	139.8
Moisture content	(%)	45.6
Bulk density	(Mg/m³)	1.76
Dry density	(Mg/m³)	1.21
Void ratio		1.228
Degree of saturation	(%)	100

SATURATION		
Pressure increments applied	(kPa)	100
Differential pressure used	(kPa)	N/A
Pore pressure on completion	(kPa)	621
Cell pressure on completion	(kPa)	955
B value achieved		0.96

TESTING PROCEDURES USED		
Specimen Set-up	BS 1377: Part 8: 1990 Clause 4	
	Fugro testing procedure L-T-023 Clause 5.2.2	
Saturation	Fugro testing procedure L-T-023 Clause 5.2.3	
	BS 1377: Part 8: 1990: Clause 5.4	
Consolidation - Isotropic	BS 1377: Part 8: 1990 Clause 6	
Consolidation - Anisotropic	Not applicable	
Shearing	BS 1377: Part 8: 1990 Clause 7	
Note: Fugro testing procedures are available or	Note: Fugro testing procedures are available on request	

Borehole	BH-WFS2-7
Sample	22WAXD
Depth (m)	39.52

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN

Filename: J11286 / EFFECTIV / BH-WFS2-7_22WAXD_CU.XLS

Date: 24/06/2015

Approved by: PH

CONSOLIDATION : ISOTROPIC		
Cell pressure	(kPa)	955
Back pressure	(kPa)	600
Effective cell pressure	(kPa)	355
Pore pressure on completion	(kPa)	600
Pore pressure dissipation	(%)	100
Moisture content	(%)	45.6
Bulk density	(Mg/m³)	1.77
Dry density	(Mg/m³)	1.21
Void ratio		1.227
Degree of saturation	(%)	100
Volumetric strain	(%)	0.04

Mode of failure:

Shear failure

Borehole	BH-WFS2-7
Sample	22WAXD
Depth (m)	39.52

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN

Filename: J11286 / EFFECTIV / BH-WFS2-7_22WAXD_CU.XLS

Date: 24/06/2015

Approved by: PH

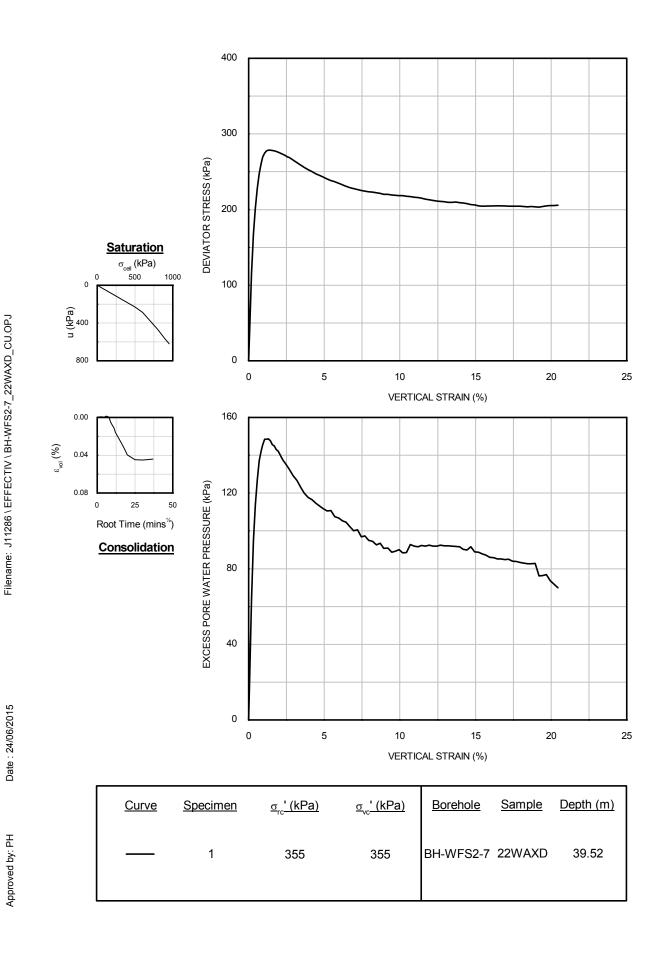
SHEARING		
Initial pore pressure	(kPa)	600
Initial effective cell pressure	(kPa)	355
Rate of strain	(%/hour)	0.22
At peak deviator stress		
Corrected deviator stress	(kPa)	279
Membrane correction applied	(kPa)	0.1
Drain correction applied	(kPa)	0
Axial strain	(%)	1.44
Excess pore pressure	(kPa)	148
Major principal effective stress	(kPa)	486
Minor principal effective stress	(kPa)	207
Principal effective stress ratio		2.34
Epsilon 50 (ε 50)	(%)	0.25
Secant modulus (E50) at ϵ 50	(kPa)	56533
At peak principal effective stres	s ratio	
Corrected deviator stress	(kPa)	279
Membrane correction applied	(kPa)	0.1
Drain correction applied	(kPa)	0
Axial strain	(%)	1.32
Excess pore pressure	(kPa)	149
Major principal effective stress	(kPa)	485
Minor principal effective stress	(kPa)	206
Principal effective stress ratio		2.35
At 10% axial strain		
Corrected deviator stress	(kPa)	219
Membrane correction applied	(kr a) (kPa)	0.8
Drain correction applied	(kPa)	0.0
Axial strain	(Ki a) (%)	10.00
Excess pore pressure	(kPa)	90
Major principal effective stress	(kPa)	484
Minor principal effective stress	(kPa)	265
Principal effective stress ratio	(111 4)	1.82
		1.02

FINAL CONDITIONS		
Moisture content	(%)	45.6
Bulk density	(Mg/m³)	1.77
Dry density	(Mg/m³)	1.21

Borehole	BH-WFS2-7
Sample	22WAXD
Depth (m)	39.52

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN

SPECIMEN PHOTOGRAPHS


Date: 24/06/2015

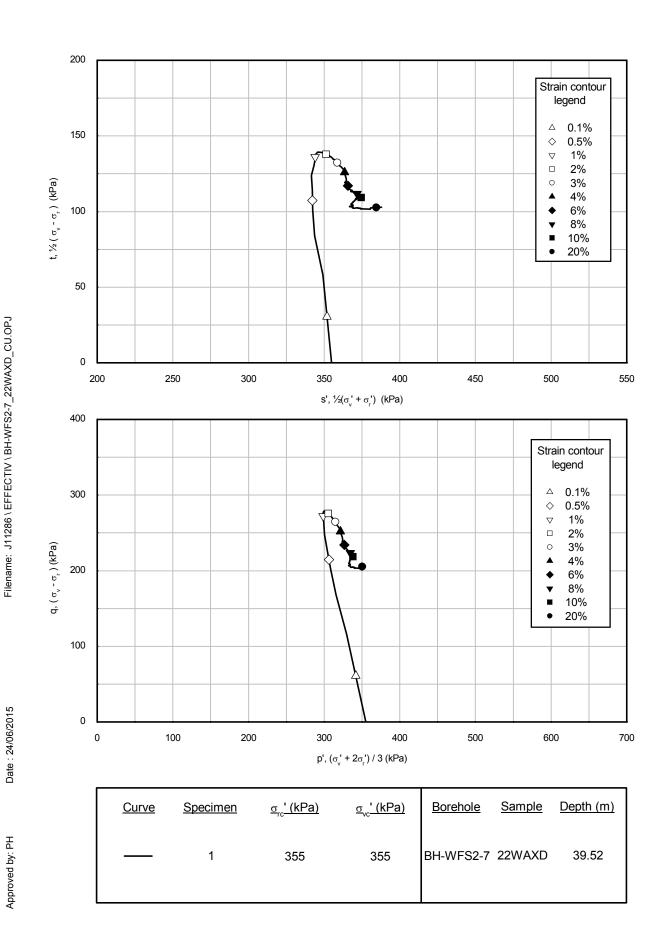
Approved by: PH

22WAXD Sample Depth (m) 39.52

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 23/06/2015


 \mathbb{H}

Drawn by:

Template Issue: 4.1

Date: 24/06/2015

Checked by: PH

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST: SINGLE SPECIMEN

BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 23/06/2015

 \mathbb{H}

Drawn by:

Template Issue: 4.1

Date: 24/06/2015

Checked by: PH

Filename: J11286 / EFFECTIV / BH-WFS1-1_17WAXD_IE.XLS

Checked by:

Date: 04/08/2015

F

Approved by:

VISUAL DESCRIPTION Very high strength dark olive grey CLAY. **GENERAL** 02/07/2015 Date test started Type of sample Undisturbed Specimen orientation Vertical Type of drains fitted Radial & one end INITIAL Diameter 71.4 (mm) Length (mm) 124.9 Moisture content (%) 27.1 1.98 **Bulk density** (Mg/m³)Dry density (Mg/m³)1.56 Void ratio 0.731 Degree of saturation (%) 100 **SATURATION** Pressure increments applied (kPa) 100 Differential pressure used (kPa) N/A 417 Pore pressure on completion (kPa) Cell pressure on completion 890 (kPa) B value achieved 0.99 TESTING PROCEDURES USED BS 1377: Part 8: 1990 Clause 4 Specimen Set-up Fugro testing procedure L-T-023 Clause 5.2.2 Saturation Fugro testing procedure L-T-023 Clause 5.2.3 BS 1377: Part 8: 1990: Clause 5.3 Consolidation - Isotropic BS 1377: Part 8: 1990 Clause 6 Consolidation - Anisotropic Not applicable Shearing BS 1377: Part 8: 1990 Clause 7 Note: Fugro testing procedures are available on request *Air conditioning failure mid test resulted in laboratory temperature being out of specification (±2°C)

Borehole	BH-WFS1-1
Sample	17WAXD
Depth (m)	51.52

Filename: J11286 / EFFECTIV / BH-WFS1-1_17WAXD_IE.XLS

Date: 04/08/2015

H

Approved by:

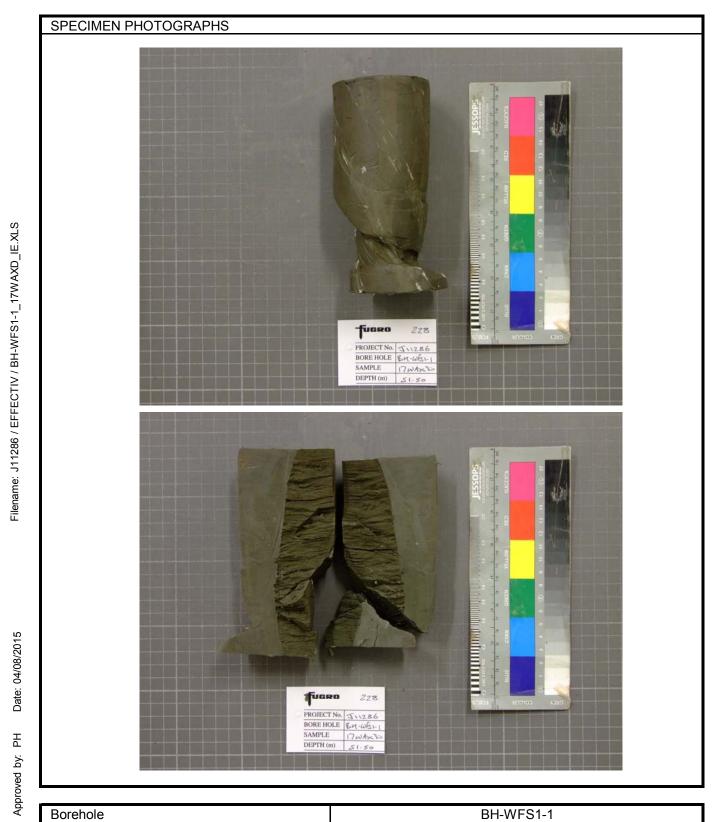
CONSOLIDATION : ISOTROPIC		
Cell pressure	(kPa)	890
Back pressure	(kPa)	400
Effective cell pressure	(kPa)	490
Pore pressure on completion	(kPa)	400
Pore pressure dissipation	(%)	100
Moisture content	(%)	27.1
Bulk density	(Mg/m³)	1.98
Dry density	(Mg/m³)	1.56
Void ratio		0.731
Degree of saturation	(%)	100
Volumetric strain	(%)	0.02

Mode of failure: Necking Failure

Borehole	BH-WFS1-1
Sample	17WAXD
Depth (m)	51.52

Filename: J11286 / EFFECTIV / BH-WFS1-1_17WAXD_IE.XLS

Date: 04/08/2015

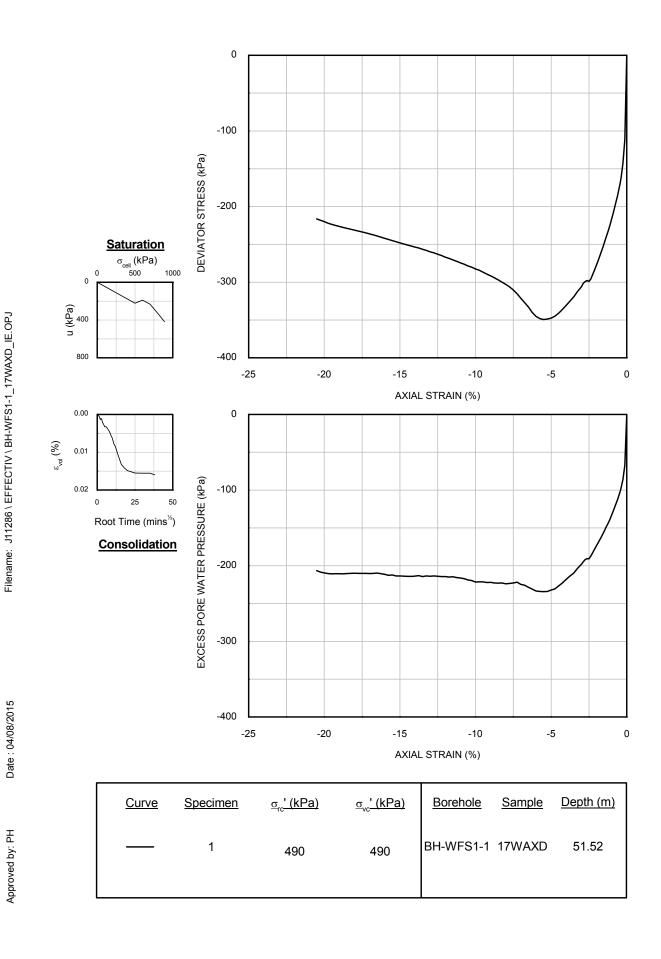

H

Approved by:

SHEARING		
Initial pore pressure	(kPa)	400
Initial effective cell pressure	(kPa)	490
Rate of strain	(%/hour)	0.21
At peak deviator stress		
Corrected deviator stress	(kPa)	-349
Membrane correction applied	(kPa)	-0.6
Drain correction applied	(kPa)	0
Axial strain	(%)	-5.50
Excess pore pressure	(kPa)	-234
Major principal effective stress	(kPa)	375
Minor principal effective stress	(kPa)	724
Principal effective stress ratio		0.52
Epsilon 50 (ϵ 50)	(%)	-0.50
Secant modulus (E50) at ϵ 50	(kPa)	35274
At peak principal effective stress		
Corrected deviator stress	(kPa)	-349
Membrane correction applied	(kPa)	-0.6
Drain correction applied	(kPa)	0
Axial strain	(%)	-5.50
Excess pore pressure	(kPa)	-234
Major principal effective stress	(kPa)	375
Minor principal effective stress	(kPa)	724
Principal effective stress ratio		0.52
At -10% axial strain		
Corrected deviator stress	(kPa)	-283
Membrane correction applied	(kPa)	-1.1
Drain correction applied	(kPa)	0
Axial strain	(%)	-10.00
Excess pore pressure	(kPa)	-222
Major principal effective stress	(kPa)	429
Minor principal effective stress	(kPa)	712
Principal effective stress ratio		0.60

FINAL CONDITIONS		
Moisture content	(%)	27.1
Bulk density	(Mg/m³)	1.98
Dry density	(Mg/m³)	1.56

Borehole	BH-WFS1-1
Sample	17WAXD
Depth (m)	51.52



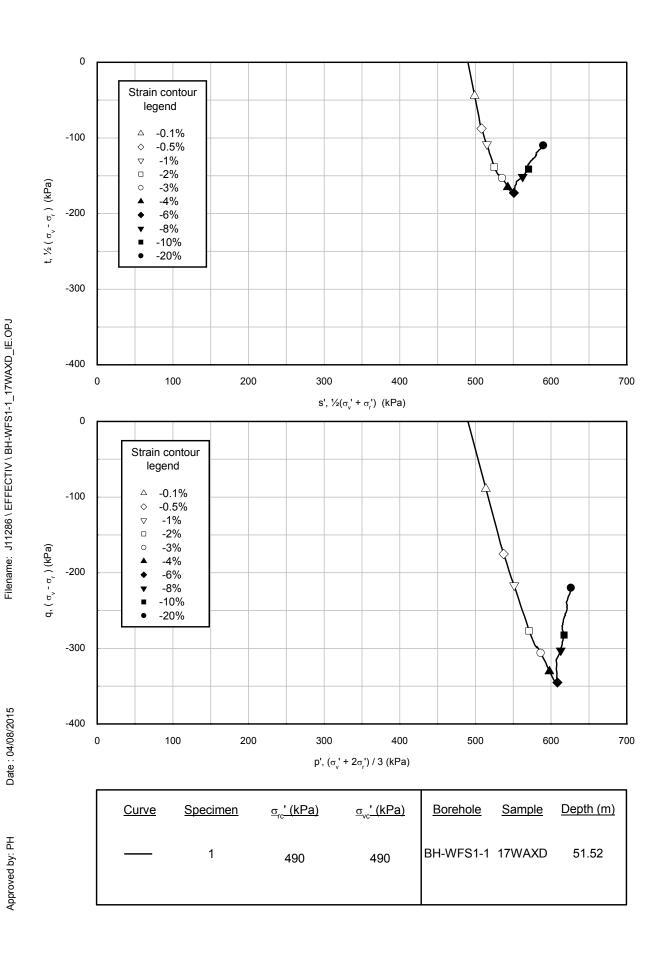
SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE 1&11 - DUTCH SECTOR, NORTH SEA

17WAXD

51.52

Sample Depth (m)

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA


Date: 14/07/2015

Drawn by: ER

Template Issue: 4.1

Date: 16/07/2015

Checked by: ALB

Date: 14/07/2015

ER

Drawn by:

Template Issue: 4.1

Date: 16/07/2015

Checked by: ALB

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Plate A4-98

Filename: J11286 / EFFECTIV / BH-WFS1-4_21WAXD_IE.XLS

	Date: 04/08/2015
Criecked by. Ph	Approved by: DH

VISUAL DESCRIPTION Hard very dark grey CLAY. **GENERAL** 18/06/2015 Date test started Type of sample Undisturbed Specimen orientation Vertical Type of drains fitted Radial & one end INITIAL Diameter 71.7 (mm) Length (mm) 124.8 Moisture content (%) 24.7 2.02 **Bulk density** (Mg/m³)Dry density (Mg/m³)1.62 Void ratio 0.670 Degree of saturation (%) 99 **SATURATION** Pressure increments applied (kPa) 100 Differential pressure used (kPa) 400 751 Pore pressure on completion (kPa) Cell pressure on completion (kPa) 1150 B value achieved 1.00 TESTING PROCEDURES USED Specimen Set-up BS 1377: Part 8: 1990 Clause 4 Fugro testing procedure L-T-023 Clause 5.2.2 Fugro testing procedure L-T-023 Clause 5.2.3 Saturation BS 1377: Part 8: 1990: Clause 5.3 BS 1377: Part 8: 1990 Clause 6 Consolidation - Isotropic Consolidation - Anisotropic Not applicable BS 1377: Part 8: 1990 Clause 7 Shearing Note: Fugro testing procedures are available on request *Air conditioning failure mid test resulted in laboratory temperature being out of specification (±2°C) **Borehole** BH-WFS1-4

Sample 21WAXD 44.97 Depth (m)

Filename: J11286 / EFFECTIV / BH-WFS1-4_21WAXD_IE.XLS

Date: 04/08/2015

H

Approved by:

CONSOLIDATION : ISOTROPIC	,	
Cell pressure	(kPa)	1150
Back pressure	(kPa)	700
Effective cell pressure	(kPa)	450
Pore pressure on completion	(kPa)	700
Pore pressure dissipation	(%)	100
Moisture content	(%)	24.8
Bulk density	(Mg/m³)	2.02
Dry density	(Mg/m³)	1.62
Void ratio		0.670
Degree of saturation	(%)	100
Volumetric strain	(%)	0.54

Mode of failure: Necking Failure

Borehole	BH-WFS1-4
Sample	21WAXD
Depth (m)	44.97

SHEARING

Filename: J11286 / EFFECTIV / BH-WFS1-4_21WAXD_IE.XLS

Date: 04/08/2015

Ŧ

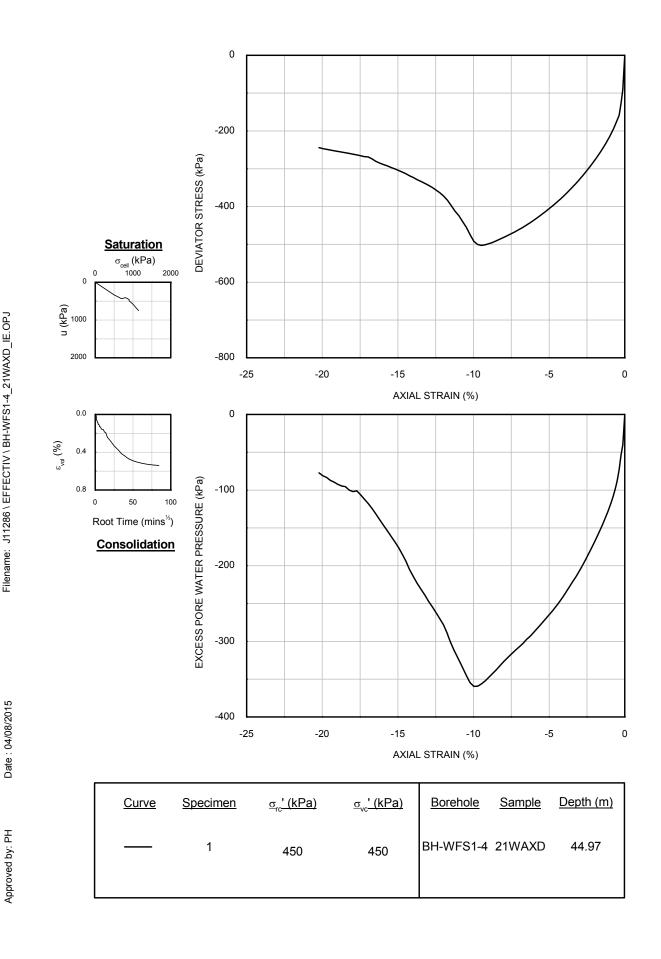
Approved by:

Initial pore pressure	(kPa)	700
Initial effective cell pressure	(kPa)	450
Rate of strain	(%/hour)	0.28
	(11 11)	
At peak deviator stress		
Corrected deviator stress	(kPa)	-503
Membrane correction applied	(kPa)	-1.1
Drain correction applied	(kPa)	0
Axial strain	(%)	-9.48
Excess pore pressure	(kPa)	-356
Major principal effective stress	(kPa)	304
Minor principal effective stress	(kPa)	806
Principal effective stress ratio		0.38
Epsilon 50 (ε 50)	(%)	-1.54
Secant modulus (E50) at ϵ 50	(kPa)	16368
At peak principal effective stres	s ratio	
Corrected deviator stress	(kPa)	-498
Membrane correction applied	(kPa)	-1.0
Drain correction applied	(kPa)	0
Axial strain	(%)	-8.98
Excess pore pressure	(kPa)	-347
Major principal effective stress	(kPa)	299
Minor principal effective stress	(kPa)	797
Principal effective stress ratio		0.38
At -10% axial strain		
Corrected deviator stress	(kPa)	-490
Membrane correction applied	(kPa)	-1.1
Drain correction applied	(kPa)	0
Axial strain	(%)	-10.00
Excess pore pressure	(kPa)	-359
Major principal effective stress	(kPa)	319
Minor principal effective stress	(kPa)	809
Principal effective stress ratio		0.39
FINAL CONDITIONS		
FINAL CONDITIONS		

FINAL CONDITIONS		
Moisture content	(%)	24.8
Bulk density	(Mg/m³)	2.02
Dry density	(Mg/m³)	1.62

Borehole	BH-WFS1-4
Sample	21WAXD
Depth (m)	44.97

SPECIMEN PHOTOGRAPHS


Filename: J11286 / EFFECTIV / BH-WFS1-4_21WAXD_IE.XLS

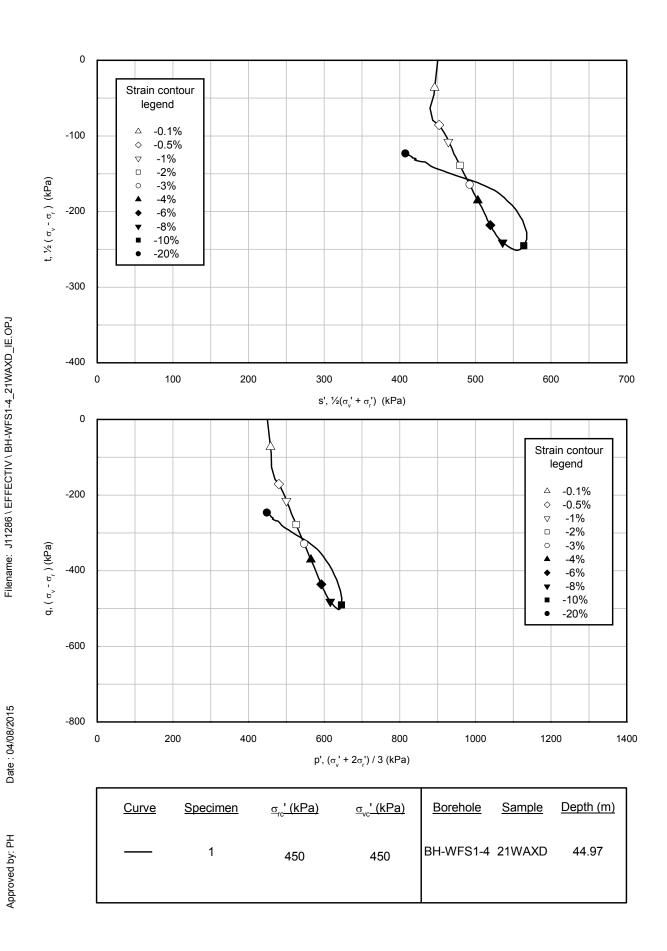
Date: 04/08/2015

H

Approved by:

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 03/07/2015


Drawn by: ALB

Filename: J11286 \ EFFECTIV \ BH-WFS1-4_21WAXD_IE.OPJ

Template Issue: 4.1

Date: 04/08/2015

Checked by: PH

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 03/07/2015

Drawn by: ALB

Template Issue: 4.1

Date: 04/08/2015

Checked by: PH

Filename: J11286 / EFFECTIV / BH-WFS2-6A_20WAXB_IE.XLS

Checked by: PH Date: 04/00/20

Date: 04/08/2015

H

Approved by:

VISUAL DESCRIPTION		
Hard dark greenish grey.		
The second ground group.		
GENERAL		
Date test started		22/06/2015
Type of sample		Undisturbed
Specimen orientation		Vertical
Type of drains fitted		Radial & one end
INITIAL		
Diameter	(mm)	71.7
Length	(mm)	124.8
Moisture content	(%)	39.1
Bulk density	(Mg/m³)	1.86
Dry density	(Mg/m³)	1.33
Void ratio		1.025
Degree of saturation	(%)	100
SATURATION		1
Pressure increments applied	(kPa)	100
Differential pressure used	(kPa)	N/A
Pore pressure on completion	(kPa)	831
Cell pressure on completion	(kPa)	1125
B value achieved		1.00
TESTING PROCEDURES USED)	T
Specimen Set-up		BS 1377: Part 8: 1990 Clause 4
		Fugro testing procedure L-T-023 Clause 5.2.2
Saturation		Fugro testing procedure L-T-023 Clause 5.2.3
		BS 1377: Part 8: 1990: Clause 5.4
Consolidation - Isotropic		BS 1377: Part 8: 1990 Clause 6
Consolidation - Anisotropic		Not applicable
Shearing		BS 1377: Part 8: 1990 Clause 7
	,	
Note: Fugro testing procedures a	re available c	on request

*Air conditioning failure mid test resulted in laboratory temperature being out of specification (±2°C)

Borehole	BH-WFS2-6A
Sample	20WAXB
Depth (m)	54.37

Filename: J11286 / EFFECTIV / BH-WFS2-6A_20WAXB_IE.XLS

Date: 04/08/2015

H

Approved by:

CONSOLIDATION : ISOTROPIC	<u> </u>	
Cell pressure	(kPa)	1125
Back pressure	(kPa)	600
Effective cell pressure	(kPa)	525
Pore pressure on completion	(kPa)	600
Pore pressure dissipation	(%)	100
Moisture content	(%)	39.2
Bulk density	(Mg/m³)	1.85
Dry density	(Mg/m³)	1.33
Void ratio		1.027
Degree of saturation	(%)	100
Volumetric strain	(%)	-0.11

Mode of failure: Necking Failure

Borehole	BH-WFS2-6A
Sample	20WAXB
Depth (m)	54.37

Filename: J11286 / EFFECTIV / BH-WFS2-6A_20WAXB_IE.XLS

Date: 04/08/2015

Ŧ

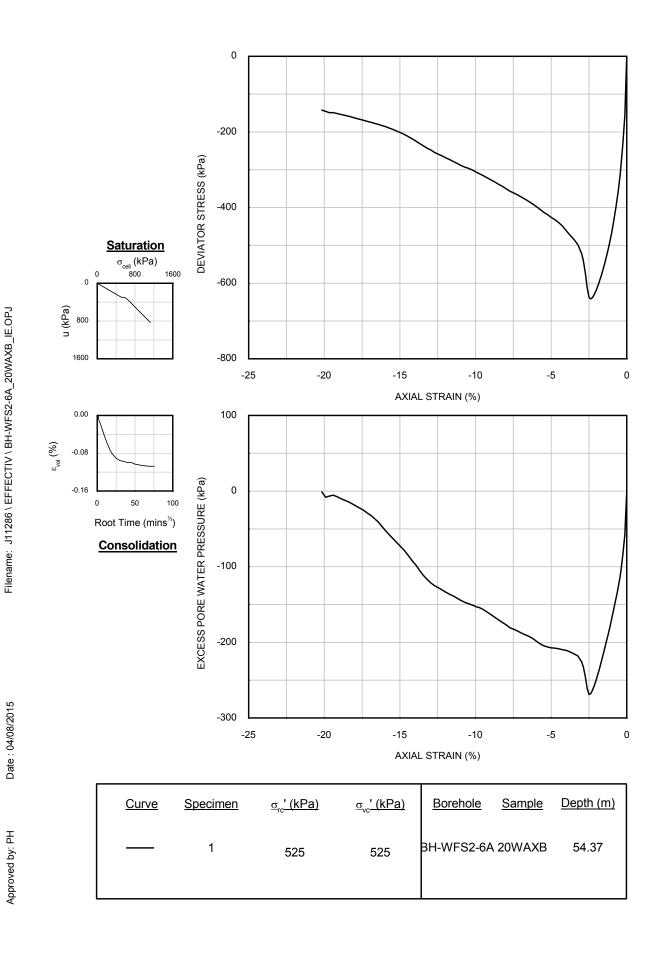
Approved by:

04/08	
Date:	
ΡΉ	
þ.	
Checked	

SHEARING		
Initial pore pressure	(kPa)	600
Initial effective cell pressure	(kPa)	525
Rate of strain	(%/hour)	0.28
At peak deviator stress		
Corrected deviator stress	(kPa)	-642
Membrane correction applied	(kPa)	-0.2
Drain correction applied	(kPa)	0
Axial strain	(%)	-2.37
Excess pore pressure	(kPa)	-268
Major principal effective stress	(kPa)	151
Minor principal effective stress	(kPa)	793
Principal effective stress ratio		0.19
Epsilon 50 (ε 50)	(%)	-0.46
Secant modulus (E50) at ϵ 50	(kPa)	69305
At peak principal effective stress	s ratio	
Corrected deviator stress	(kPa)	-642
Membrane correction applied	(kPa)	-0.2
Drain correction applied	(kPa)	0
Axial strain	(%)	-2.37
Excess pore pressure	(kPa)	-268
Major principal effective stress	(kPa)	151
Minor principal effective stress	(kPa)	793
Principal effective stress ratio		0.19
At -10% axial strain		
Corrected deviator stress	(kPa)	-305
Membrane correction applied	(kPa)	-1.1
Drain correction applied	(kPa)	0
Axial strain	(%)	-10.00
Excess pore pressure	(kPa)	-153
Major principal effective stress	(kPa)	372
Minor principal effective stress	(kPa)	678
Principal effective stress ratio		0.55

FINAL CONDITIONS		
Moisture content	(%)	39.2
Bulk density	(Mg/m³)	1.85
Dry density	(Mg/m³)	1.33

Borehole	BH-WFS2-6A
Sample	20WAXB
Depth (m)	54.37



SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

20WAXB

54.37

Sample Depth (m)

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 03/07/2015

Drawn by: ALB

Template Issue: 4.1

Date: 04/08/2015

Checked by: PH

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 03/07/2015

Drawn by: ALB

Template Issue: 4.1

Date: 04/08/2015

Checked by: PH

Filename: J11286 / EFFECTIV / BH-WFS2-7_21WAXD_IE.XLS

Date: 04/08/2015 Ŧ Approved by:

GENERAL			
Date test started		18/06/2015	
Type of sample		Undisturbed	
Specimen orientation		Vertical	
Type of drains fitted		Radial & one end	
INITIAL			
Diameter	(mm)	71.6	
Length	(mm)	124.7	
Moisture content	(%)	39.4	
Bulk density	(Mg/m³)	1.84	
Dry density	(Mg/m³)	1.32	
Void ratio	, ,	1.050	
Degree of saturation	(%)	100	
0.4.71.170.471.031			
SATURATION	(I-D-)	400	
Pressure increments applied	(kPa)	100	
Differential pressure used	(kPa)	N/A	
Pore pressure on completion	(kPa)	984	
Cell pressure on completion B value achieved	(kPa)	1150 1.00	
B value dellieved		1.00	
TESTING PROCEDURES USED			
Specimen Set-up		BS 1377: Part 8: 1990 Clause 4	
		Fugro testing procedure L-T-023 Clause 5.2.2	
Saturation		Fugro testing procedure L-T-023 Clause 5.2.3	
		BS 1377: Part 8: 1990: Clause 5.3	
Consolidation - Isotropic		BS 1377: Part 8: 1990 Clause 6	
Consolidation - Anisotropic		Not applicable	
Shearing		BS 1377: Part 8: 1990 Clause 7	
Note: Fugro testing procedures ar	e available c	n request	
rvote. I agro testing procedures ar	c available c	n request	
		pratory temperature being out of specification (±2°C)	

BH-WFS2-7 Borehole 21WAXD Sample Depth (m) 28.52

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Filename: J11286 / EFFECTIV / BH-WFS2-7_21WAXD_IE.XLS

Date: 04/08/2015

Ŧ

Approved by:

CONSOLIDATION: ISOTROPIC		
Cell pressure	(kPa)	1150
Back pressure	(kPa)	800
Effective cell pressure	(kPa)	350
Pore pressure on completion	(kPa)	800
Pore pressure dissipation	(%)	100
Moisture content	(%)	39.0
Bulk density	(Mg/m³)	1.84
Dry density	(Mg/m³)	1.32
Void ratio		1.040
Degree of saturation	(%)	100
Volumetric strain	(%)	0.51

Mode of failure: Necking failure

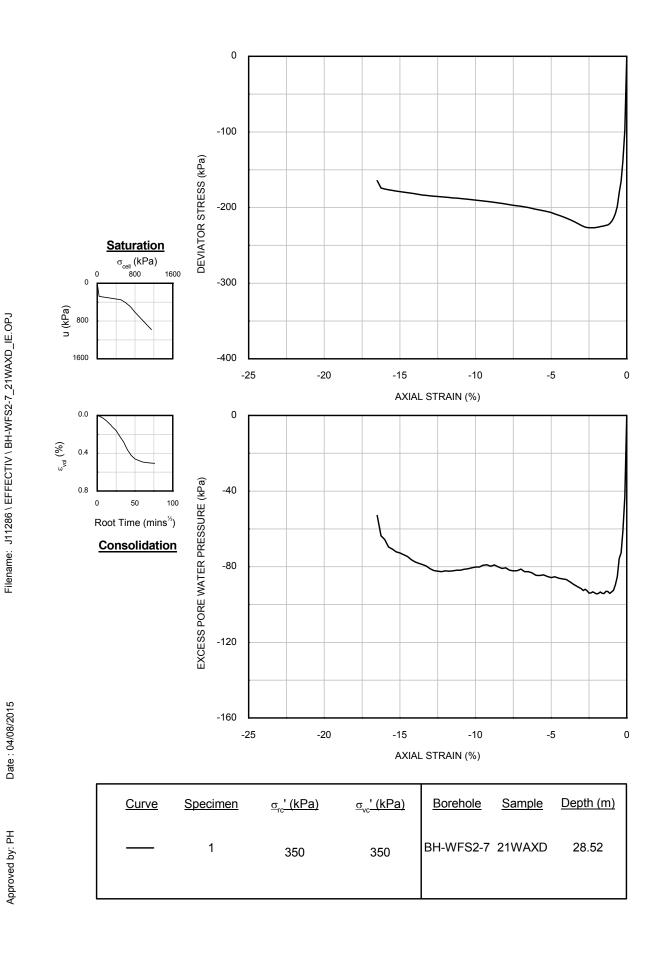
Borehole	BH-WFS2-7
Sample	21WAXD
Depth (m)	28.52

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Filename: J11286 / EFFECTIV / BH-WFS2-7_21WAXD_IE.XLS

	Date: 04/08/2015
Cliecked by. Rb	Approved by: PH

SHEARING		
Initial pore pressure	(kPa)	800
Initial effective cell pressure	(kPa)	350
Rate of strain	(%/hour)	1.33
At peak deviator stress		
Corrected deviator stress	(kPa)	-227
Membrane correction applied	(kPa)	-0.3
Drain correction applied	(kPa)	0
Axial strain	(%)	-2.50
Excess pore pressure	(kPa)	-94
Major principal effective stress	(kPa)	218
Minor principal effective stress	(kPa)	444
Principal effective stress ratio		0.49
Epsilon 50 (ε 50)	(%)	-0.17
Secant modulus (E50) at ϵ 50	(kPa)	65536
At peak principal effective stress	s ratio	
Corrected deviator stress	(kPa)	-226
Membrane correction applied	(kPa)	-0.3
Drain correction applied	(kPa)	0
Axial strain	(%)	-2.63
Excess pore pressure	(kPa)	-93
Major principal effective stress	(kPa)	217
Minor principal effective stress	(kPa)	443
Principal effective stress ratio		0.49
At -10% axial strain		
Corrected deviator stress	(kPa)	-190
Membrane correction applied	(kPa)	-1.1
Drain correction applied	(kPa)	0
Axial strain	(%)	-10.00
Excess pore pressure	(kPa)	-80
Major principal effective stress	(kPa)	240
Minor principal effective stress	(kPa)	431
Principal effective stress ratio		0.56

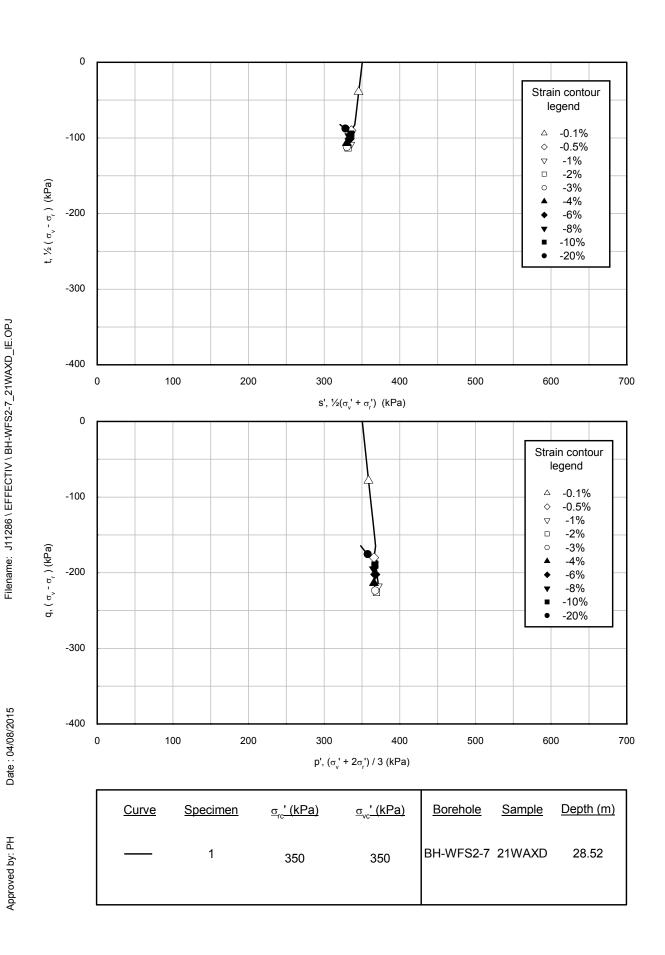

FINAL CONDITIONS		
Moisture content	(%)	39.0
Bulk density	(Mg/m³)	1.84
Dry density	(Mg/m³)	1.32

Borehole	BH-WFS2-7
Sample	21WAXD
Depth (m)	28.52

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

SUMMARY OF ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA


Date: 03/07/2015

Drawn by: ALB

Template Issue: 4.1

Date: 04/07/2015

Checked by: RMB

ISOTROPICALLY CONSOLIDATED UNDRAINED TRIAXIAL EXTENSION TEST: SINGLE SPECIMEN BORSSELE WIND FARM SITE I&II - DUTCH SECTOR, NORTH SEA

Date: 03/07/2015

Drawn by: ALB

Template Issue: 4.1

Date: 04/07/2015

Checked by: RMB

SECTION A5: STATIC DIRECT SIMPLE SHEAR TESTS

LIST OF PLATES IN SECTION A5: Plate

Direct Simple Shear Test Results A5-1 to A5-40

VISUAL DESCRIPTION

High strength very dark grey slightly sandy CLAY

GENERAL	
Date test started	24/06/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL			
Diameter	[mm]	65.9	
Length	[mm]	30.0	
Moisture content	[%]	28.1	
Bulk density	[Mg/m³]	1.98	
Dry density	[Mg/m³]	1.54	
Void ratio	[-]	0.749	
Degree of saturation	[%]	100	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	225	
Pocket penetrometer	[kPa]	375	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

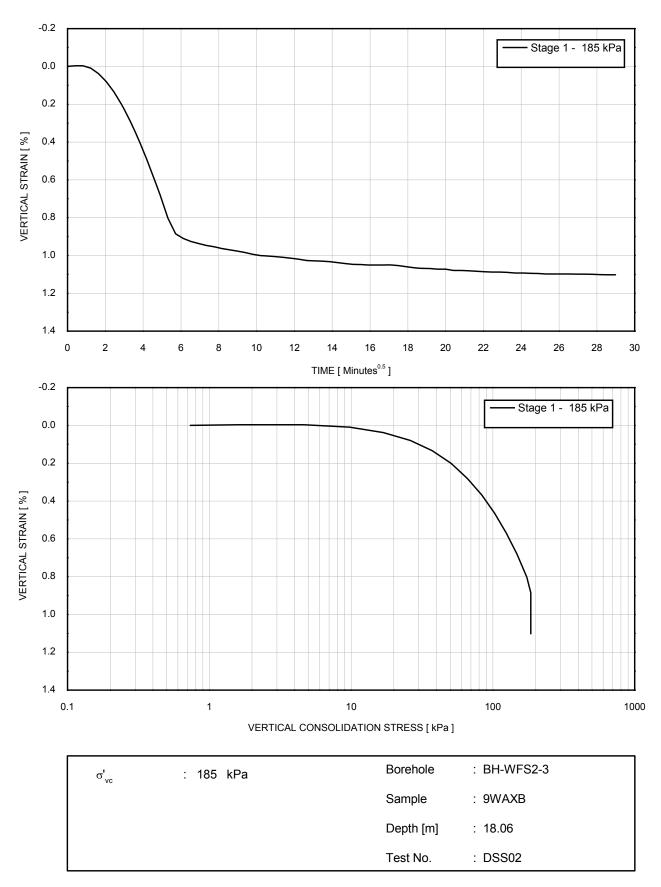
QUALITY ASSURANCE	
Filename	J11286 \ BH-WFS2-3_9WAXB_DSS02
Template issue	1.2
Processed by	RN
Date	30/06/2015
Checked by	PH
Date	01/07/2015
Approved by	PH
Date	01/07/2015

TEST IDENTIFICATION	
Borehole	BH-WFS2-3
Sample	9WAXB
Depth [m]	18.06
Test number	DSS02

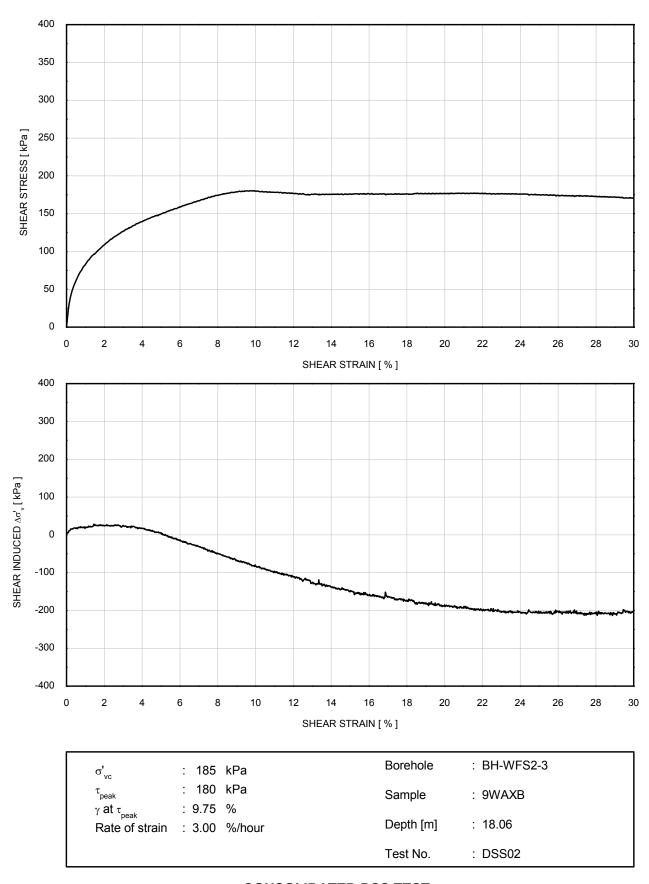
SUMMARY OF CONSOLIDATED DSS TEST

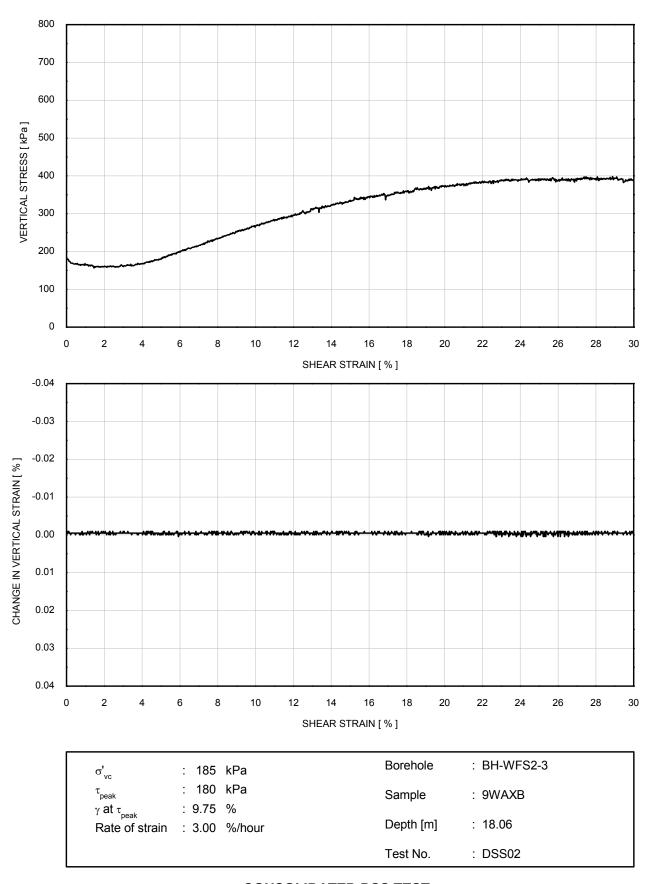
CONSOLIDATION			
σ' _{vc}	[kPa]	185	
Vertical strain	[%]	1.10	ĺ
Bulk density	[Mg/m ³]	1.99	ĺ
Dry density	[Mg/m ³]	1.56	ĺ
Void ratio	[-]	0.735	ĺ
Moisture content	[%]	27.6	

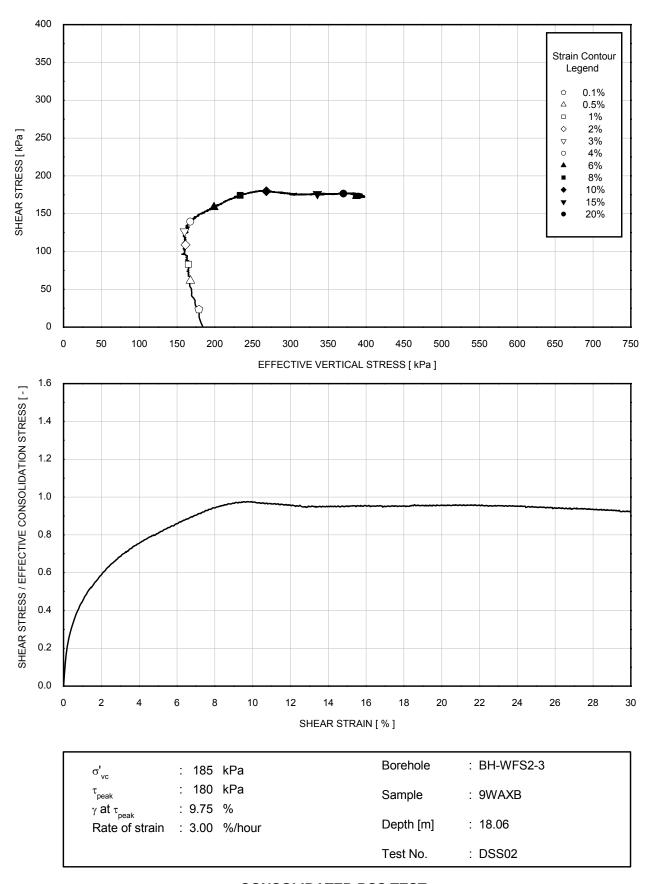
SHEARING - CONSTANT VOLUME			
At peak shear stress			
Shear stress	[kPa]	180	
Shear strain	[%]	9.75	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-79	
Vertical stress	[kPa]	264	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.00	
At 15 % shear strain			
Shear stress	[kPa]	176	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-151	
Vertical stress	[kPa]	336	
Vertical strain	[%]	0.00	


TEST IDENTIFICATION	
Borehole	BH-WFS2-3
Sample	9WAXB
Depth [m]	18.06
Test number	DSS02

SUMMARY OF CONSOLIDATED DSS TEST




TEST IDENTIFICATION	
Borehole	BH-WFS2-3
Sample	9WAXB
Depth [m]	18.06
Test number	DSS02


SUMMARY OF CONSOLIDATED DSS TEST

CONSOLIDATED DSS TEST CONSOLIDATION STAGE

VISUAL DESCRIPTION

Extremely high strength dark olive brown CLAY

GENERAL	
Date test started	15/06/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL			
Diameter	[mm]	65.9	
Length	[mm]	30.1	
Moisture content	[%]	22.6	
Bulk density	[Mg/m³]	2.05	
Dry density	[Mg/m³]	1.67	
Void ratio	[-]	0.612	
Degree of saturation	[%]	100	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	375	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

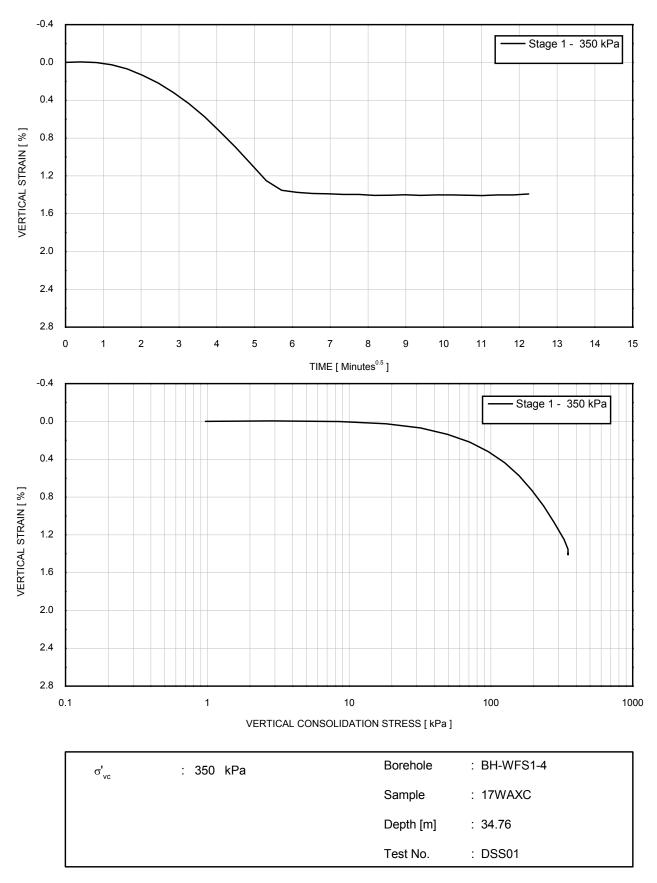
QUALITY ASSURANCE	
Filename	J11286 \ BH-WFS1-4_17WAXC_DSS01
Template issue	1.2
Processed by	RN
Date	18/06/2015
Checked by	PH
Date	22/06/2015
Approved by	PH
Date	23/06/2015

TEST IDENTIFICATION	
Borehole	BH-WFS1-4
Sample	17WAXC
Depth [m]	34.76
Test number	DSS01

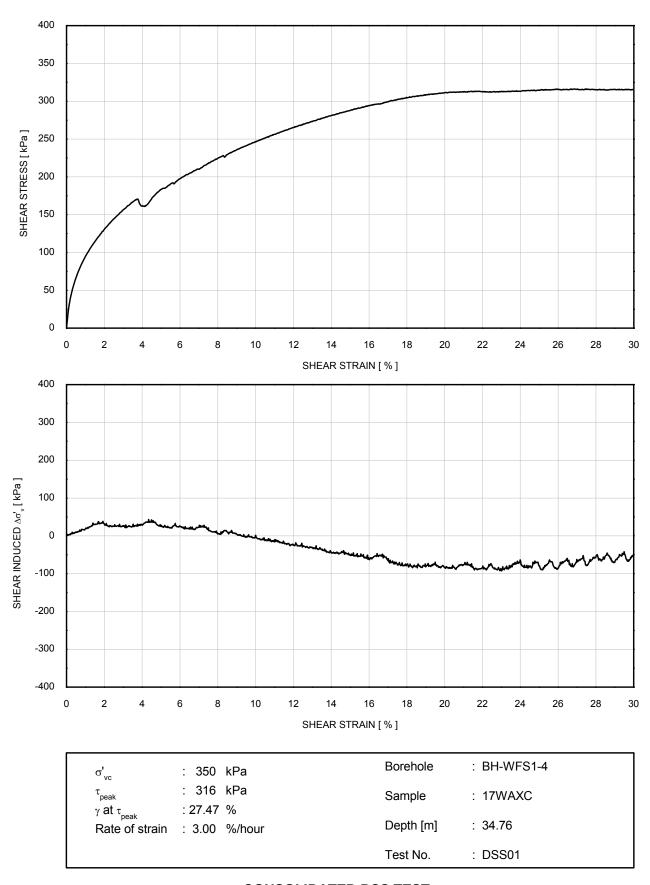
SUMMARY OF CONSOLIDATED DSS TEST

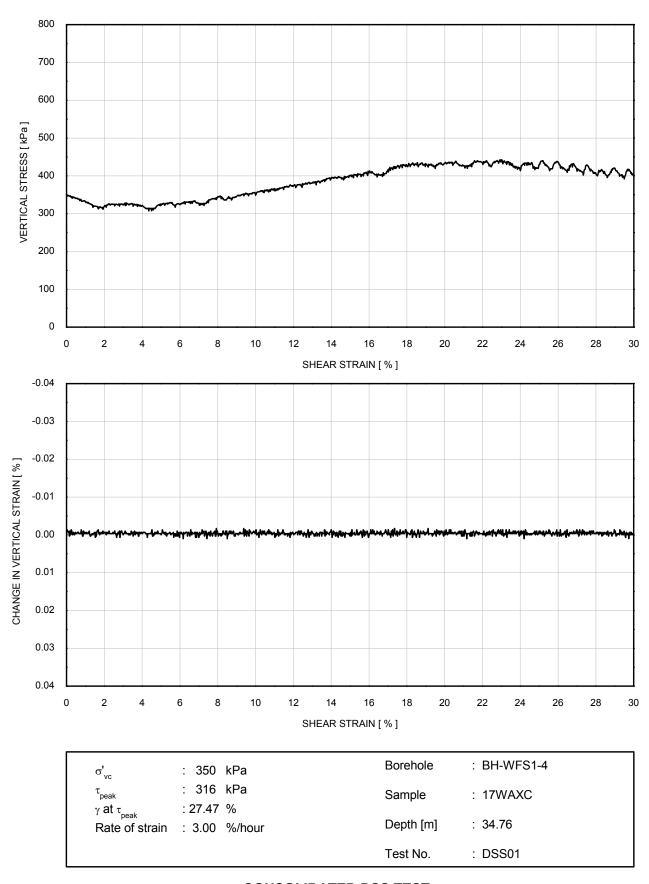
CONSOLIDATION			
σ' _{vc}	[kPa]	350	
Vertical strain	[%]	1.39	
Bulk density	[Mg/m ³]	2.06	
Dry density	[Mg/m ³]	1.69	
Void ratio	[-]	0.597	
Moisture content	[%]	22.0	

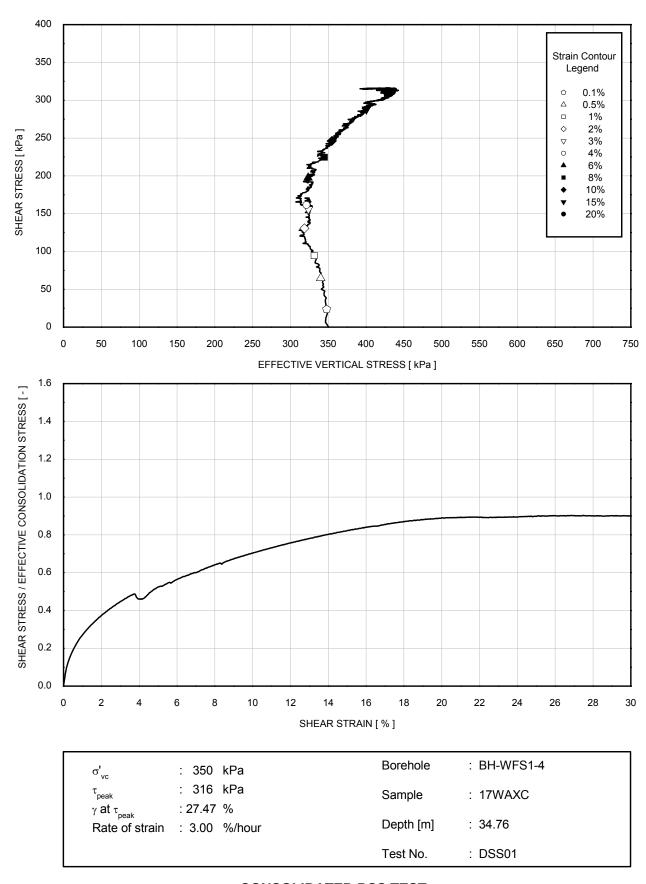
SHEARING - CONSTANT VOLUME			
At peak shear stress			
Shear stress	[kPa]	316	
Shear strain	[%]	27.47	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-76	
Vertical stress	[kPa]	427	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.00	
At 15 % shear strain			
Shear stress	[kPa]	288	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-50	
Vertical stress	[kPa]	400	
Vertical strain	[%]	0.00	

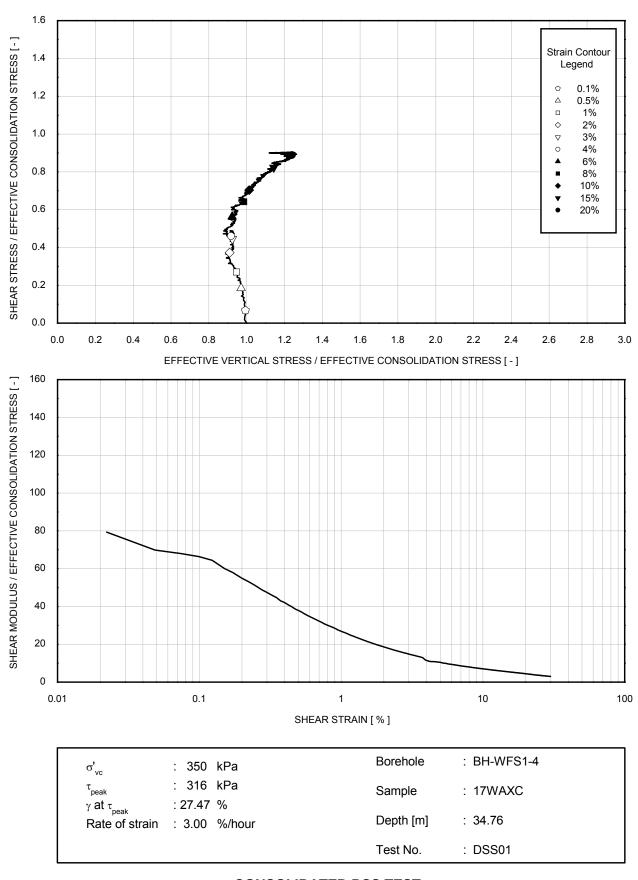

TEST IDENTIFICATION	
Borehole	BH-WFS1-4
Sample	17WAXC
Depth [m]	34.76
Test number	DSS01

SUMMARY OF CONSOLIDATED DSS TEST




TEST IDENTIFICATION	
Borehole	BH-WFS1-4
Sample	17WAXC
Depth [m]	34.76
Test number	DSS01


SUMMARY OF CONSOLIDATED DSS TEST



CONSOLIDATED DSS TEST CONSOLIDATION STAGE

VISUAL DESCRIPTION

Very high strength dark grey sandy CLAY

GENERAL	
Date test started	15/06/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL			
Diameter	[mm]	66.1	
Length	[mm]	30.1	
Moisture content	[%]	23.8	
Bulk density	[Mg/m³]	1.91	
Dry density	[Mg/m³]	1.54	
Void ratio	[-]	0.751	
Degree of saturation	[%]	85	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	40	
Pocket penetrometer	[kPa]	175	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

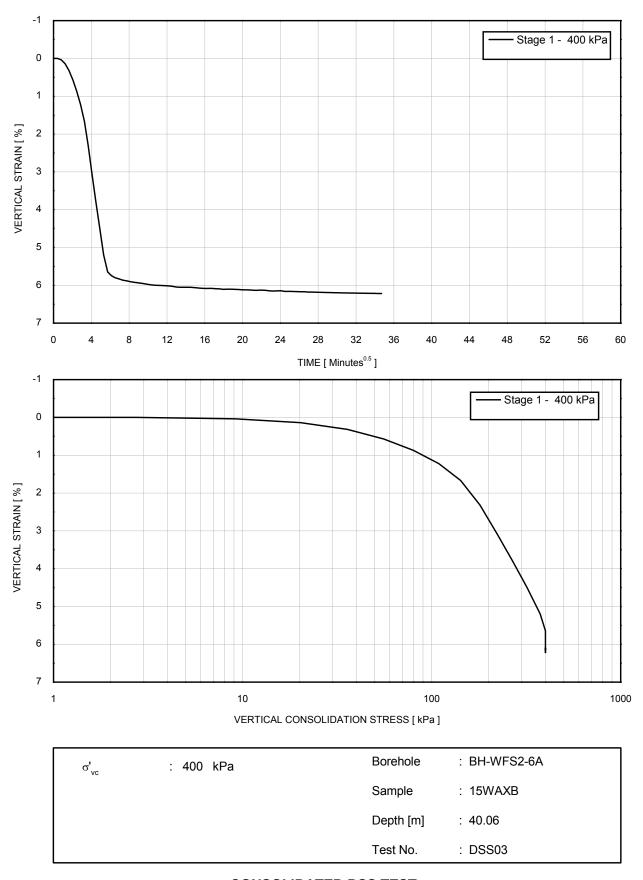
QUALITY ASSURANCE	
Filename	J11286 \ BH-WFS2-6A_15WAXB_DSS03
Template issue	1.2
Processed by	RN
Date	18/06/2015
Checked by	PH
Date	23/06/2015
Approved by	PH
Date	23/06/2015

TEST IDENTIFICATION	
Borehole	BH-WFS2-6A
Sample	15WAXB
Depth [m]	40.06
Test number	DSS03

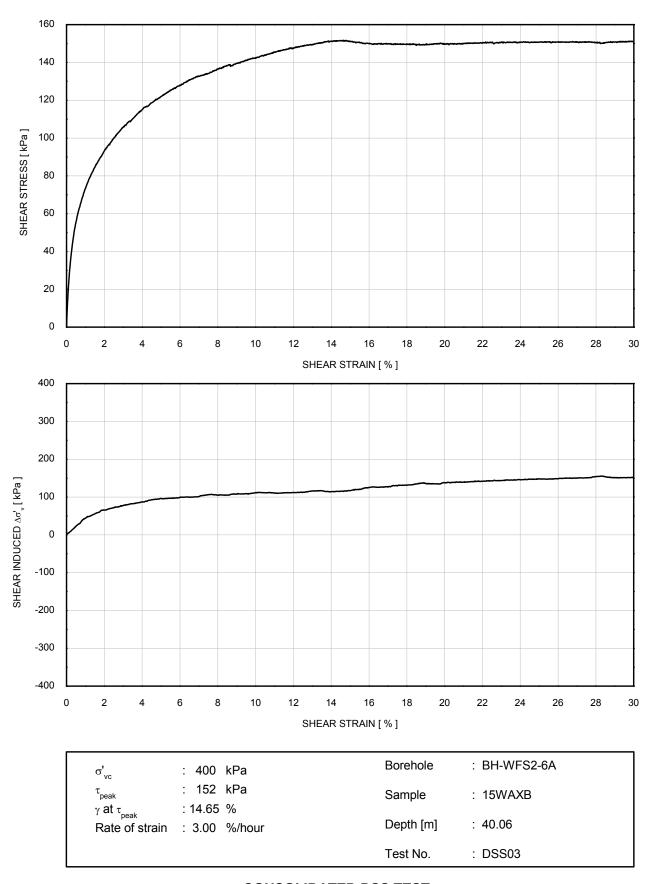
SUMMARY OF CONSOLIDATED DSS TEST

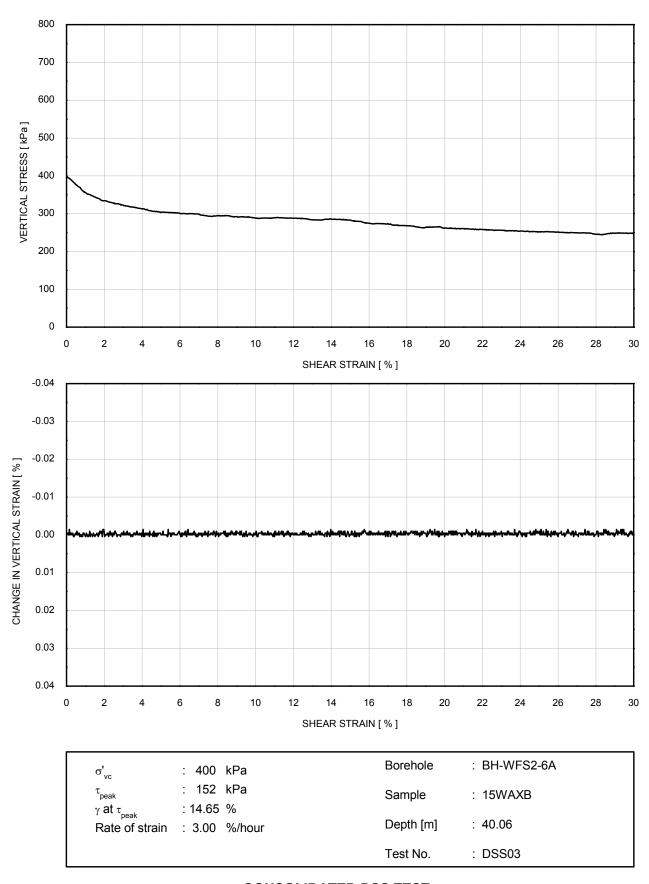
CONSOLIDATION			
σ' _{vc}	[kPa]	400	
Vertical strain	[%]	6.22	
Bulk density	[Mg/m ³]	1.95	
Dry density	[Mg/m ³]	1.61	
Void ratio	[-]	0.676	
Moisture content	[%]	21.0	

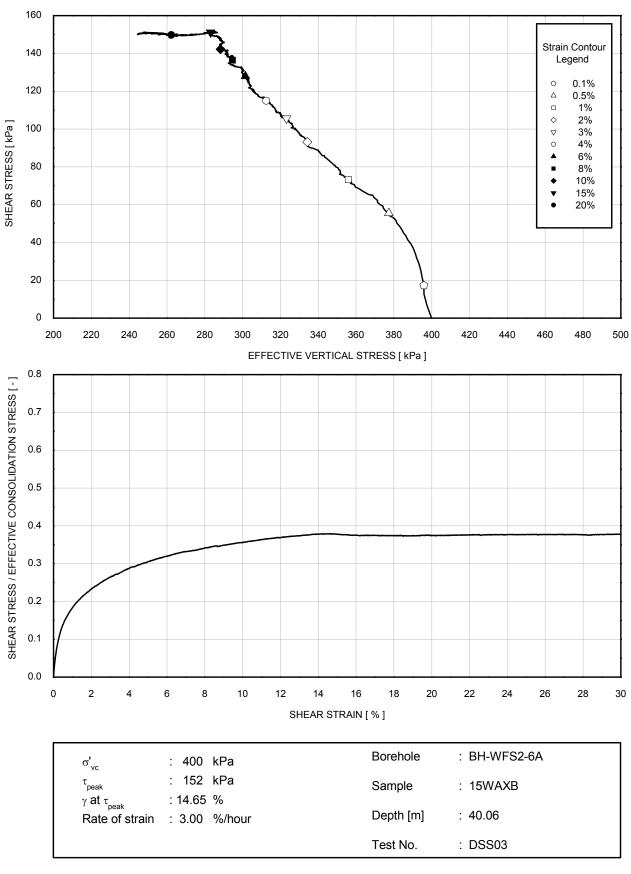
SHEARING - CONSTANT VOLU	JME		
At peak shear stress			
Shear stress	[kPa]	152	
Shear strain	[%]	14.65	
Shear induced $\Delta\sigma'_{v}$	[kPa]	115	
Vertical stress	[kPa]	285	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.00	
At 15 % shear strain			
Shear stress	[kPa]	151	
Shear induced $\Delta\sigma'_{v}$	[kPa]	117	
Vertical stress	[kPa]	283	
Vertical strain	[%]	0.00	

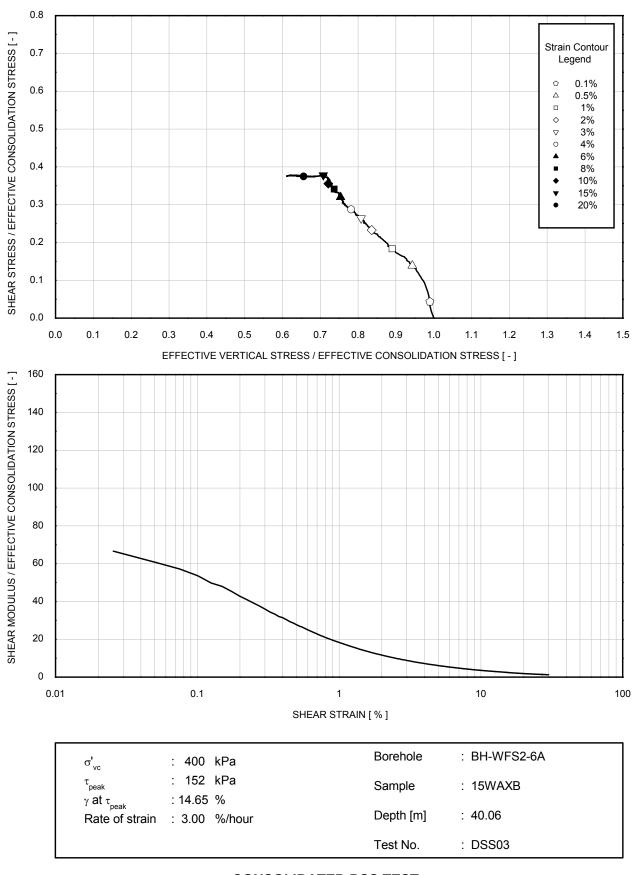

TEST IDENTIFICATION	
Borehole	BH-WFS2-6A
Sample	15WAXB
Depth [m]	40.06
Test number	DSS03

SUMMARY OF CONSOLIDATED DSS TEST




TEST IDENTIFICATION	
Borehole	BH-WFS2-6A
Sample	15WAXB
Depth [m]	40.06
Test number	DSS03


SUMMARY OF CONSOLIDATED DSS TEST



CONSOLIDATED DSS TEST CONSOLIDATION STAGE

VISUAL DESCRIPTION

Very high strength dark greenish grey CLAY

GENERAL	
Date test started	15/06/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL			
Diameter	[mm]	66.0	
Length	[mm]	30.2	
Moisture content	[%]	40.4	
Bulk density	[Mg/m³]	1.80	
Dry density	[Mg/m³]	1.28	
Void ratio	[-]	1.105	
Degree of saturation	[%]	99	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	80	
Pocket penetrometer	[kPa]	283	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

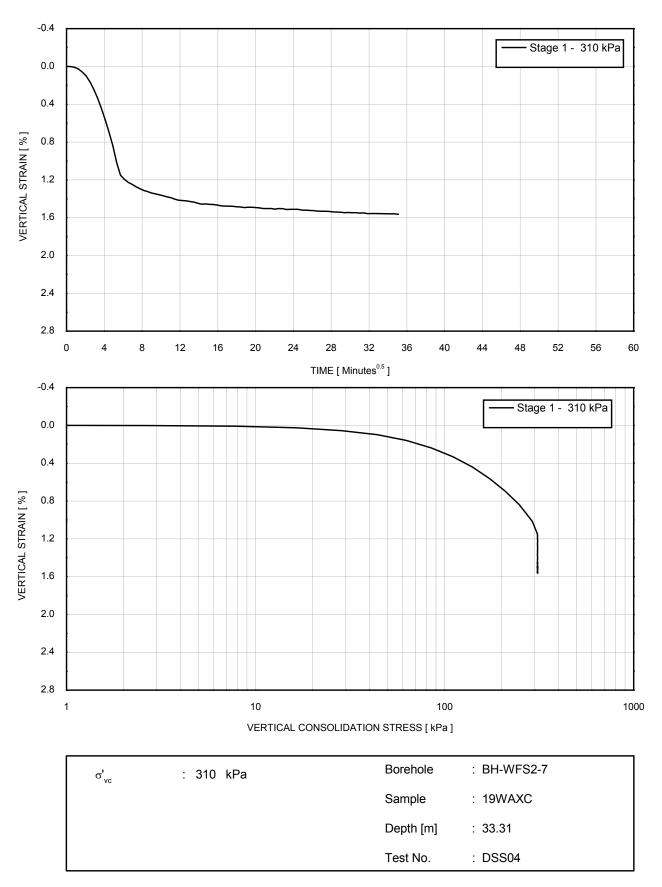
QUALITY ASSURANCE		
Filename	J11286 \ BH-WFS2-7_19WAXC_DSS04	
Template issue	1.2	
Processed by	HB	
Date	18/06/2015	
Checked by	PH	
Date	23/06/2015	
Approved by	PH	
Date	23/06/2015	

TEST IDENTIFICATION	
Borehole	BH-WFS2-7
Sample	19WAXC
Depth [m]	33.31
Test number	DSS04

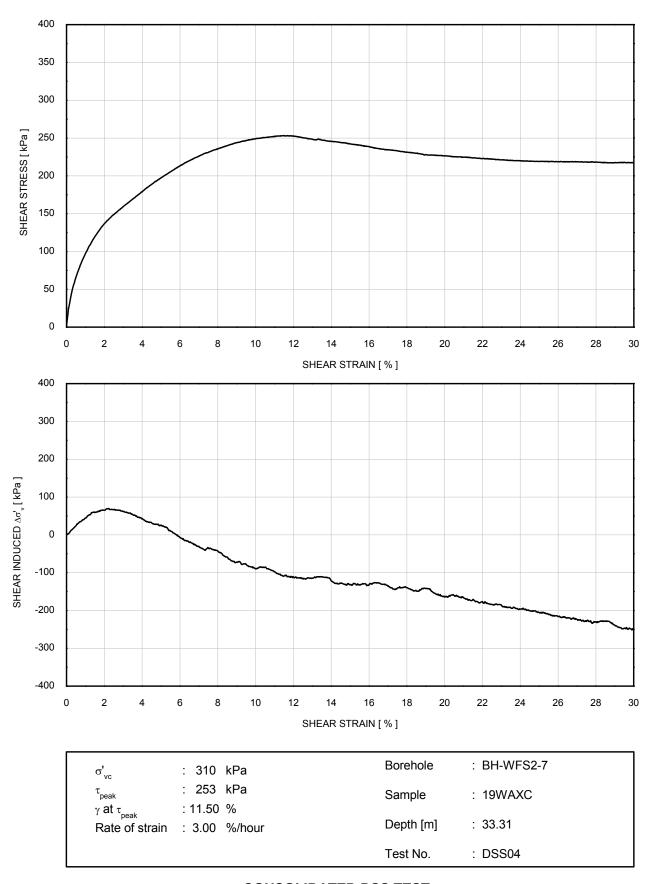
SUMMARY OF CONSOLIDATED DSS TEST

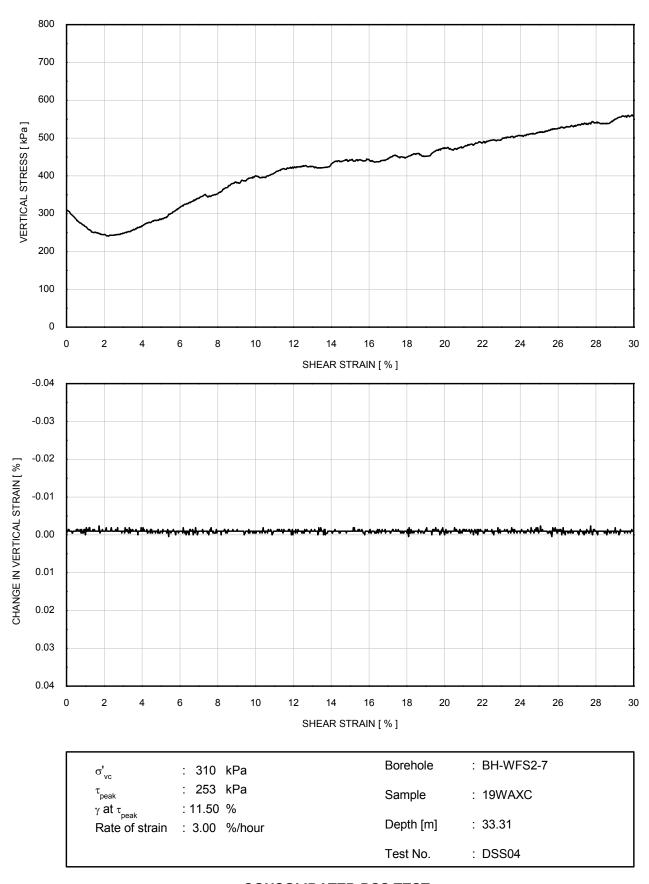
CONSOLIDATION			
σ' _{vc}	[kPa]	310	
Vertical strain	[%]	1.56	
Bulk density	[Mg/m ³]	1.81	
Dry density	[Mg/m ³]	1.30	
Void ratio	[-]	1.082	
Moisture content	[%]	39.5	

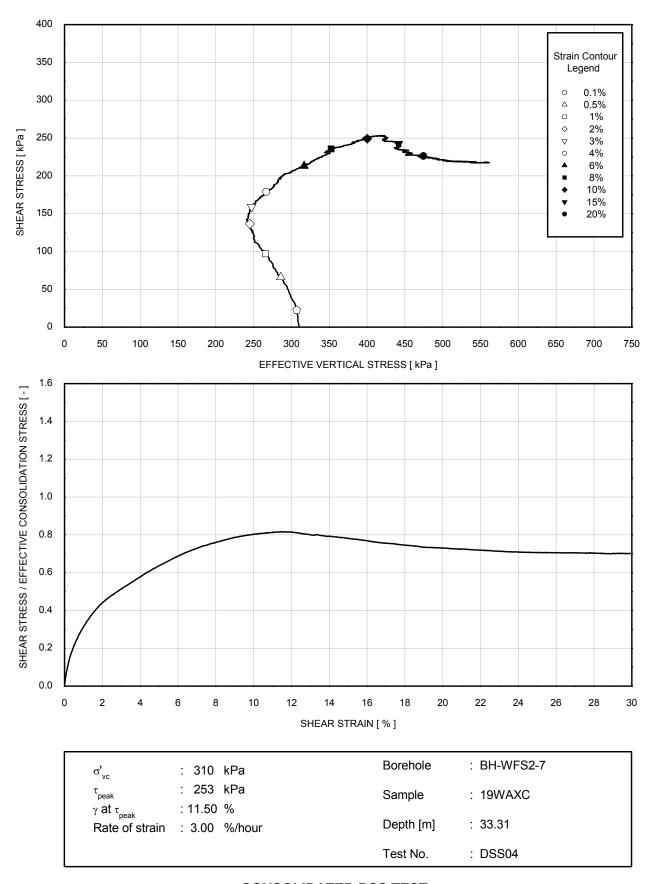
SHEARING - CONSTANT VOLUME			
At peak shear stress			
Shear stress	[kPa]	253	
Shear strain	[%]	11.50	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-109	
Vertical stress	[kPa]	419	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.00	
At 15 % shear strain			
Shear stress	[kPa]	242	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-131	
Vertical stress	[kPa]	441	
Vertical strain	[%]	0.00	

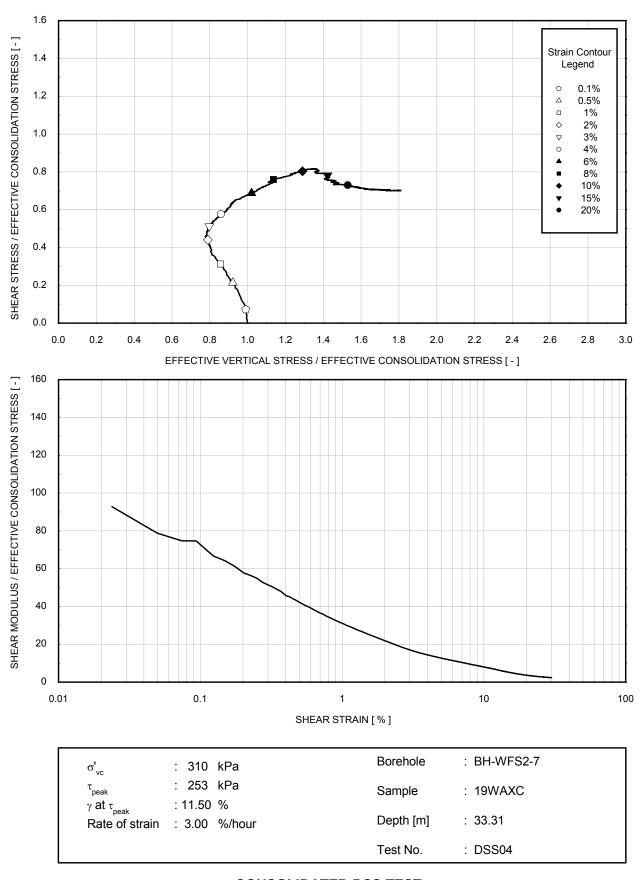

TEST IDENTIFICATION	
Borehole	BH-WFS2-7
Sample	19WAXC
Depth [m]	33.31
Test number	DSS04

SUMMARY OF CONSOLIDATED DSS TEST




TEST IDENTIFICATION	
Borehole	BH-WFS2-7
Sample	19WAXC
Depth [m]	33.31
Test number	DSS04


SUMMARY OF CONSOLIDATED DSS TEST



CONSOLIDATED DSS TEST CONSOLIDATION STAGE

VISUAL DESCRIPTION

Dark greenish grey slightly sandy CLAY with medium spaced partings of fine sand

GENERAL	
Date test started	13/08/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL			
Diameter	[mm]	65.9	
Length	[mm]	29.9	
Moisture content	[%]	40.8	
Bulk density	[Mg/m³]	1.78	
Dry density	[Mg/m³]	1.27	
Void ratio	[-]	1.134	
Degree of saturation	[%]	97	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	350	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

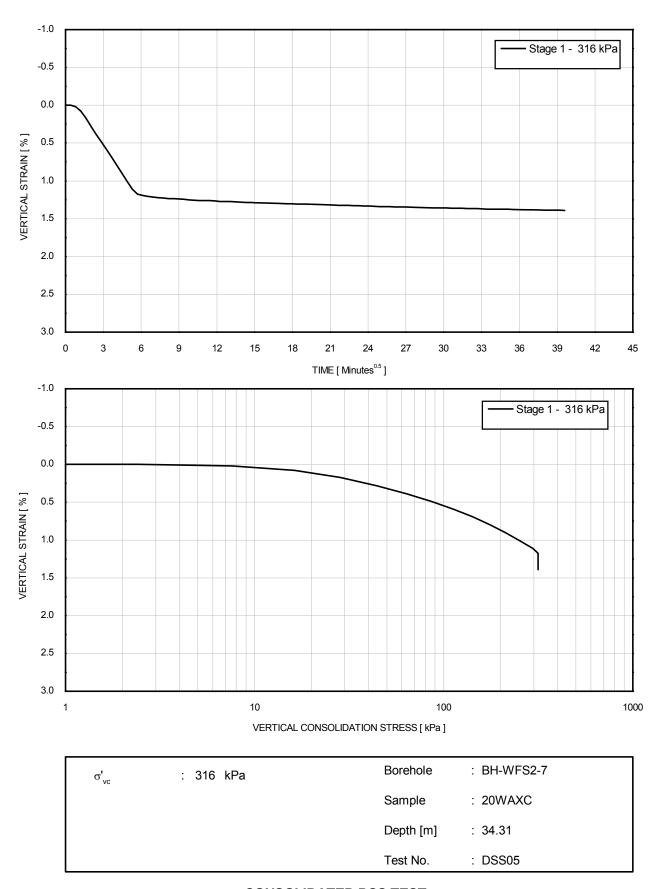
QUALITY ASSURANCE	
Filename	J1286 \ BH-WFS2-7_20WAXC_DSS05
Template issue	1.3
Processed by	RN
Date	18/08/2015
Checked by	LJ
Date	18/08/2015
Approved by	PH
Date	18/08/2015

TEST IDENTIFICATION	
Borehole	BH-WFS2-7
Sample	20WAXC
Depth [m]	34.31
Test number	DSS05

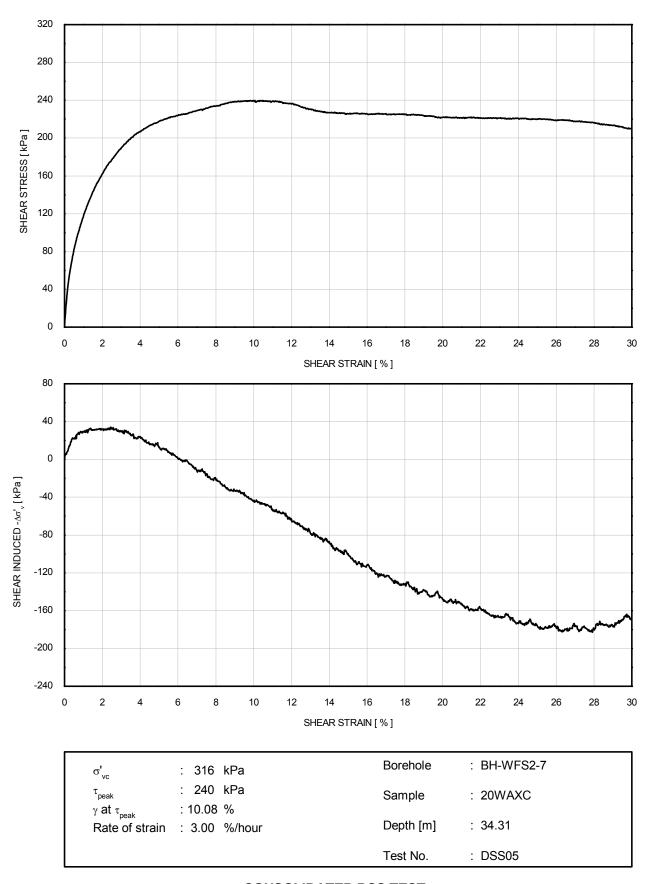
SUMMARY OF CONSOLIDATED DSS TEST

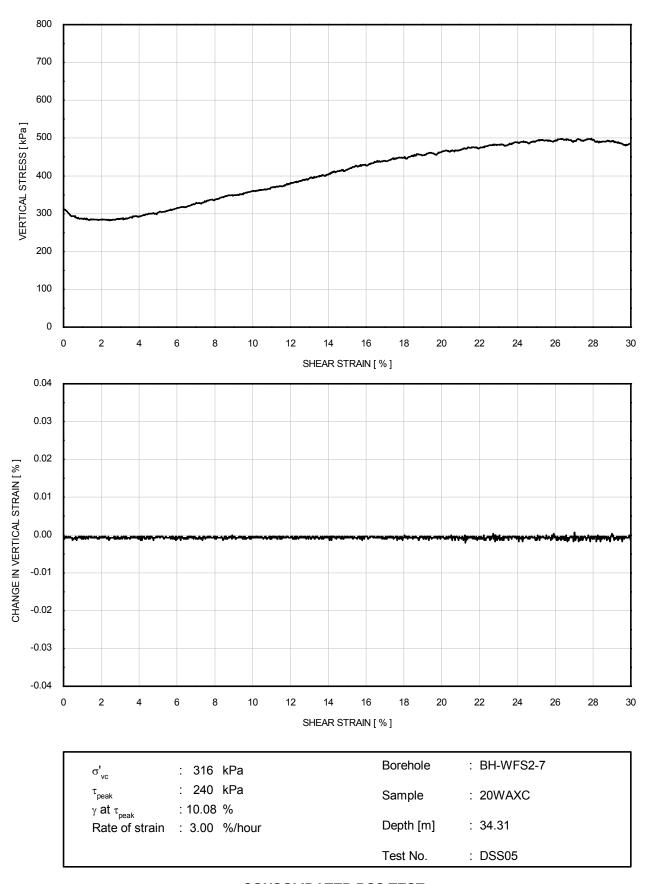
CONSOLIDATION			
σ' _{vc}	[kPa]	316	
Vertical strain	[%]	1.39	
Bulk density	[Mg/m ³]	1.79	
Dry density	[Mg/m ³]	1.28	
Void ratio	[-]	1.105	
Moisture content	[%]	39.7	

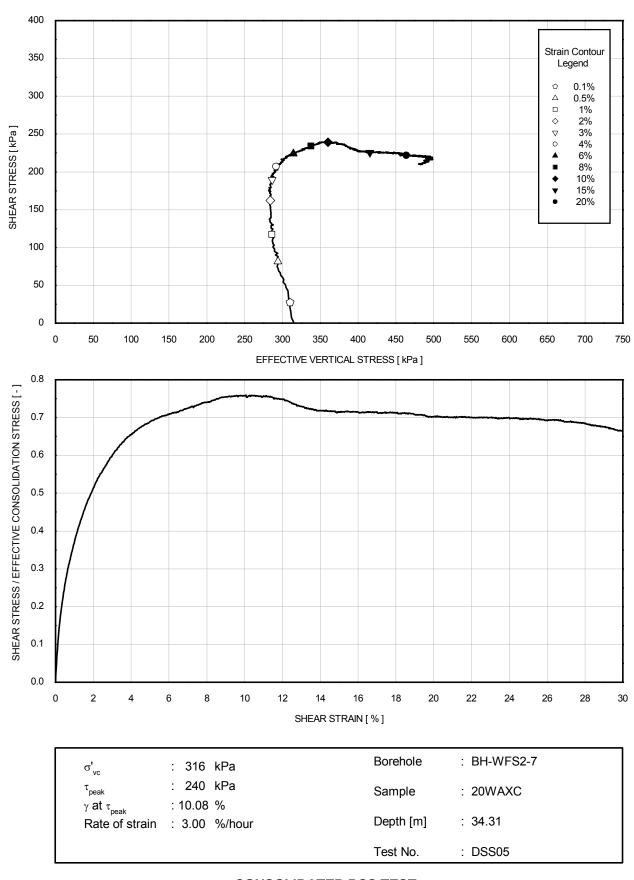
SHEARING - CONSTANT VOLU	IME		
At peak shear stress			
Shear stress	[kPa]	240	
Shear strain	[%]	10.08	
Shear induced - $\Delta\sigma'_{v}$	[kPa]	-44	
Vertical stress	[kPa]	360	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.00	
At 15 % shear strain			
Shear stress	[kPa]	226	
Shear induced - $\Delta\sigma'_{v}$	[kPa]	-100	
Vertical stress	[kPa]	416	
Vertical strain	[%]	0.00	

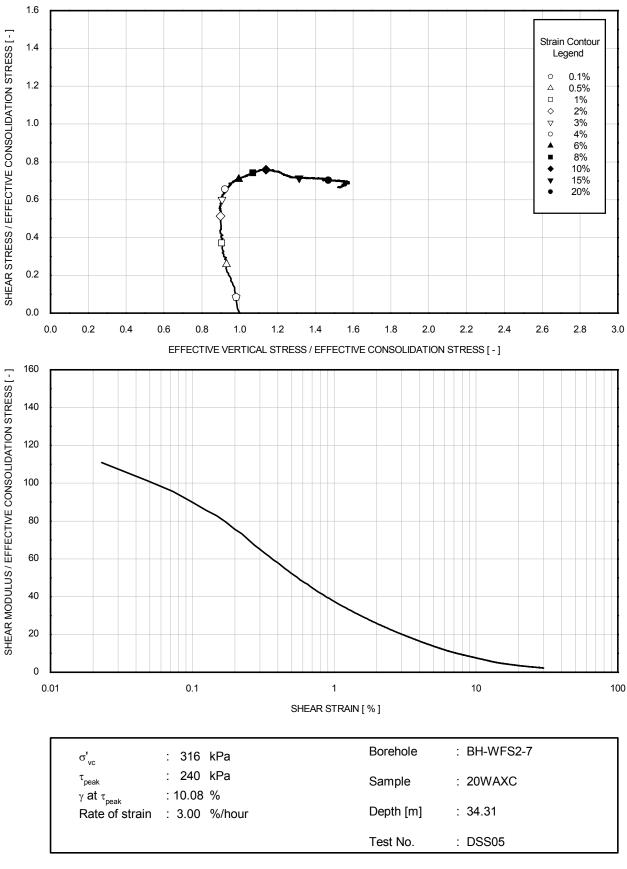

TEST IDENTIFICATION	
Borehole	BH-WFS2-7
Sample	20WAXC
Depth [m]	34.31
Test number	DSS05

SUMMARY OF CONSOLIDATED DSS TEST




TEST IDENTIFICATION	
Borehole	BH-WFS2-7
Sample	20WAXC
Depth [m]	34.31
Test number	DSS05


SUMMARY OF CONSOLIDATED DSS TEST



CONSOLIDATED DSS TEST CONSOLIDATION STAGE

SECTION A6: CYCLIC TRIAXIAL TESTS

LIST OF PLATES IN SECTION A6:

Plate

Cyclic Triaxial Test Results (Batch Southern Bight)
Cyclic Triaxial Test Results (Batch Eem/Kreftenheye)
Cyclic Triaxial Test Results (Batch Tongeren)

A6-1 to A6-85 A6-86 to A6-149 A6-150 to A6-213

VISUAL DESCRIPTION

Light olive brown fine to medium SAND with traces of shell fragments

GENERAL	
Date test started	23/07/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.0	
Length	[mm]	144.0	
Moisture content	[%]	10.5	
Bulk density	[Mg/m³]	1.79	
Dry density	[Mg/m³]	1.62	
Void ratio	[-]	0.635	
Degree of saturation	[%]	44	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon request	

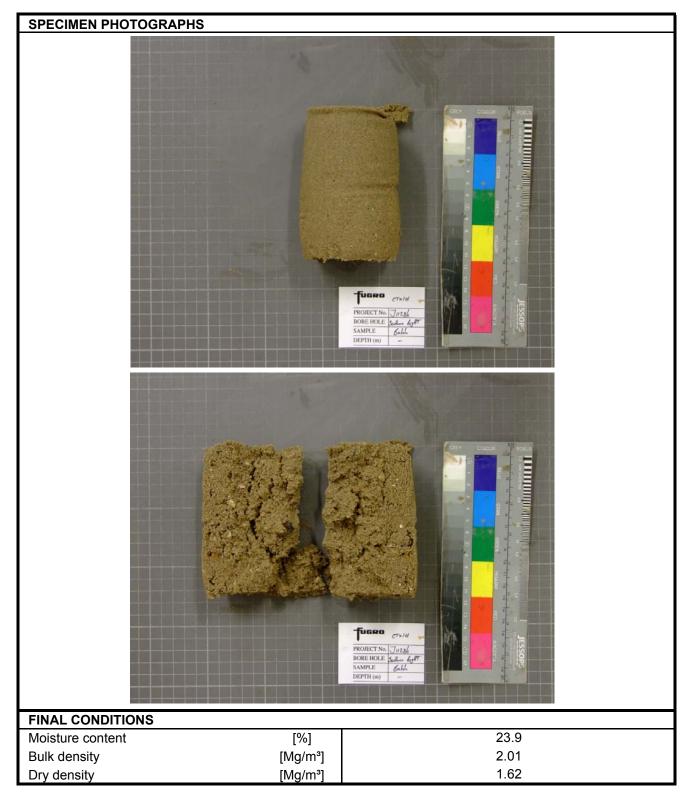
QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Southern_Bight_CTXL1
Processed by	LJ
Date	12/08/2015
Checked by	PH
Date	12/08/2015
Approved by	PH
Date	15/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL1

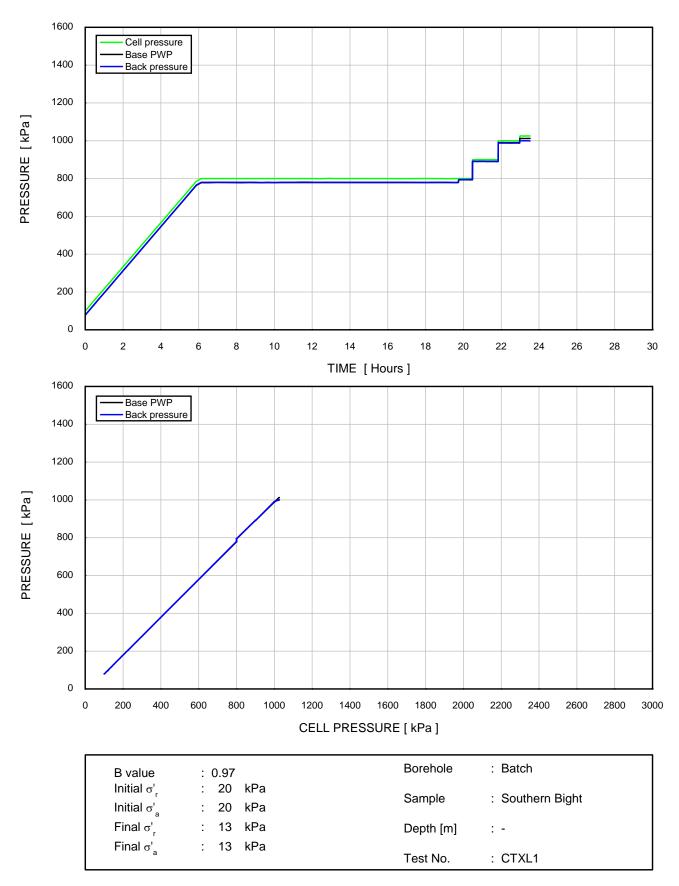
SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	10
Cell pressure	[kPa]	1025
Base PWP	[kPa]	1012
Mid height PWP	[kPa]	-
B value achieved	[-]	0.97

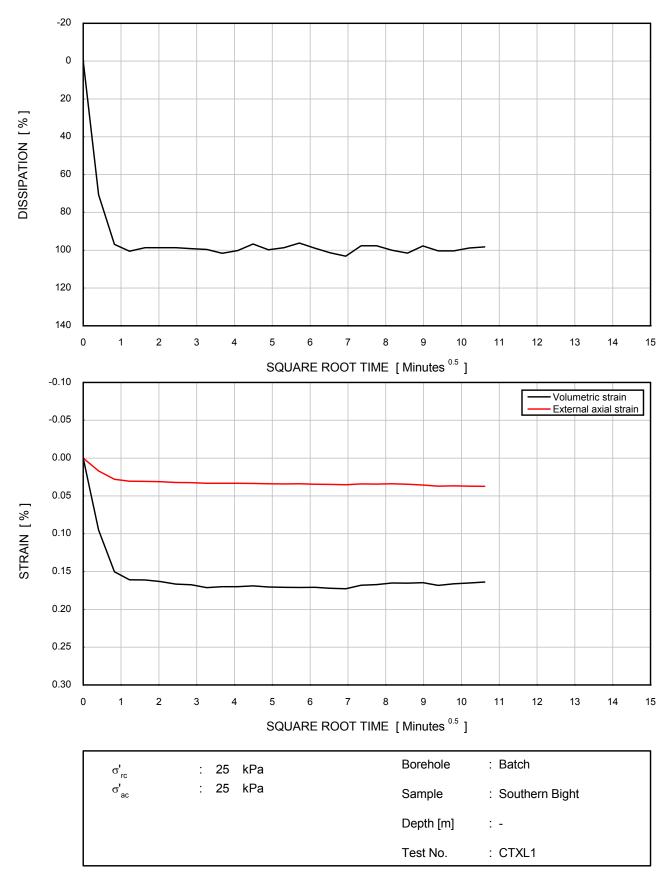
CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	1025	
Back pressure	[kPa]	1000	
Base PWP	[kPa]	1000	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	25	
Effective axial pressure	[kPa]	25	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	0.16	
External axial strain	[%]	0.04	
Local axial strain	[%]	-	
Local radial strain	[%]	-	
Moisture content	[%]	23.9	
Bulk density	[Mg/m³]	2.01	
Dry density	[Mg/m³]	1.62	
Void ratio	[-]	0.632	
Degree of saturation	[%]	100	

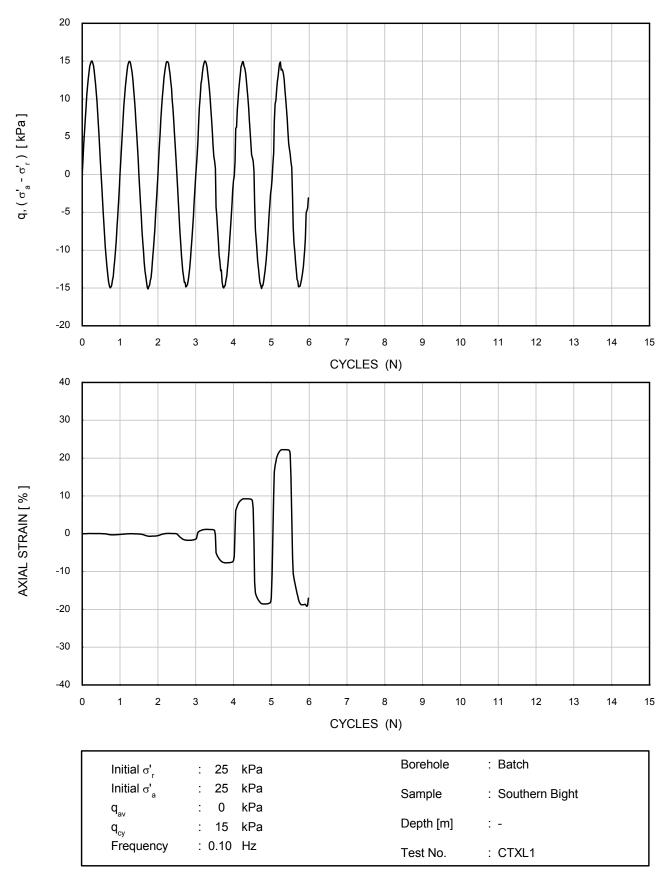

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL1

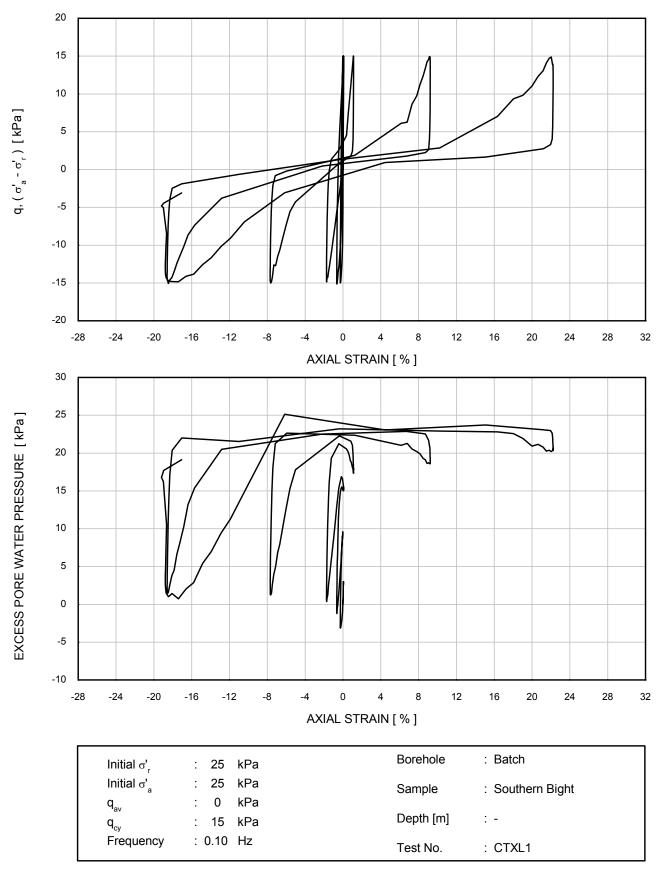
STRESS-CONTROLLED CYCLIC LOADING STAGE							
Reference stress		[kPa]			2	5	
Mean q _{av}		[kPa]			0)	
Mean q _{cy}		[kPa]			15	5	
Frequency		[Hz]			0.1	10	
Number of cycles at failure	(N_f)	[-]			4		
External ϵ_{av} at N_f		[%]			-3.2		
External ϵ_{cy} at N_{f}		[%]			4.4	1 1	
Local $\epsilon_{\sf av}$ at $N_{\sf f}$		[%]			-		
Local $\epsilon_{\sf cy}$ at N $_{\sf f}$		[%]			-		
Δ base PWP at N _f		[kPa]			12	2	
Δ mid height PWP at N _f		[kPa]			-		
Moisture content		[%]			23		
Bulk density		[Mg/m³]			2.0		
Dry density		[Mg/m³]			1.6		
Void ratio		[-]			0.6		
Degree of saturation		[%]			10		
Cycle	ϵ_{av}	ϵ_{cy}	E_ext	E_loc	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	-0.12	0.17	9.0	-	21.10	-	
2	-0.34	0.32	4.6	-	22.61	-	
3	-0.84	0.91	1.6	-	19.17	-	
4	-3.28	4.41	0.3	-	9.66	-	

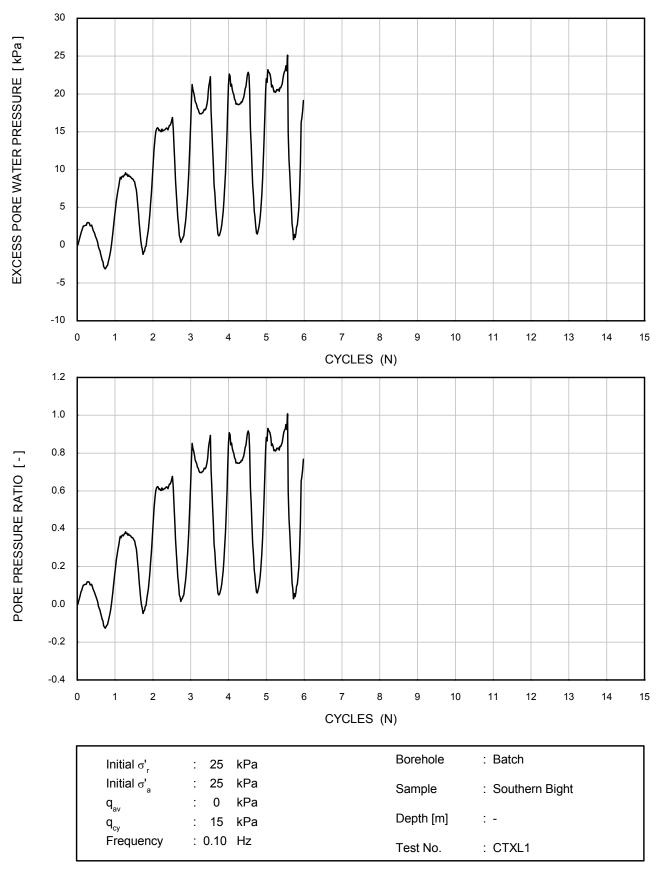

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL1

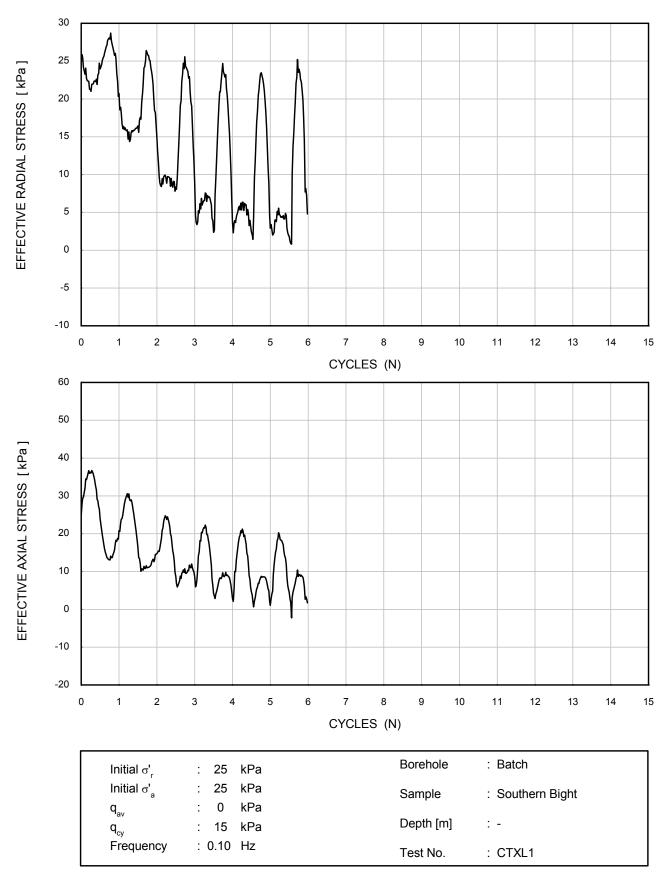
SHEARING STAGE		
Initial effective radial pressure	[kPa]	3.2
Initial effective axial pressure	[kPa]	4.1
Rate of strain	[%/hour]	1.42
At peak deviator stress		
Corrected deviator stress	[kPa]	2.2
Membrane correction applied	[kPa]	1.6
Drain correction applied	[kPa]	0
External axial strain	[%]	18.68
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	23
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	1.6
Effective axial pressure	[kPa]	3.8
Principal effective stress ratio	[-]	2.42
ε ₅₀	[%]	15.86
Secant modulus (E ₅₀) at ϵ_{50}	[kPa]	2.5
At peak principal effective stress r	atio	
Corrected deviator stress	[kPa]	1.5
Membrane correction applied	[kPa]	1.4
Drain correction applied	[kPa]	0
External axial strain	[%]	14.98
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	24
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	0.1
Effective axial pressure	[kPa]	1.6
Principal effective stress ratio	[-]	10.80
At 10% axial strain		
Corrected deviator stress	[kPa]	1.2
Membrane correction applied	[kPa]	1.0
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	23
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	1.7
Effective axial pressure	[kPa]	2.9
Principal effective stress ratio	[-]	1.67

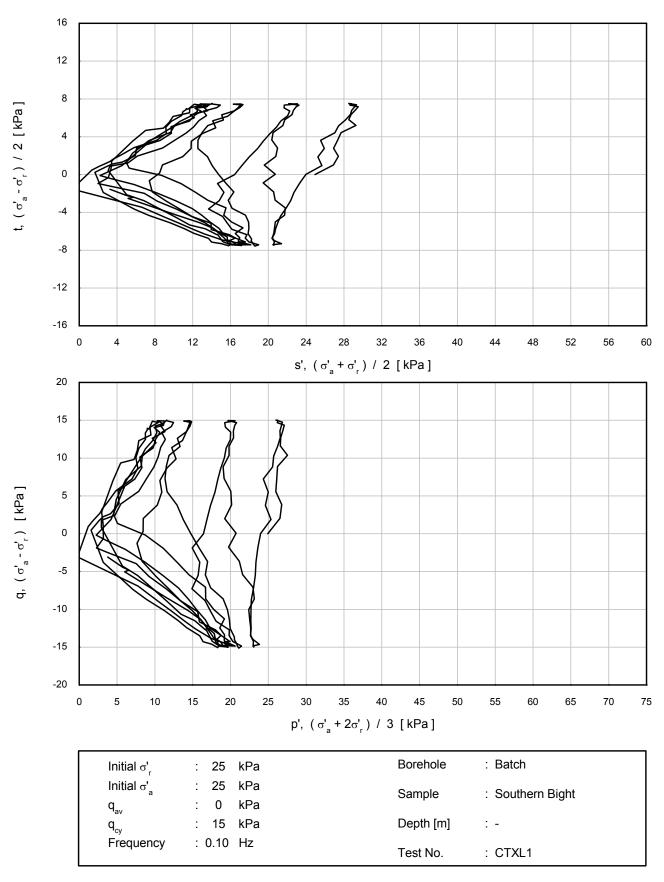

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL1

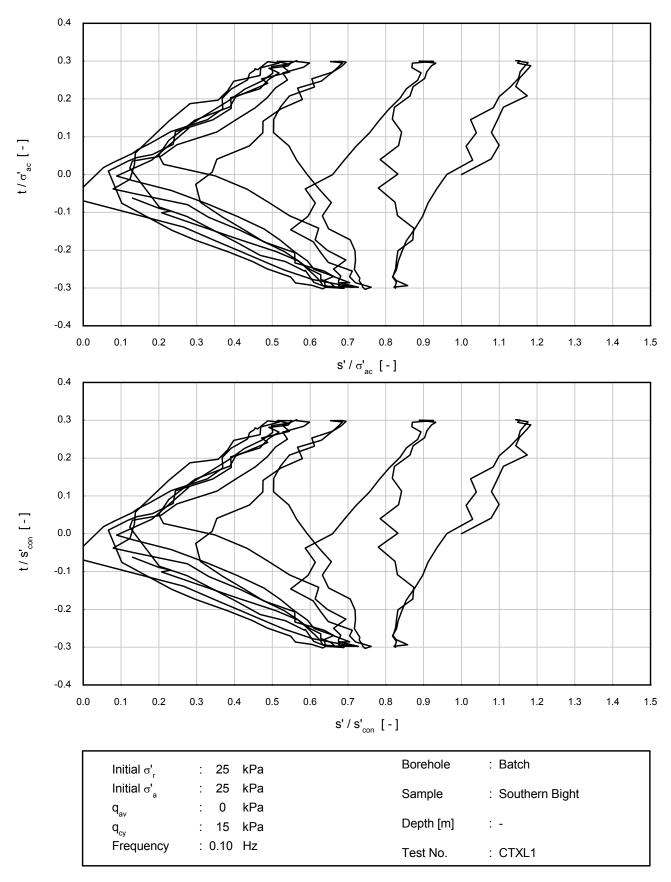

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL1

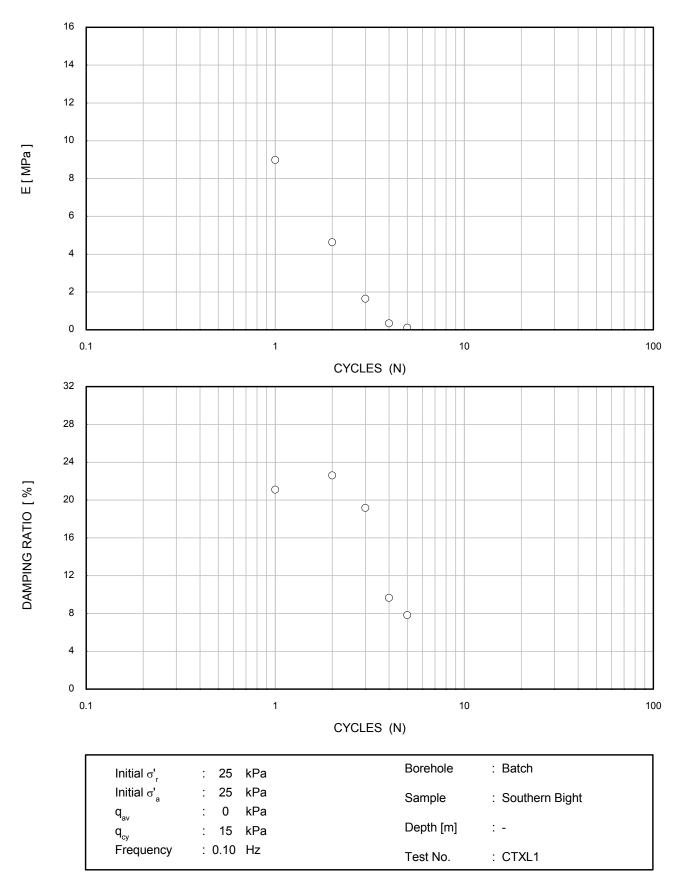


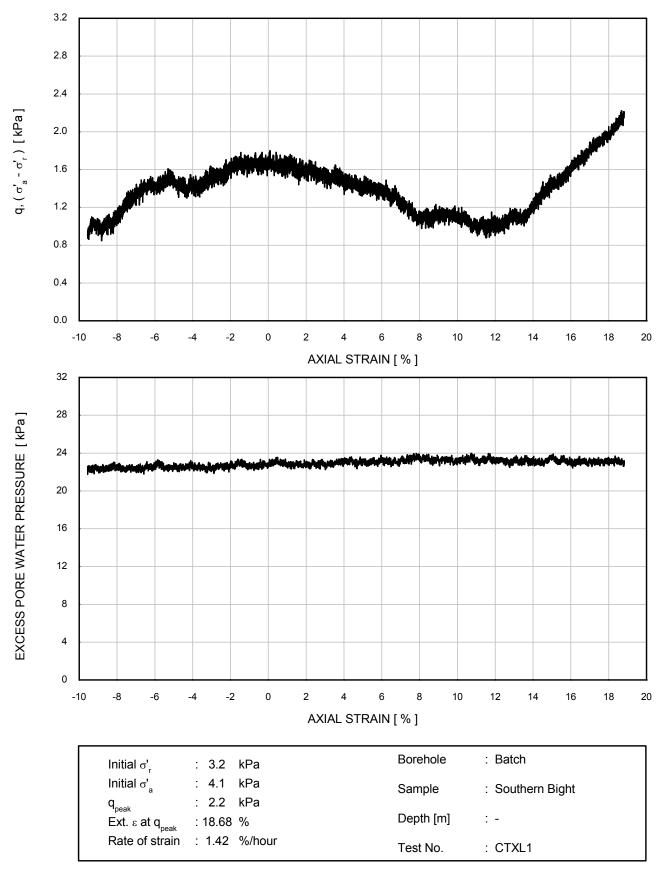

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST SATURATION STAGE - DRAINED

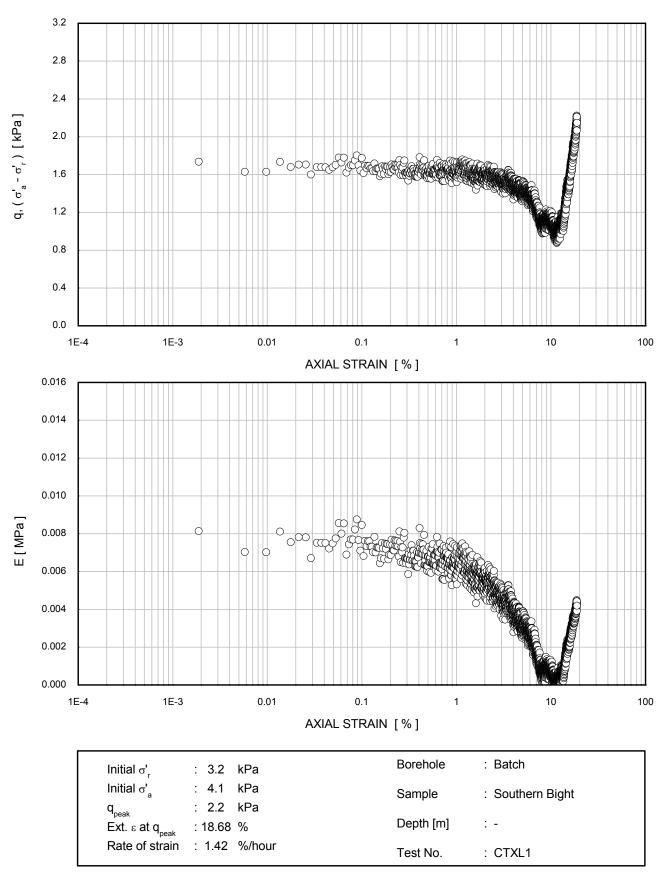


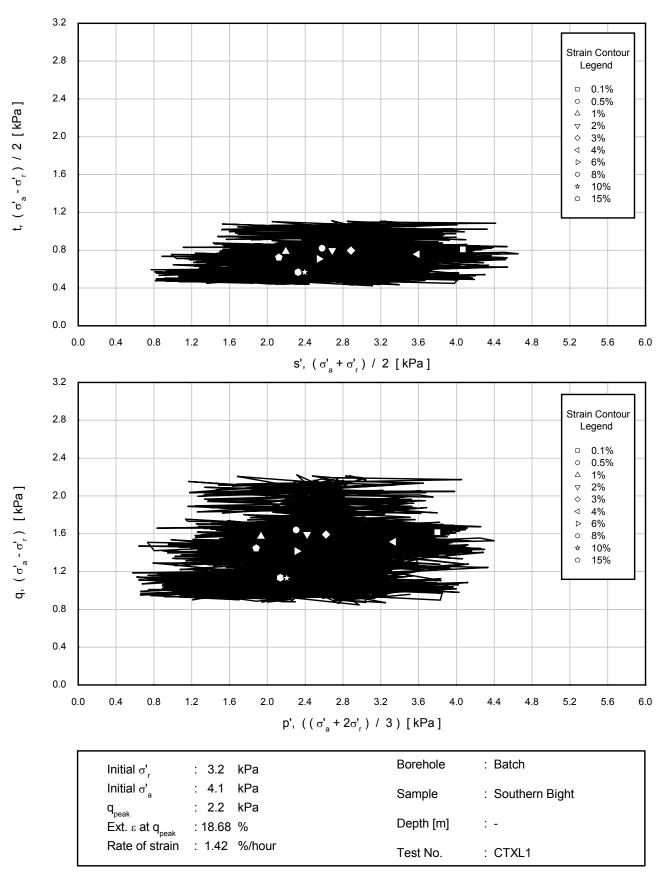

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE











VISUAL DESCRIPTION

Light olive brown fine to medium SAND with traces of shell fragments

GENERAL	
Date test started	27/07/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.0	
Length	[mm]	144.0	
Moisture content	[%]	10.0	
Bulk density	[Mg/m³]	1.79	
Dry density	[Mg/m³]	1.63	
Void ratio	[-]	0.627	
Degree of saturation	[%]	42	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	n/a
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon reques	t

QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Southern_Bight_CTXL2
Processed by	LJ
Date	12/08/2015
Checked by	PH
Date	14/08/2015
Approved by	PH
Date	14/08/2015

TEST IDENTIFICATION			
Borehole	Batch		
Sample	Southern Bight		
Depth [m]	-		
Test number	CTXL2		

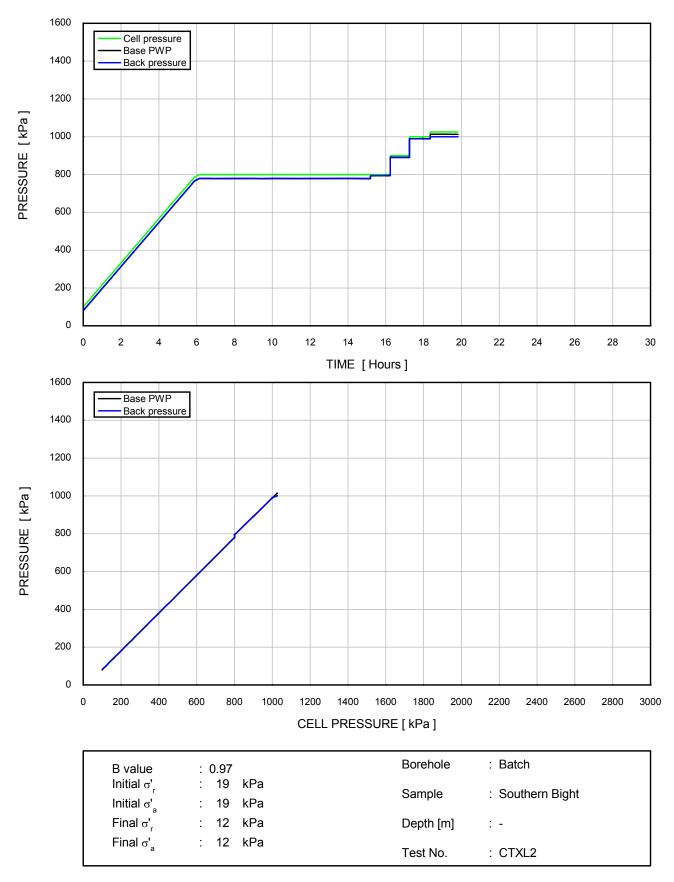
SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	10
Cell pressure	[kPa]	1025
Base PWP	[kPa]	1013
Mid height PWP	[kPa]	-
B value achieved	[-]	0.97

CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	1025	
Back pressure	[kPa]	1000	
Base PWP	[kPa]	1000	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	25	
Effective axial pressure	[kPa]	25	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	0.18	
External axial strain	[%]	0.04	
Local axial strain	[%]	-	
Local radial strain	[%]	-	
Moisture content	[%]	23.6	
Bulk density	[Mg/m³]	2.02	
Dry density	[Mg/m³]	1.63	
Void ratio	[-]	0.624	
Degree of saturation	[%]	100	

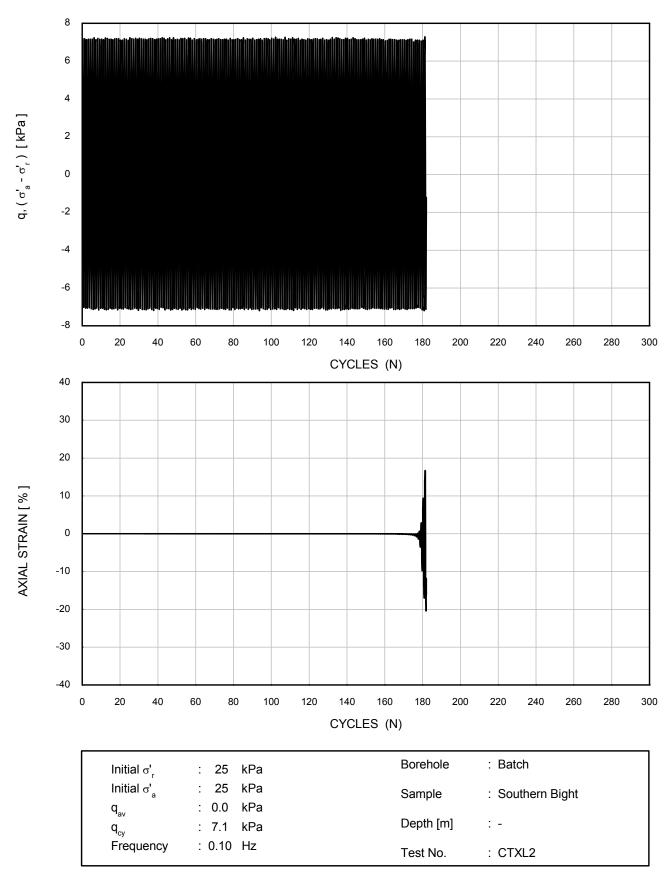

TEST IDENTIFICATION			
Borehole	Batch		
Sample	Southern Bight		
Depth [m]	-		
Test number	CTXL2		

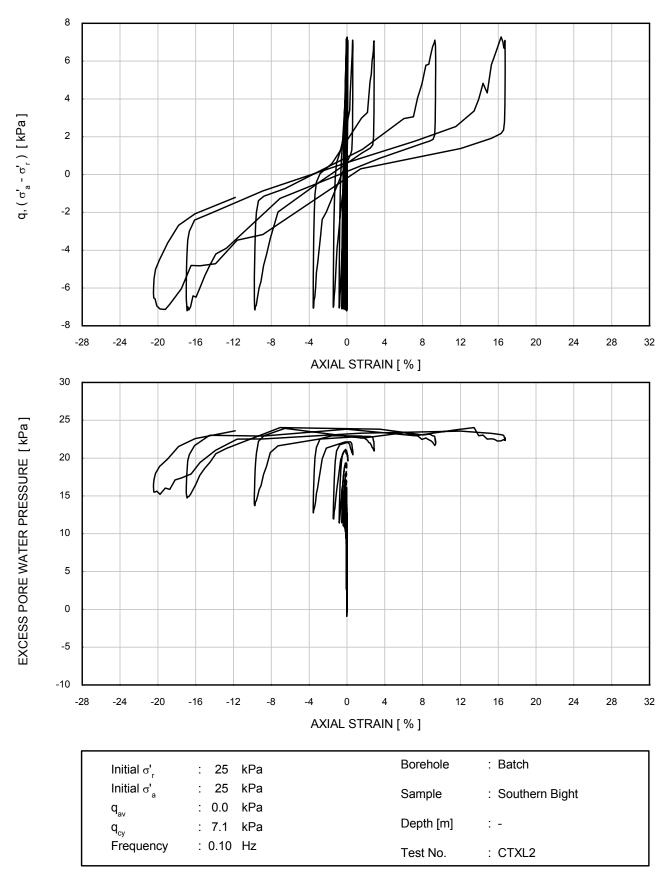
STRESS-CONTROLLED CYCLIC LOADING STAGE							
Reference stress		[kPa]			2	5	
Mean q _{av}		[kPa]			0.	0	
Mean q _{cy}		[kPa]			7.	5	
Frequency		[Hz]			0.1	10	
Number of cycles at failure	(N_f)	[-]			18	31	
External ε _{av} at N _f		[%]			-3.	81	
External ϵ_{cy} at N_f		[%]			13.	17	
Local ε _{av} at N _f		[%]			-		
Local ε _{cy} at N _f		[%]			-		
Δ base PWP at $N_{\rm f}$		[kPa]			1	9	
Δ mid height PWP at N $_{\rm f}$		[kPa]			-		
Moisture content		[%]			23		
Bulk density		[Mg/m³]			2.0		
Dry density		[Mg/m³]			1.6		
Void ratio		[-]			0.6		
Degree of saturation		[%]			10	00	
Cycle	ϵ_{av}	ϵ_{cy}	E_{ext}	E_loc	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	0.00	0.02	41	-	7.16	-	
2	0.00	0.02	43	-	5.67	-	
5	0.00	0.02	42	-	4.42	-	
10	0.00	0.02	42	-	4.55	-	
20	0.00	0.02	40	-	4.60	-	
30	0.00	0.02	39	-	4.44	-	
40	0.00	0.02	38	-	4.45	-	
50	0.00	0.02	37	-	4.67	-	
100	-0.01	0.02	32	-	6.02	-	
181	-3.81	13.17	0	-	8.22	-	

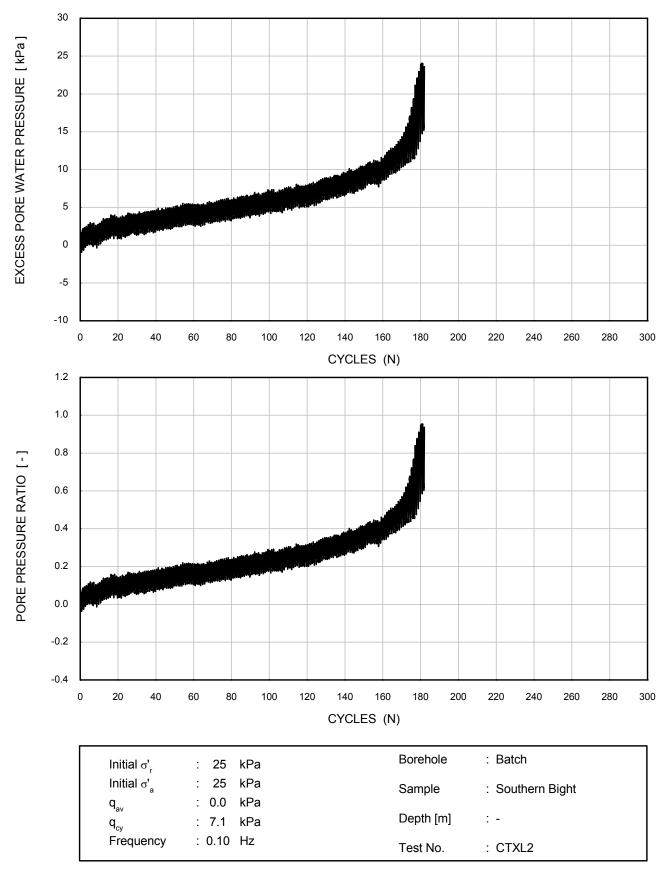

TEST IDENTIFICATION			
Borehole	Batch		
Sample	Southern Bight		
Depth [m]	-		
Test number	CTXL2		

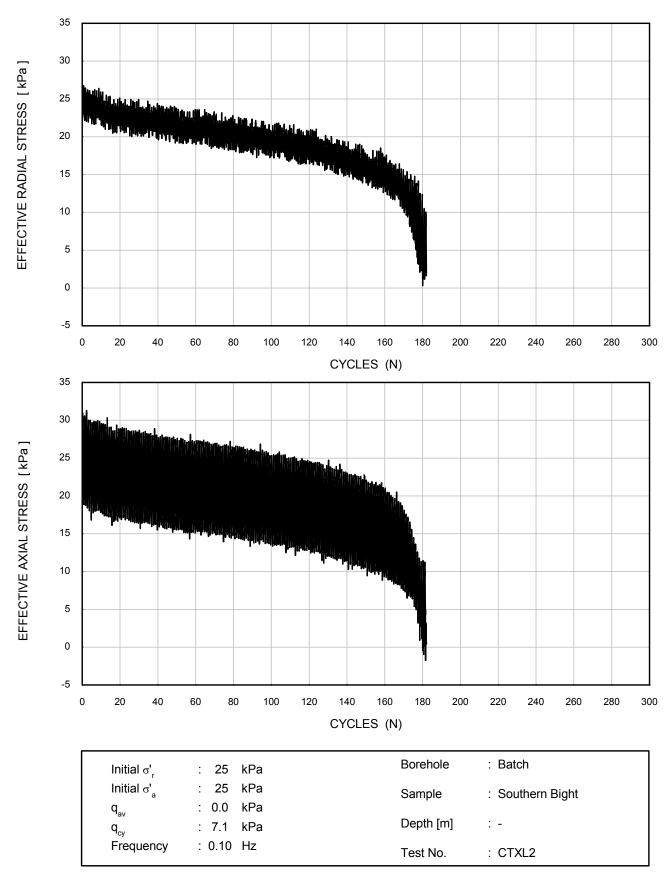
SHEARING STAGE		
Initial effective radial pressure	[kPa]	1.6
Initial effective axial pressure	[kPa]	2.3
Rate of strain	[%/hour]	0.93
At peak deviator stress		
Corrected deviator stress	[kPa]	42
Membrane correction applied	[kPa]	2
Drain correction applied	[kPa]	0
External axial strain	[%]	23.28
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	8
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	17
Effective axial pressure	[kPa]	59
Principal effective stress ratio	[-]	3.48
ε ₅₀	[%]	20.97
Secant modulus (E ₅₀) at ϵ_{50}	[kPa]	82
At peak principal effective stress r	atio	
Corrected deviator stress	[kPa]	1.4
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	9.44
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	24
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	0.2
Effective axial pressure	[kPa]	1.6
Principal effective stress ratio	[-]	9.46
At 10% axial strain		
Corrected deviator stress	[kPa]	1.5
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	9.99
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	24
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	1.7
Effective axial pressure	[kPa]	3.2
Principal effective stress ratio	[-]	1.92

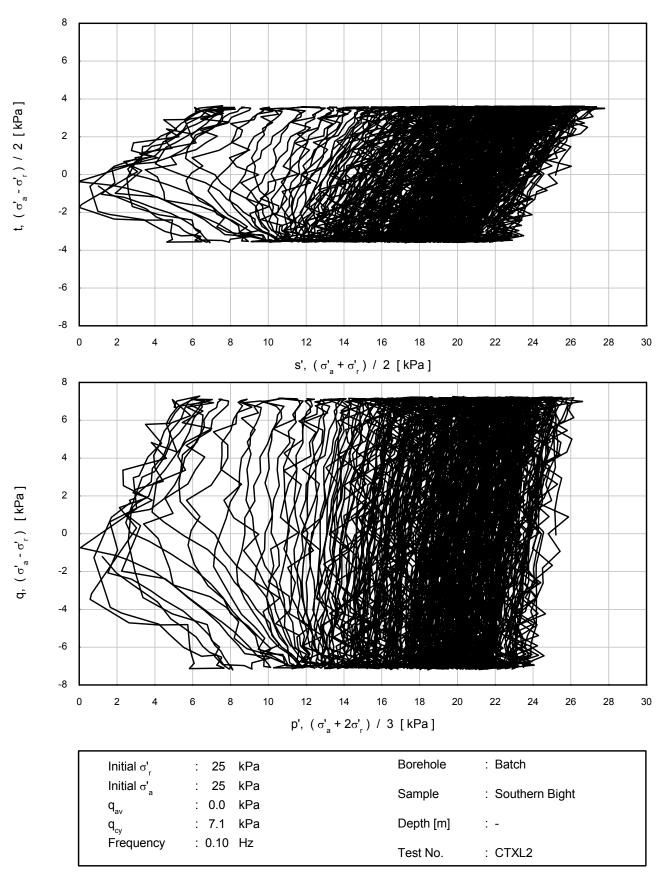
TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL2

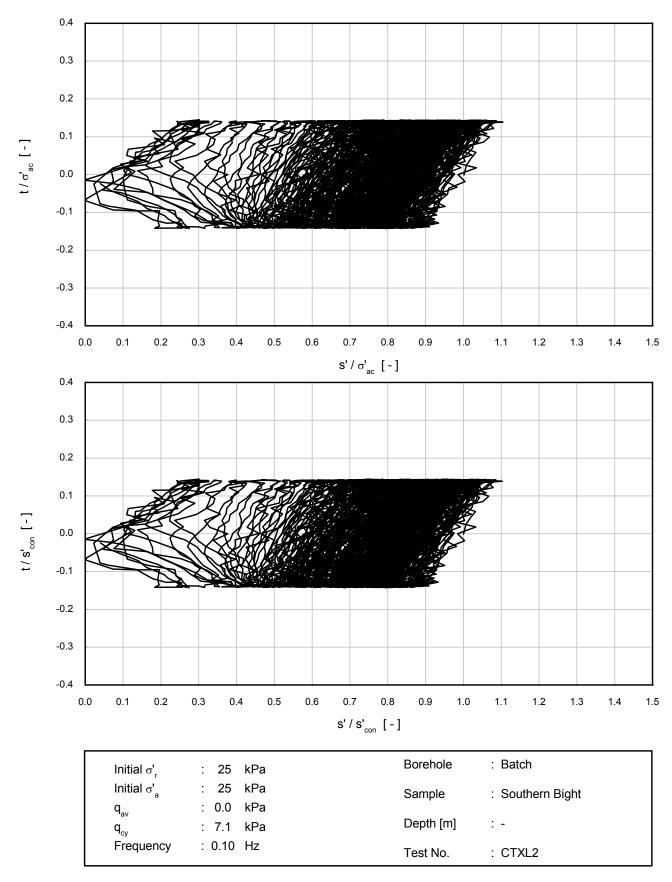


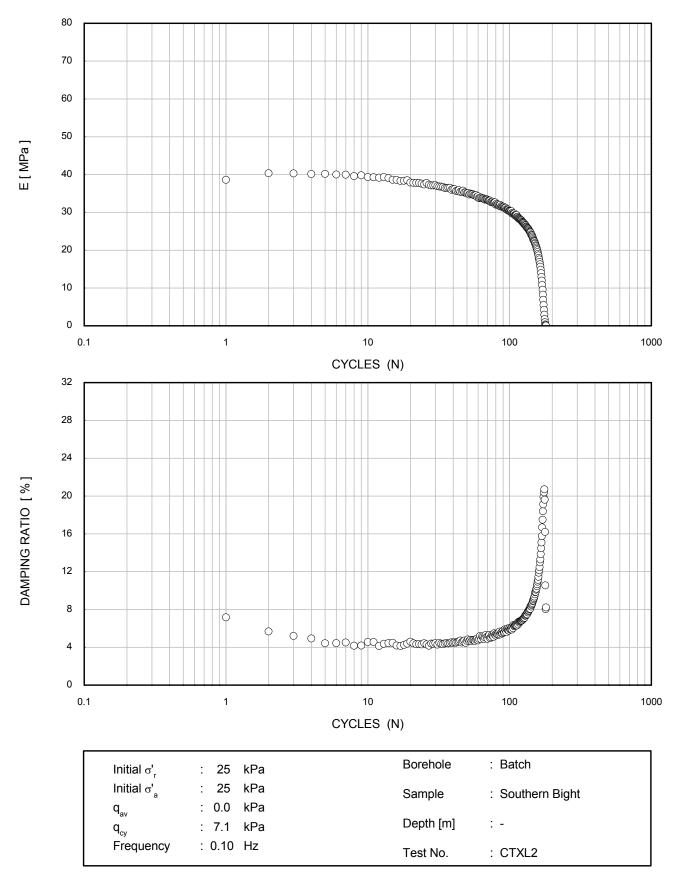

TEST IDENTIFICATION			
Borehole	Batch		
Sample	Southern Bight		
Depth [m]	-		
Test number	CTXL2		

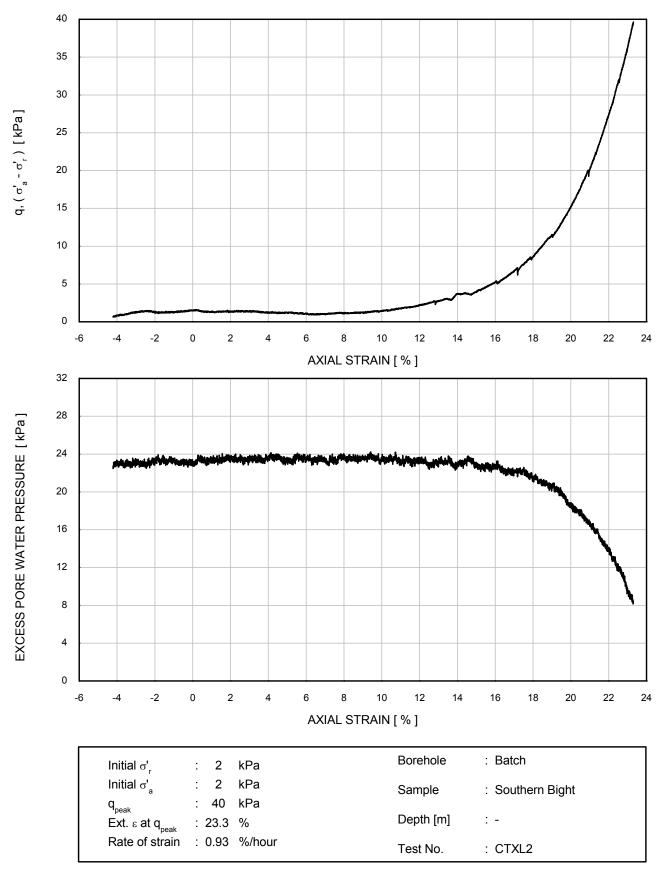


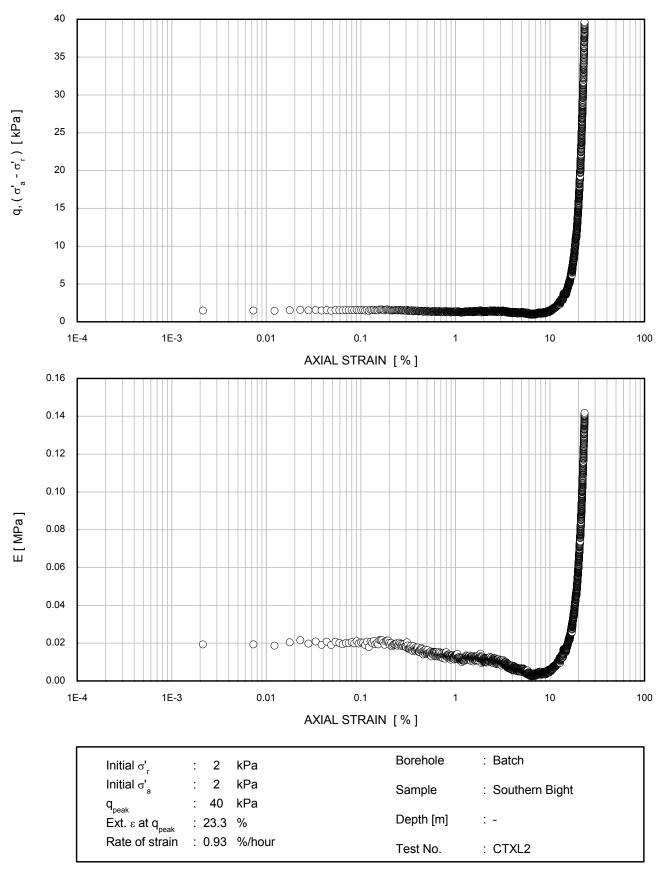


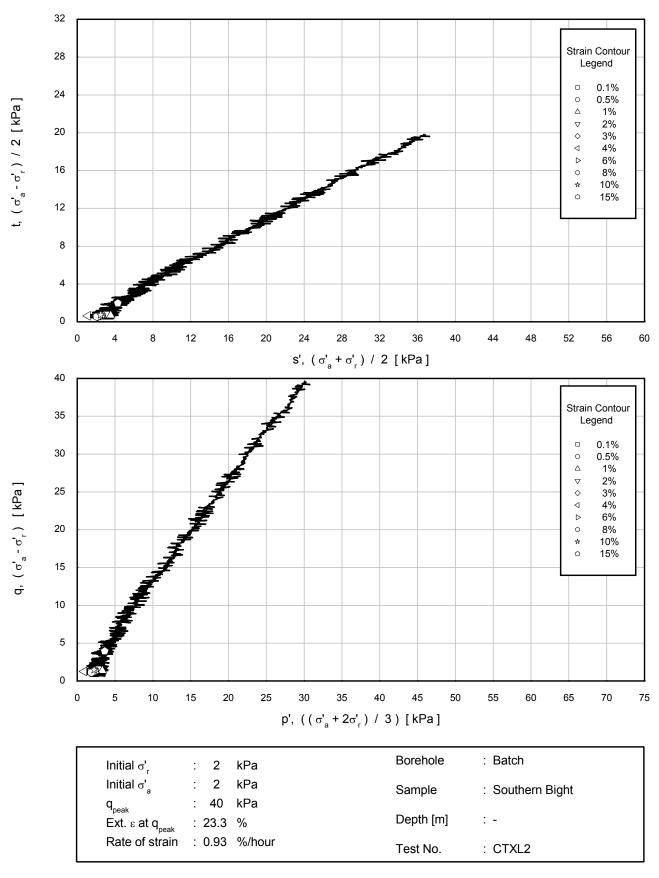

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE











VISUAL DESCRIPTION

Light olive brown fine to medium SAND with traces of shell fragments

GENERAL	
Date test started	31/07/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.0	
Length	[mm]	144.0	
Moisture content	[%]	10.3	
Bulk density	[Mg/m³]	1.79	
Dry density	[Mg/m³]	1.62	
Void ratio	[-]	0.633	
Degree of saturation	[%]	43	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	N/A
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Southern_Bight_CTXL3
Processed by	LJ
Date	12/08/2015
Checked by	PH
Date	15/08/2015
Approved by	PH
Date	15/08/2015

TEST IDENTIFICATION			
Borehole	Batch		
Sample	Southern Bight		
Depth [m]	-		
Test number	CTXL3		

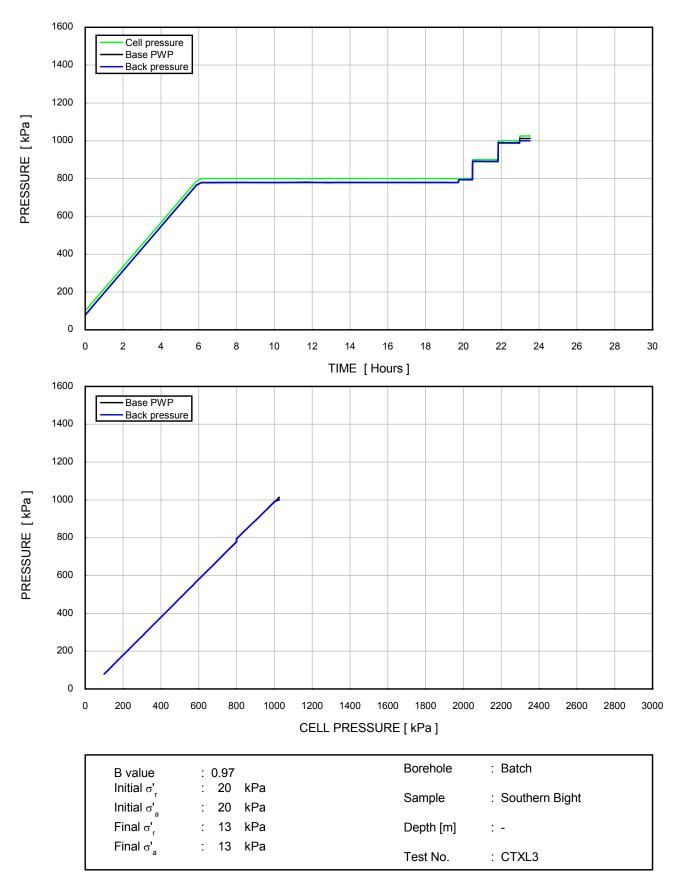
SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

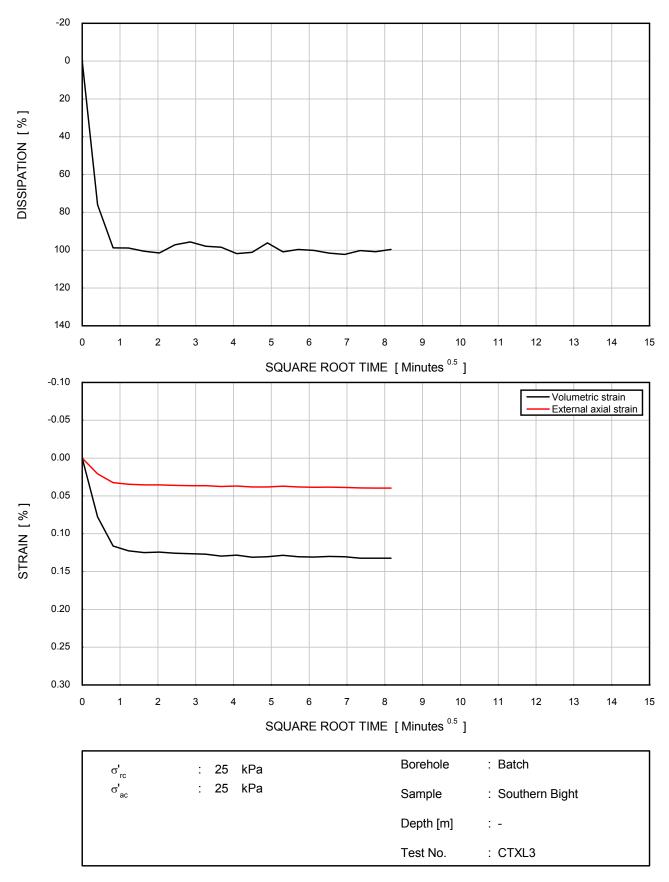
SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	10
Cell pressure	[kPa]	1025
Base PWP	[kPa]	1012
Mid height PWP	[kPa]	-
B value achieved	[-]	0.97

CONSOLIDATION: ISOTROPIC		
Cell pressure	[kPa]	1025
Back pressure	[kPa]	1000
Base PWP	[kPa]	1000
Mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	25
Effective axial pressure	[kPa]	25
Deviator stress	[kPa]	0
Volumetric strain	[%]	0.14
External axial strain	[%]	0.04
Local axial strain	[%]	-
Local radial strain	[%]	-
Moisture content	[%]	23.8
Bulk density	[Mg/m³]	2.01
Dry density	[Mg/m³]	1.63
Void ratio	[-]	0.631
Degree of saturation	[%]	100

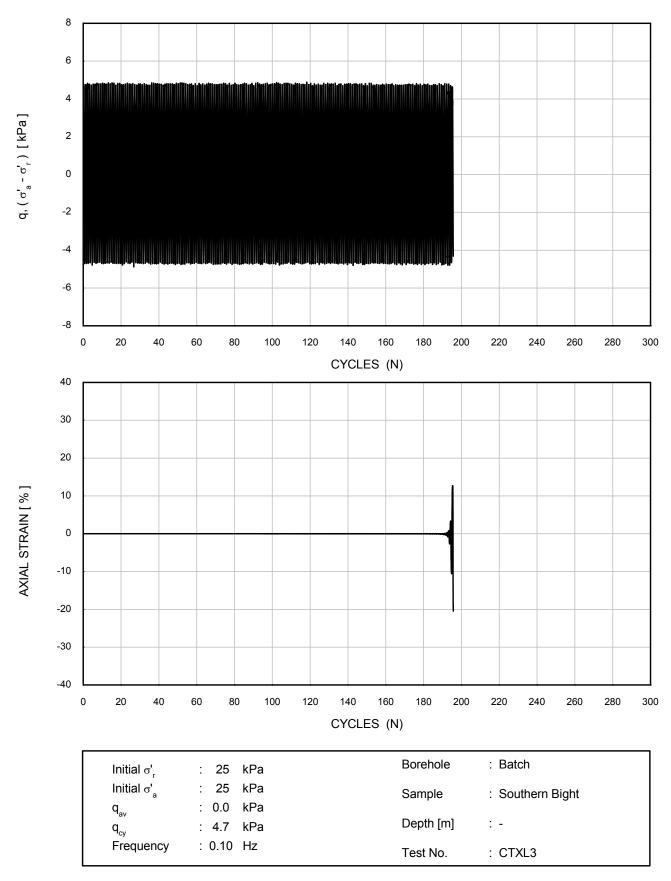
TEST IDENTIFICATION			
Borehole	Batch		
Sample	Southern Bight		
Depth [m]	-		
Test number	CTXL3		

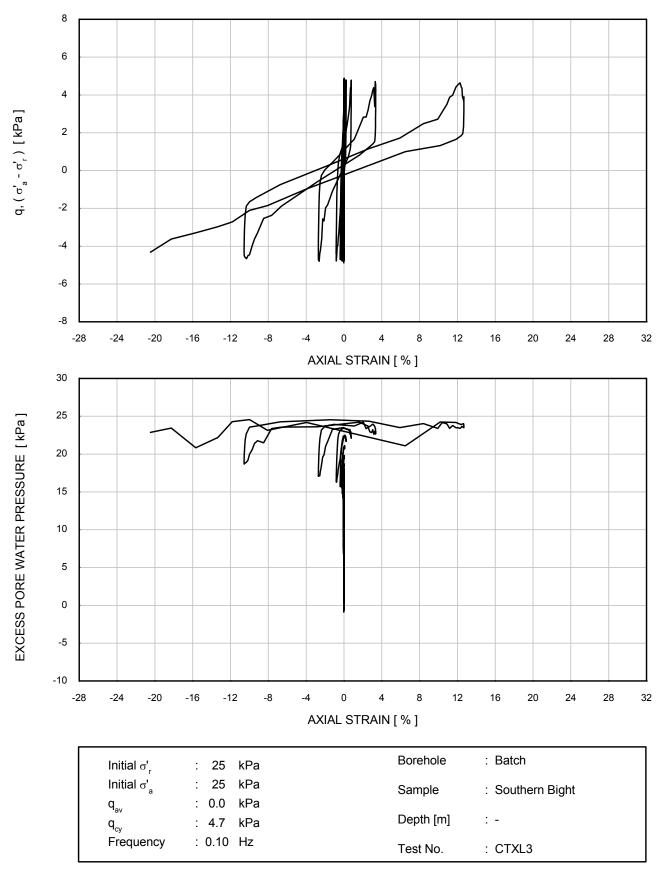
STRESS-CONTROLLED CYCLIC LOADING STAGE							
Reference stress		[kPa]			2	5	
Mean q _{av}		[kPa]			0.	0	
Mean q _{cy}		[kPa]			5.	0	
Frequency		[Hz]			0.1	10	
Number of cycles at failure	(N_f)	[-]			19	6	
External ϵ_{av} at N_f		[%]			-3.8		
External ϵ_{cy} at N_f		[%]			16.	58	
Local ϵ_{av} at N_f		[%]			-		
Local ϵ_{cy} at N $_{\text{f}}$		[%]			-		
Δ base PWP at N _f		[kPa]			23	3	
Δ mid height PWP at N_{f}		[kPa]			-		
Moisture content		[%]			23		
Bulk density		[Mg/m³]			2.0		
Dry density		[Mg/m³]			1.6		
Void ratio		[-]			0.6		
Degree of saturation		[%]			10	0	
Cycle	ϵ_{av}	ϵ_{cy}	E_{ext}	E_loc	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	0.00	0.01	39	-	6.09	-	
2	0.00	0.01	39	-	3.98	-	
5	0.00	0.01	39	-	2.82	-	
10	0.00	0.01	38	-	2.53	-	
20	0.00	0.01	37	-	2.41	-	
30	0.00	0.01	36	-	2.70	-	
40	0.00	0.01	35	-	2.25	-	
50	0.00	0.01	34	-	2.96	-	
100	0.00	0.02	30	-	3.85	-	
196	-3.89	16.58	0	-	12.48	-	

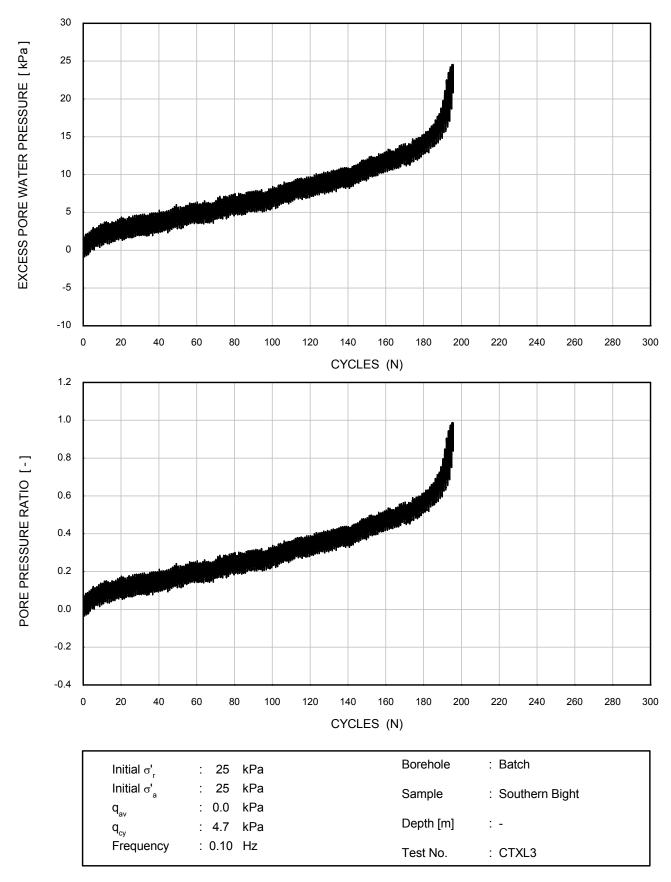

TEST IDENTIFICATION			
Borehole	Batch		
Sample	Southern Bight		
Depth [m]	-		
Test number	CTXL3		

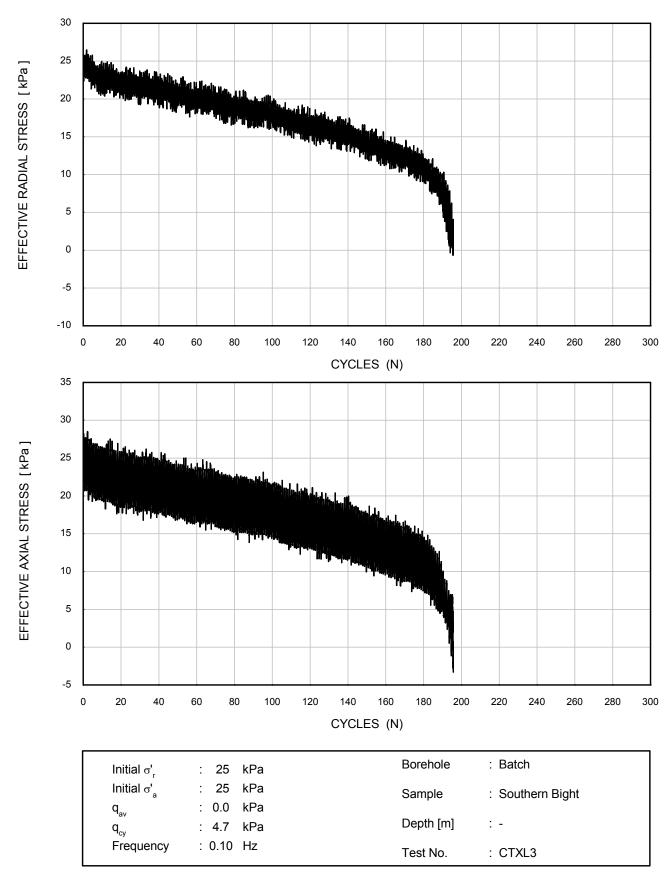

SHEARING STAGE		
Initial effective radial pressure	[kPa]	1.5
Initial effective axial pressure	[kPa]	1.6
Rate of strain	[%/hour]	0.98
At peak deviator stress		
Corrected deviator stress	[kPa]	3.8
Membrane correction applied	[kPa]	1.8
Drain correction applied	[kPa]	0
External axial strain	[%]	24.27
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	23
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	1.9
Effective axial pressure	[kPa]	5.6
Principal effective stress ratio	[-]	3.02
ε ₅₀	[%]	16.79
Secant modulus (E ₅₀) at ϵ_{50}	[kPa]	5
At peak principal effective stress r	atio	
Corrected deviator stress	[kPa]	2.2
Membrane correction applied	[kPa]	1.6
Drain correction applied	[kPa]	0
External axial strain	[%]	18.42
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	24
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	0.0
Effective axial pressure	[kPa]	2.2
Principal effective stress ratio	[-]	218.07
At 10% axial strain		
Corrected deviator stress	[kPa]	0.9
Membrane correction applied	[kPa]	1.0
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	24
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	0.6
Effective axial pressure	[kPa]	1.5
Principal effective stress ratio	[-]	2.48

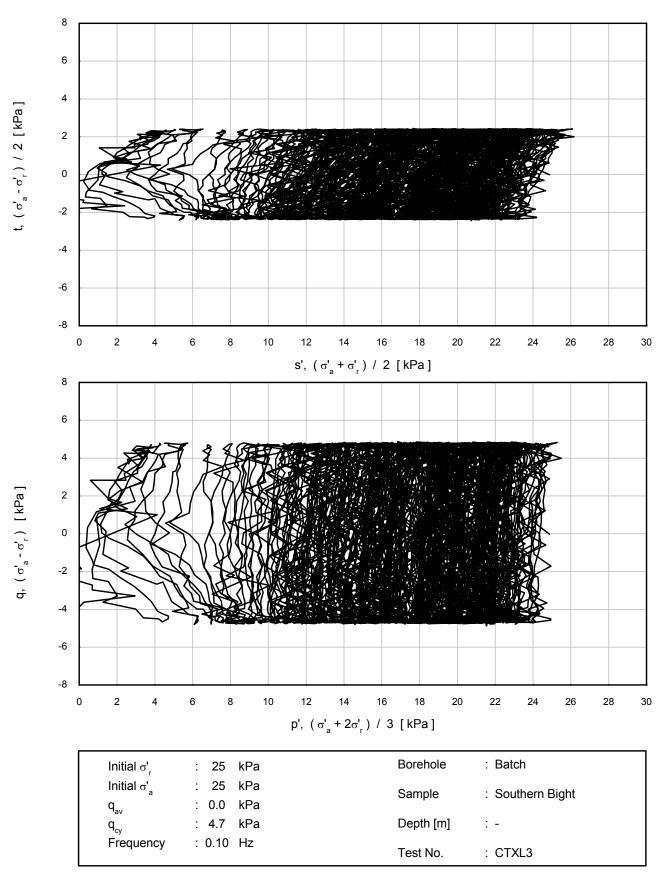
TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL3

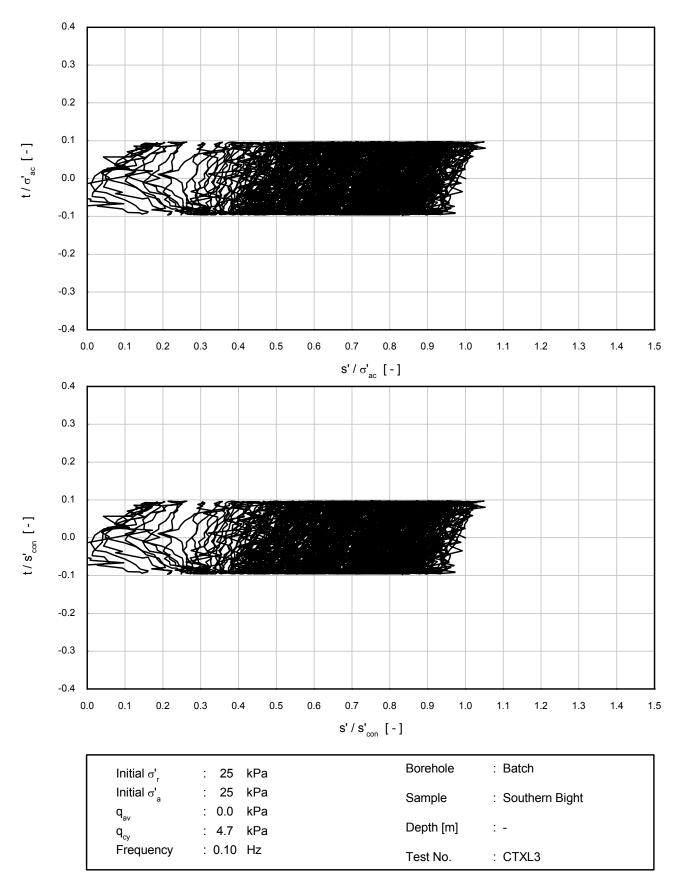

SPECIMEN PHOTOGRA	APHS		
'	Specimen photo unavailable		
	Specimen photo unavailable		
FINAL CONDITIONS Moisture content	ro/ 1	23.8	
Bulk density	[%] [Mg/m³]	2.01	
Dry density	[Mg/m³]	1.63	

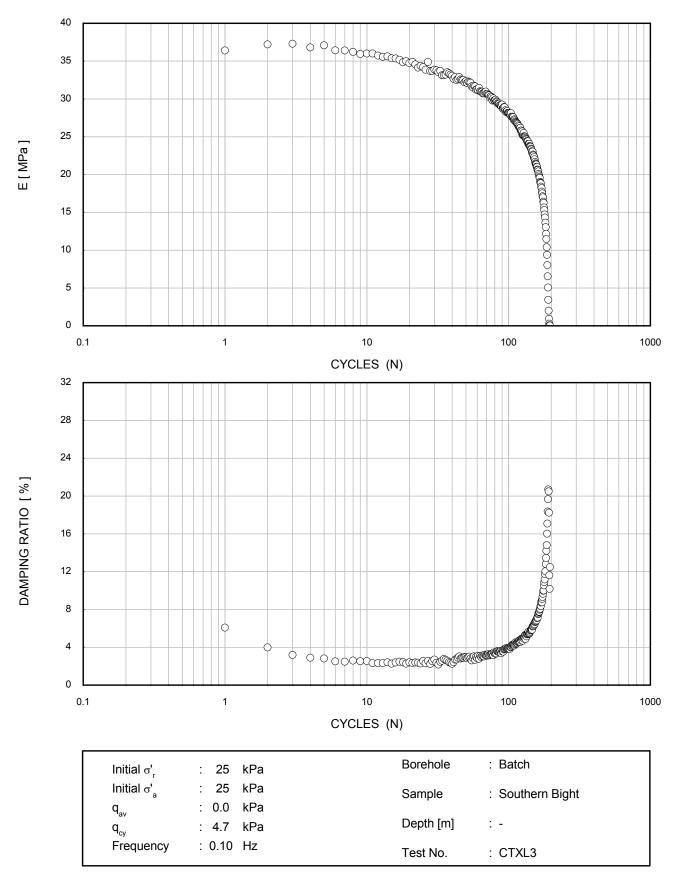

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL3

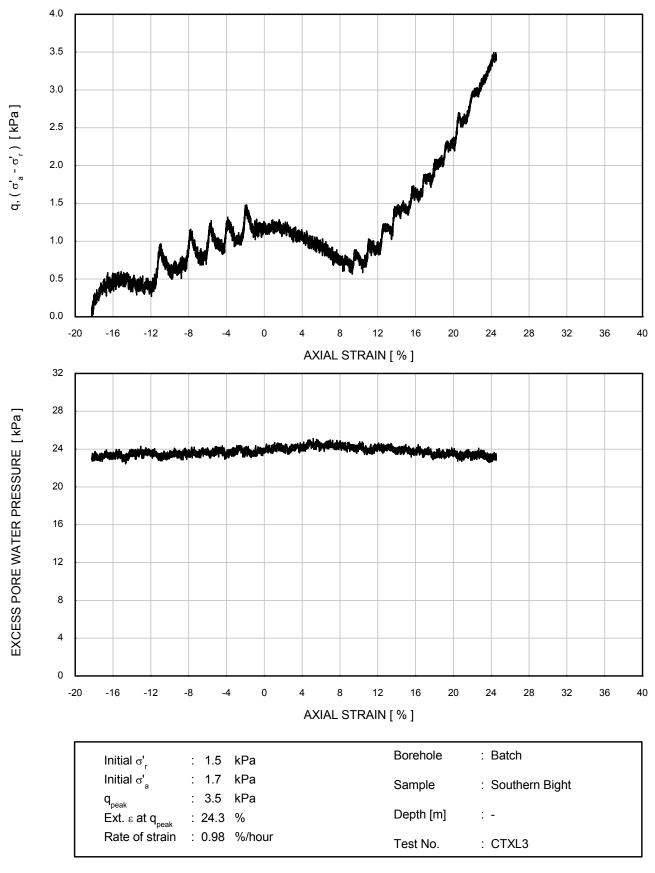


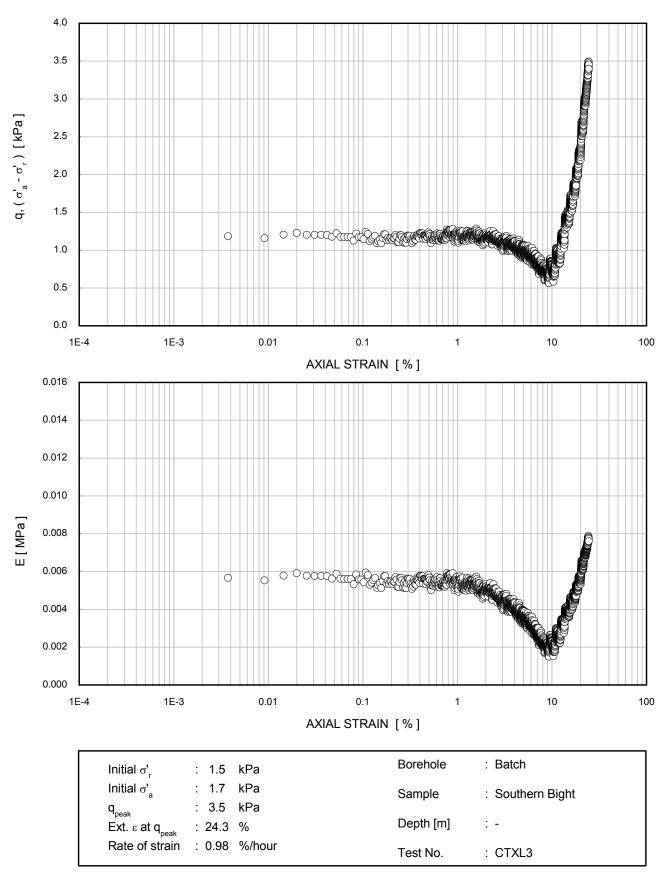


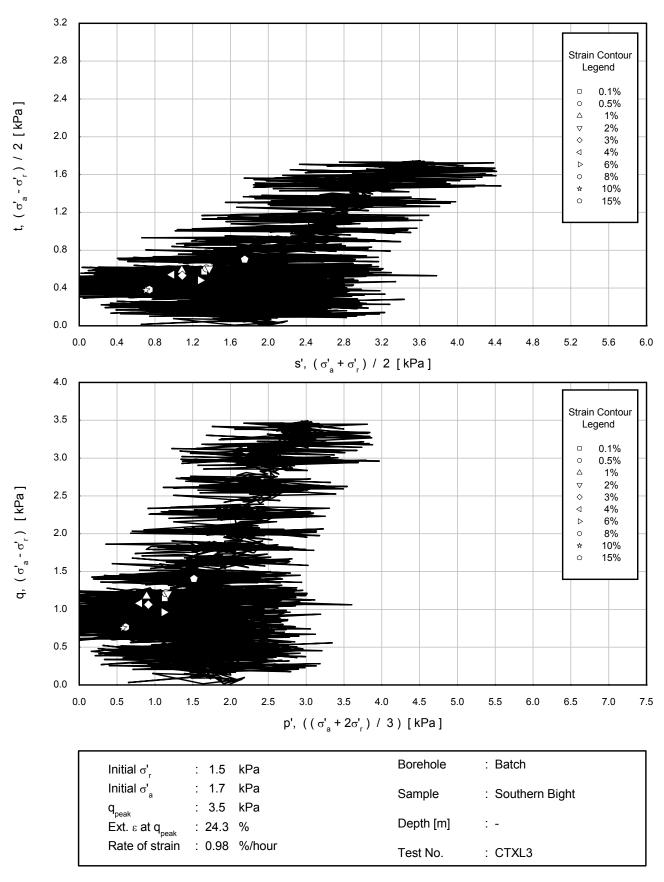

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE











VISUAL DESCRIPTION

Light olive brown fine to medium SAND with traces of shell fragments

GENERAL	
Date test started	08/05/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.1	
Length	[mm]	144.0	
Moisture content	[%]	10.0	
Bulk density	[Mg/m³]	1.79	
Dry density	[Mg/m³]	1.63	
Void ratio	[-]	0.629	
Degree of saturation	[%]	42	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	N/A
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Southern_Bight_CTXL4
Processed by	LJ
Date	13/08/2015
Checked by	PH
Date	14/08/2015
Approved by	PH
Date	15/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL4

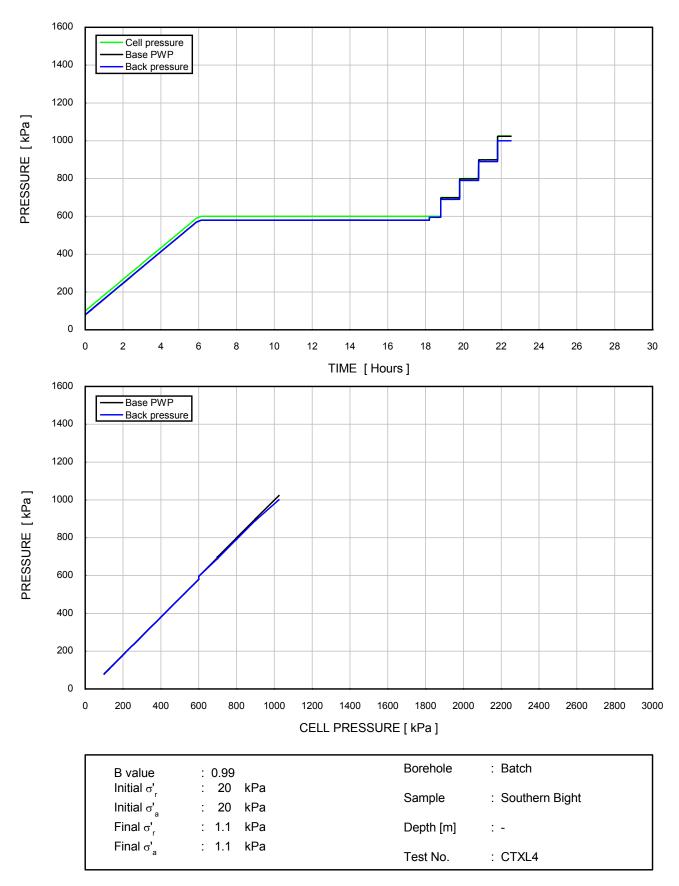
SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

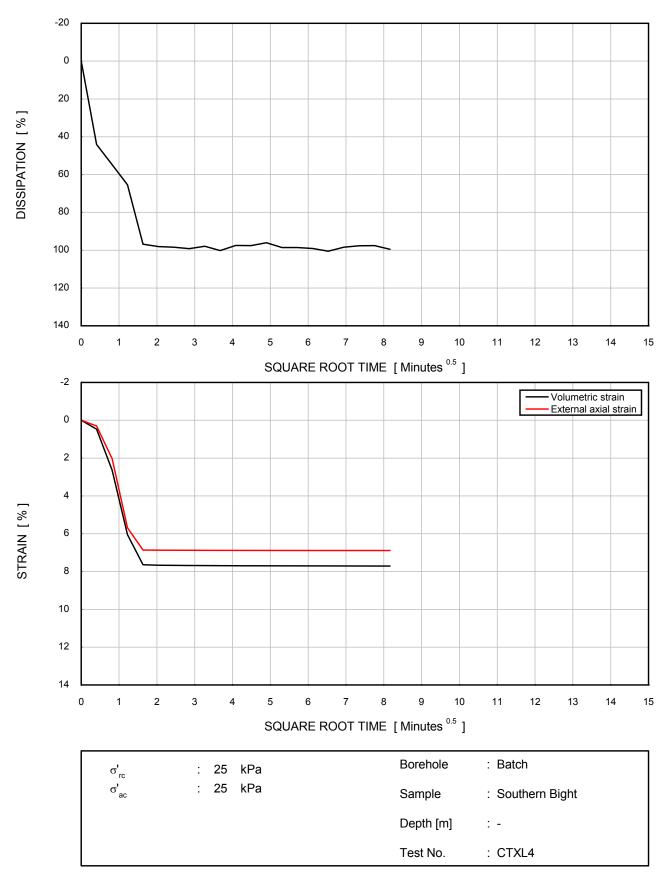
SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	20
Cell pressure	[kPa]	1025
Base PWP	[kPa]	1024
Mid height PWP	[kPa]	-
B value achieved	[-]	0.99

CONSOLIDATION: ISOTROPIC		
Cell pressure	[kPa]	1025
Back pressure	[kPa]	1000
Base PWP	[kPa]	1000
Mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	25
Effective axial pressure	[kPa]	25
Deviator stress	[kPa]	0
Volumetric strain	[%]	8.59
External axial strain	[%]	7.18
Local axial strain	[%]	-
Local radial strain	[%]	-
Moisture content	[%]	18.4
Bulk density	[Mg/m³]	2.11
Dry density	[Mg/m³]	1.78
Void ratio	[-]	0.489
Degree of saturation	[%]	100

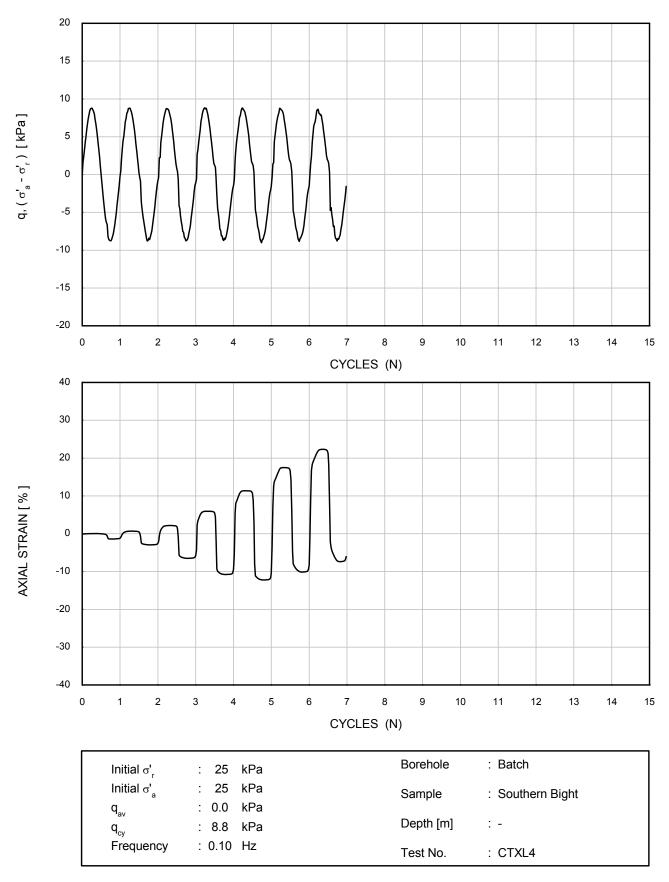
TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL4

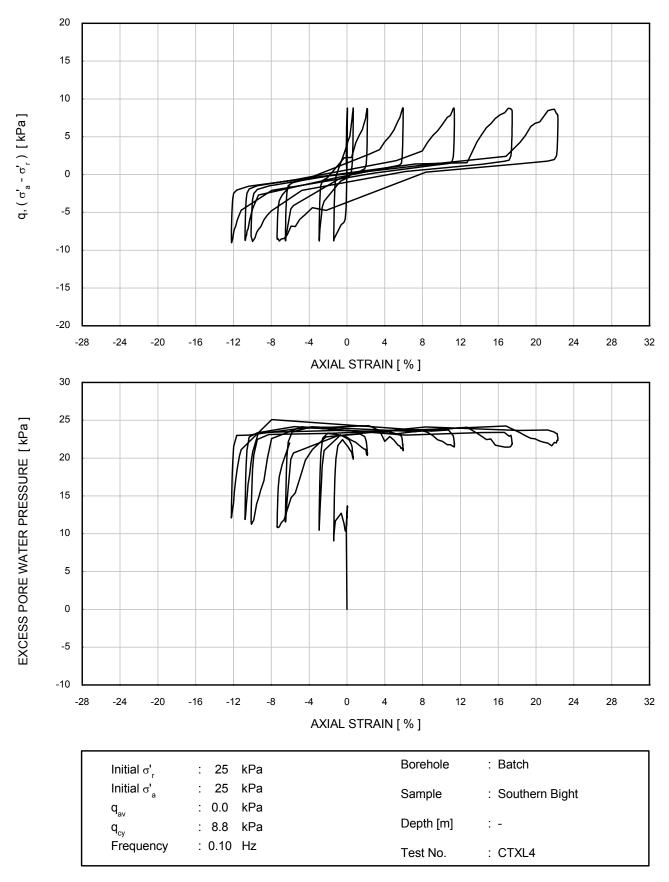
STRESS-CONTROLLED CYCLIC LOADING STAGE							
Reference stress		[kPa]	25				
Mean q _{av}					0)	
Mean q _{cy}		[kPa]			9)	
Frequency		[Hz]			0.1	10	
Number of cycles at failure	(N_f)	[-]			5	;	
External ε _{av} at N _f		[%]			-0.4	45	
External ϵ_{cy} at N_{f}		[%]			12.	33	
Local ϵ_{av} at N_{f}		[%]			-		
Local $\epsilon_{\sf cy}$ at N $_{\sf f}$		[%]			-		
Δ base PWP at N _f		[kPa]			19	9	
Δ mid height PWP at N _f		[kPa]			-		
Moisture content		[%]	18.4				
Bulk density		[Mg/m³]	2.11				
Dry density		[Mg/m³]	1.78				
Void ratio		[-]			0.4		
Degree of saturation		[%]			10	0	
Cycle	ϵ_{av}	ϵ_{cy}	E_{ext}	E_loc	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa] [MPa] [%] [%]				
1	-0.71	0.76	1 - 23.47 -				
2	-1.19	1.89	0 - 12.09 -				
3	-2.27	4.53	0 - 11.00 -				
4	-2.53	8.74	0 - 8.19 -				
5	-0.45	12.33	0	-	7.02	-	

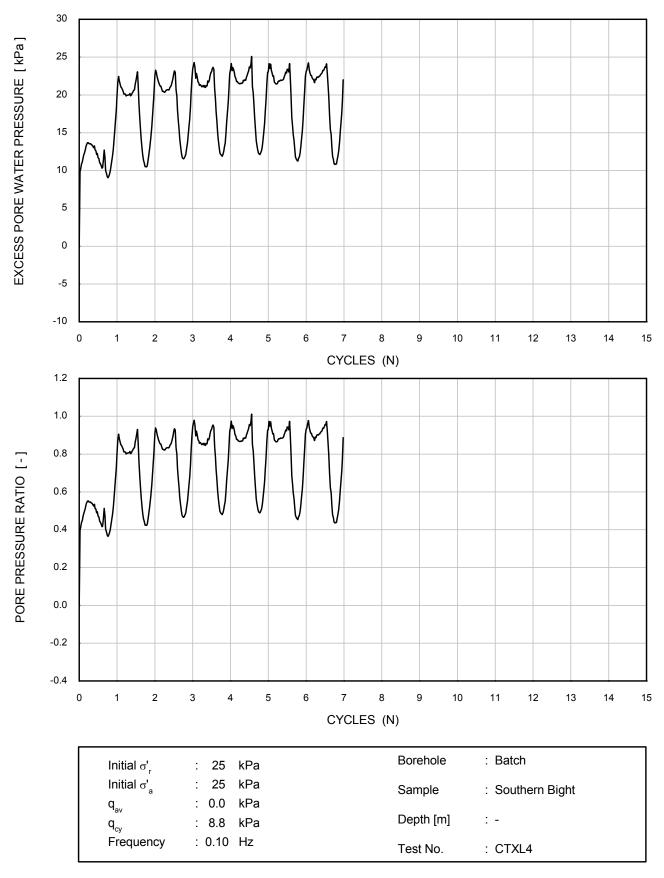

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL4

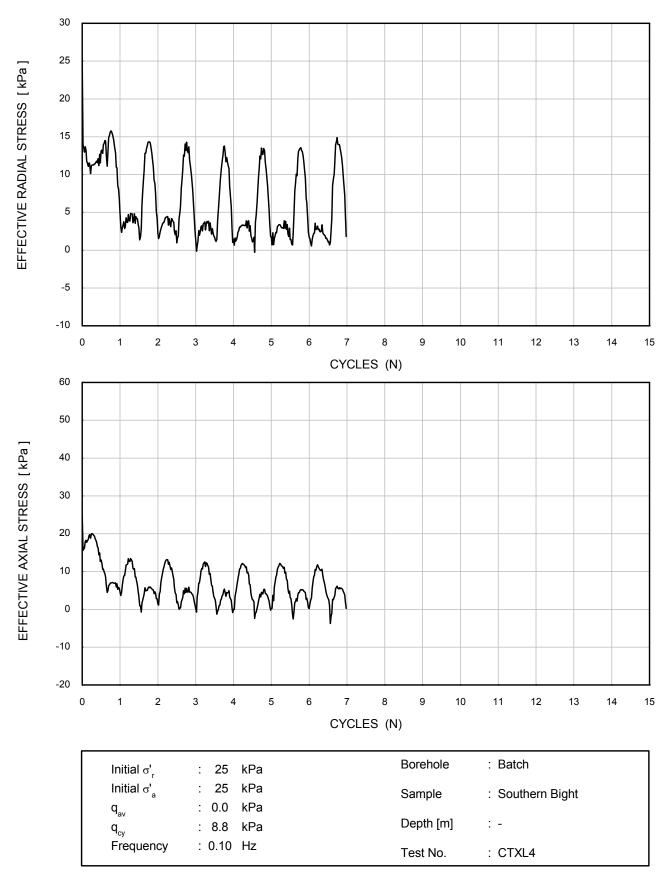

SHEARING STAGE		
Initial effective radial pressure	[kPa]	1.5
Initial effective axial pressure	[kPa]	1.6
Rate of strain	[%/hour]	1.05
At peak deviator stress		
Corrected deviator stress	[kPa]	1.1
Membrane correction applied	[kPa]	-0.3
Drain correction applied	[kPa]	0
External axial strain	[%]	-2.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	23
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	2.0
Effective axial pressure	[kPa]	3.1
Principal effective stress ratio	[-]	1.58
ε ₅₀	[%]	-3.93
Secant modulus (E_{50}) at ϵ_{50}	[kPa]	-349637
At peak principal effective stress ra	atio	
Corrected deviator stress	[kPa]	0.6
Membrane correction applied	[kPa]	0.5
Drain correction applied	[kPa]	0
External axial strain	[%]	4.84
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	24
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	0.6
Effective axial pressure	[kPa]	1.2
Principal effective stress ratio	[-]	2.10
At 10% axial strain		
Corrected deviator stress	[kPa]	0.5
Membrane correction applied	[kPa]	1.0
Drain correction applied	[kPa]	0
External axial strain	[%]	9.99
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	24
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	1.1
Effective axial pressure	[kPa]	1.6
Principal effective stress ratio	[-]	1.44

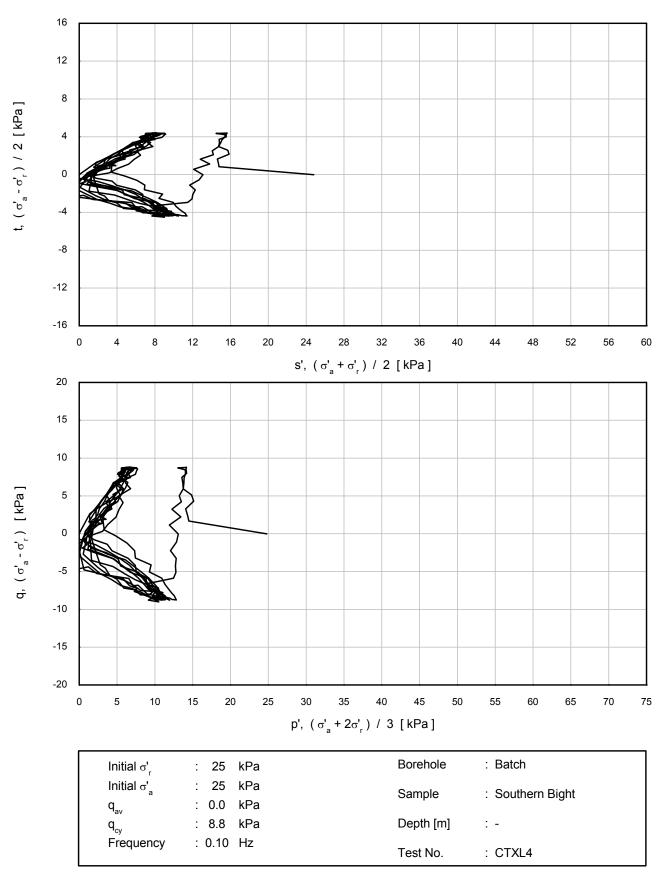
TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL4

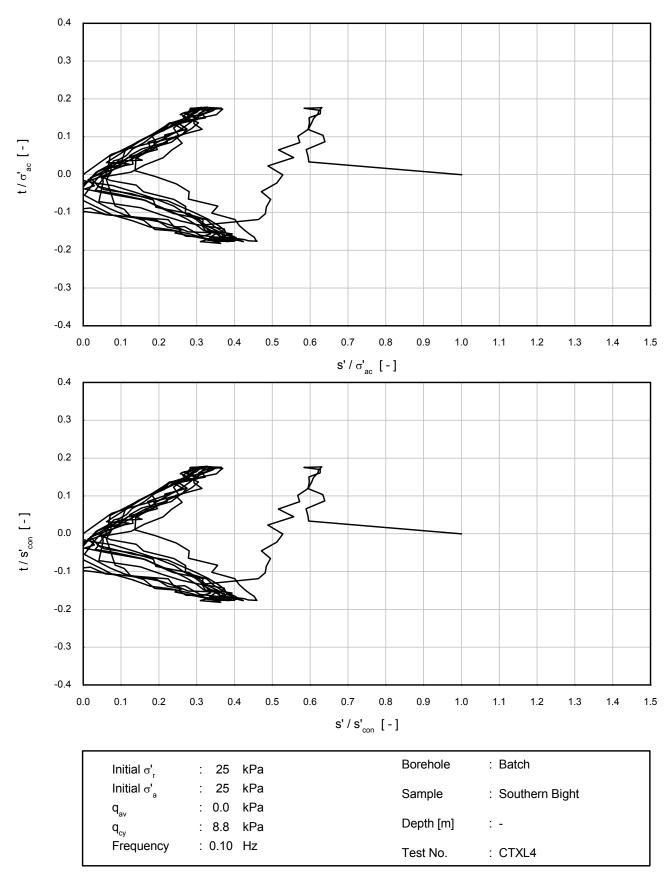


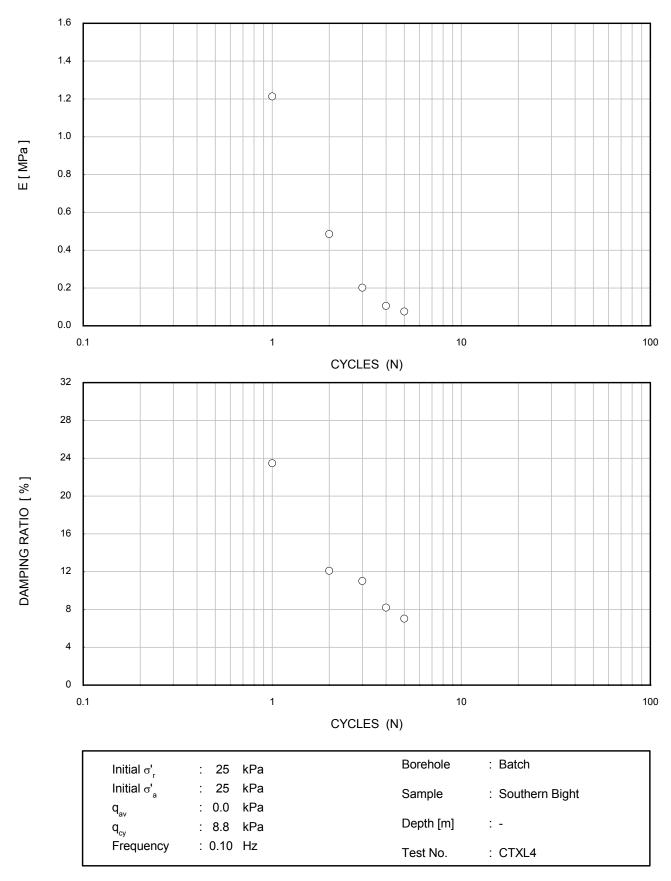

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL4

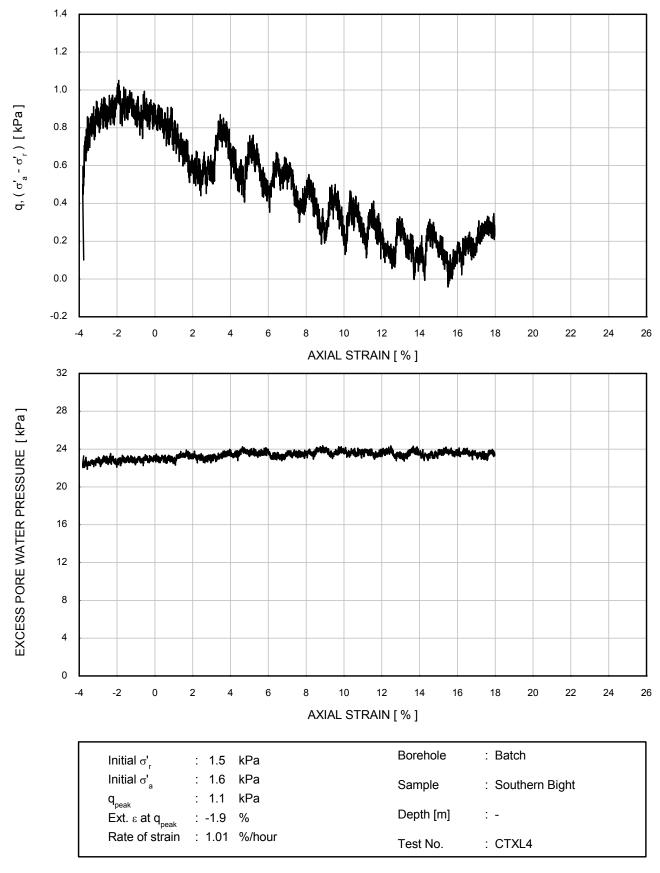


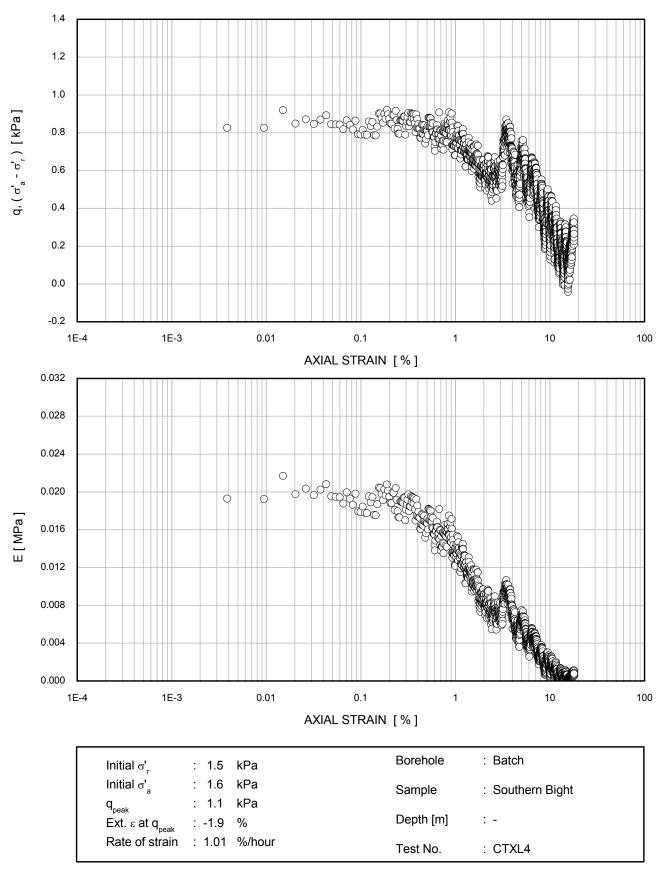


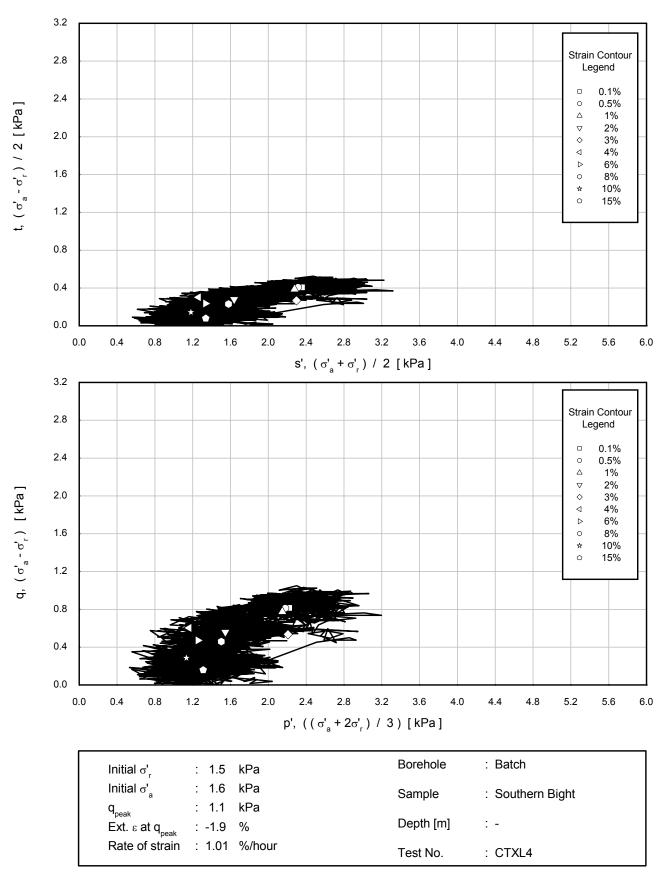

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE











VISUAL DESCRIPTION

Light olive brown fine to medium SAND with traces of shell fragments

GENERAL	
Date test started	08/12/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	71.1	
Length	[mm]	144.0	
Moisture content	[%]	10.1	
Bulk density	[Mg/m³]	1.79	
Dry density	[Mg/m³]	1.63	
Void ratio	[-]	0.631	
Degree of saturation	[%]	43	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	N/A
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon request	

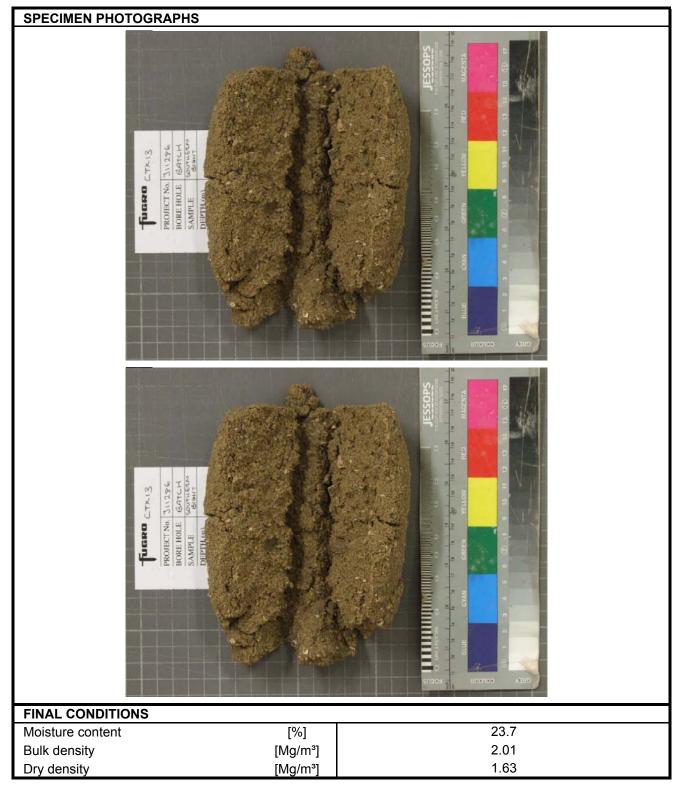
QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Southern_Bight_CTXL13
Processed by	LC
Date	18/08/2015
Checked by	LJ
Date	19/08/2015
Approved by	PH
Date	20/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL13

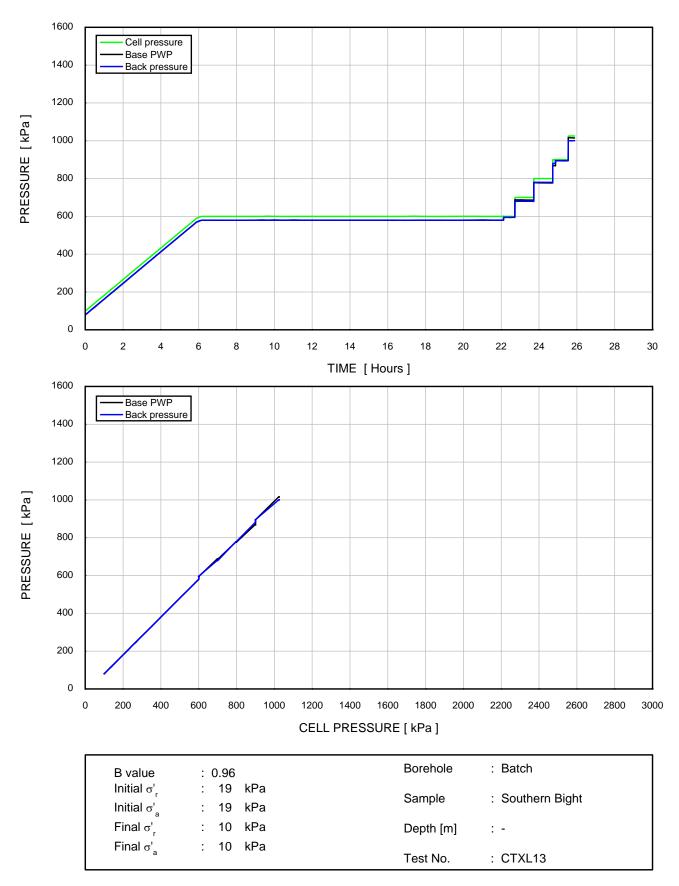
SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

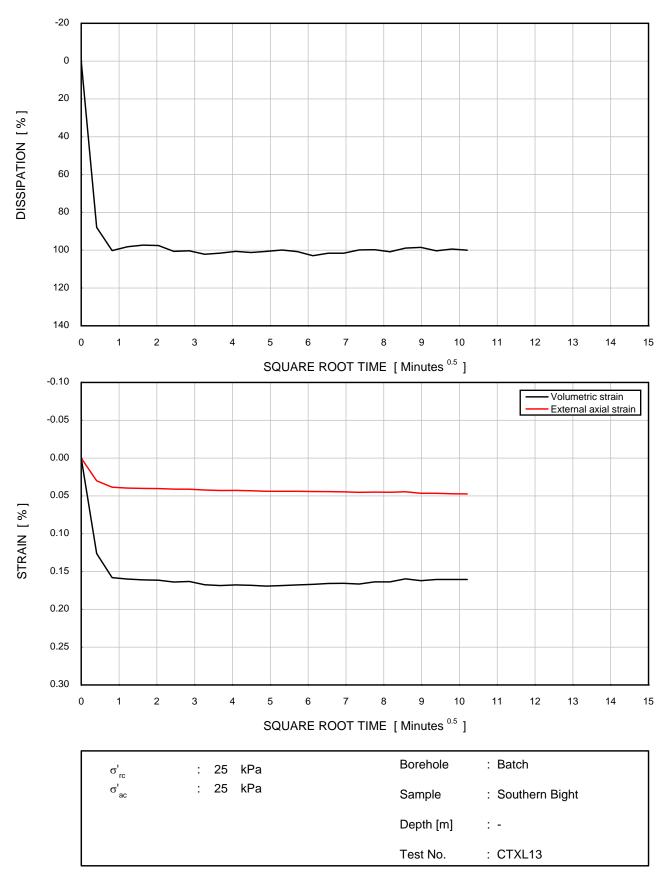
SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	20
Cell pressure	[kPa]	1025
Base PWP	[kPa]	1015
Mid height PWP	[kPa]	-
B value achieved	[-]	0.96

CONSOLIDATION: ISOTROPIC		
Cell pressure	[kPa]	1025
Back pressure	[kPa]	1000
Base PWP	[kPa]	1000
Mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	25
Effective axial pressure	[kPa]	25
Deviator stress	[kPa]	0
Volumetric strain	[%]	0.16
External axial strain	[%]	0.05
Local axial strain	[%]	-
Local radial strain	[%]	-
Moisture content	[%]	23.7
Bulk density	[Mg/m³]	2.01
Dry density	[Mg/m³]	1.63
Void ratio	[-]	0.628
Degree of saturation	[%]	100

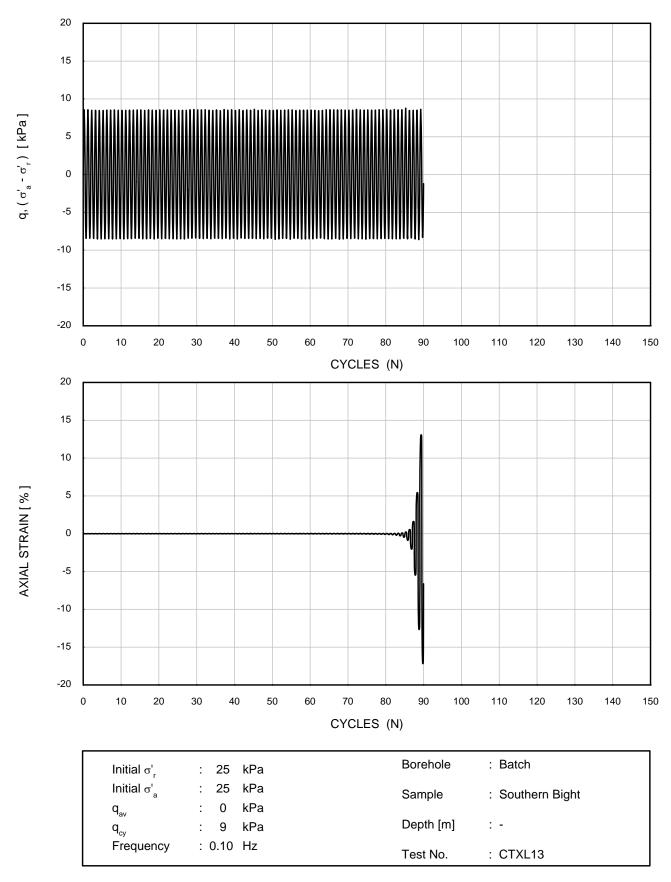

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL13

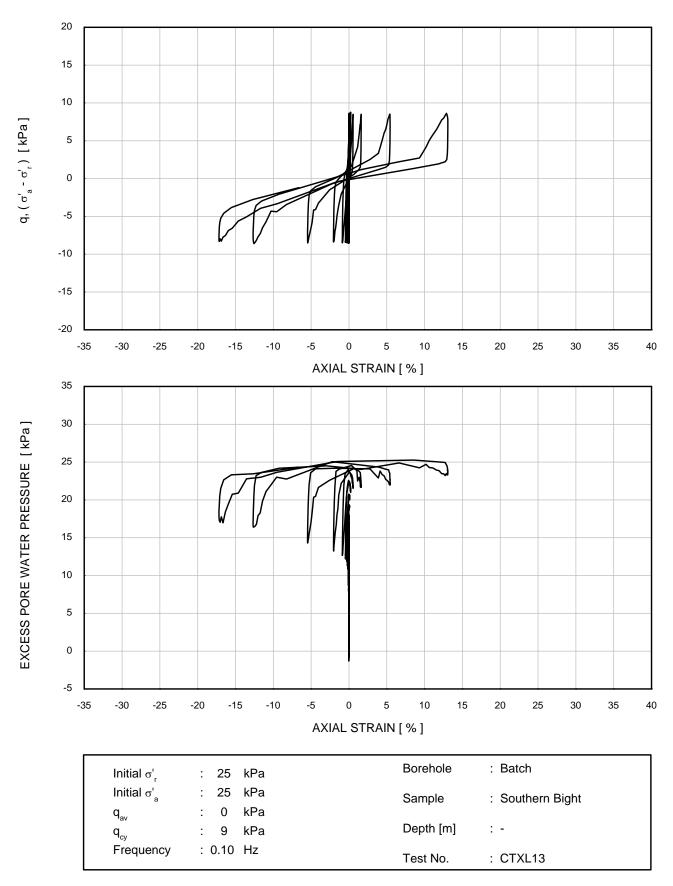
STRESS-CONTROLLED CYCLIC LOADING STAGE							
Reference stress		[kPa]			2	5	
Mean q _{av}		[kPa]			C)	
Mean q _{cy}		[kPa]			9)	
Frequency		[Hz]			0.1	10	
Number of cycles at failure	(N_f)	[-]			9	0	
External ε _{av} at N _f		[%]			-2.	06	
External ε _{cy} at N _f		[%]			15.	13	
Local ϵ_{av} at N_{f}		[%]			-		
Local ε _{cy} at N _f		[%]			-		
Δ base PWP at N _f		[kPa]			2	1	
Δ mid height PWP at N _f		[kPa]			-		
Moisture content		[%]			23	.7	
Bulk density		[Mg/m³]			2.0)1	
Dry density		[Mg/m³]			1.6		
Void ratio		[-]			0.6	28	
Degree of saturation		[%]			10	00	
Cycle	ϵ_{av}	ϵ_{cy}	E_ext	E_loc	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	0.00	0.02	47	-	8.65	-	
2	0.00	0.02	49	-	7.09	-	
5	0.00	0.02	47	-	6.06	-	
10	0.00	0.02	46	-	5.85	-	
20	0.00	0.02	43	-	5.92	-	
30	0.00	0.02	40	-	6.40	-	
40	0.00	0.02	38	-	6.85	-	
50	0.00	0.02	34	-	7.76	-	
90	-2.06	15.13	0	-	5.61	-	

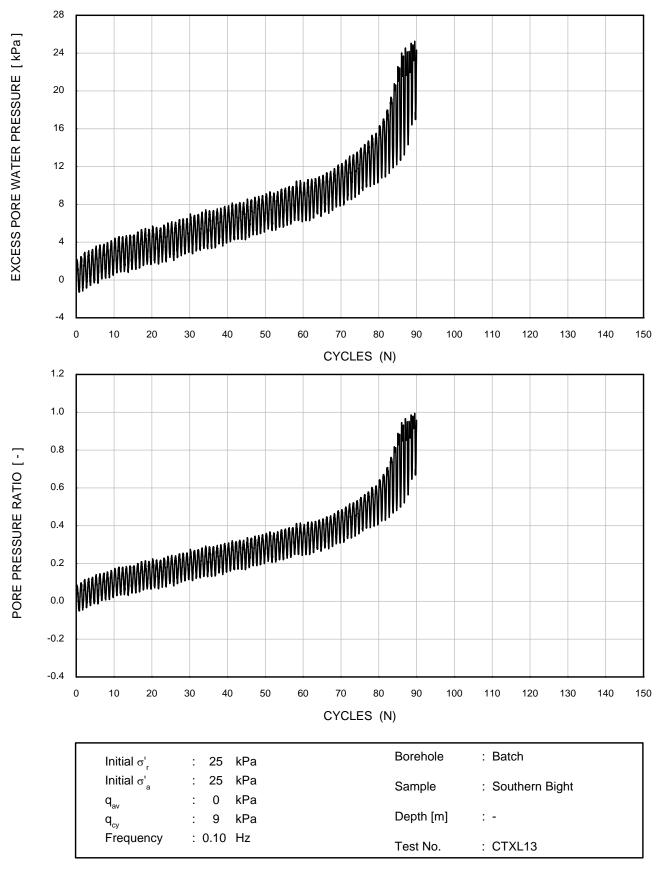

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL13

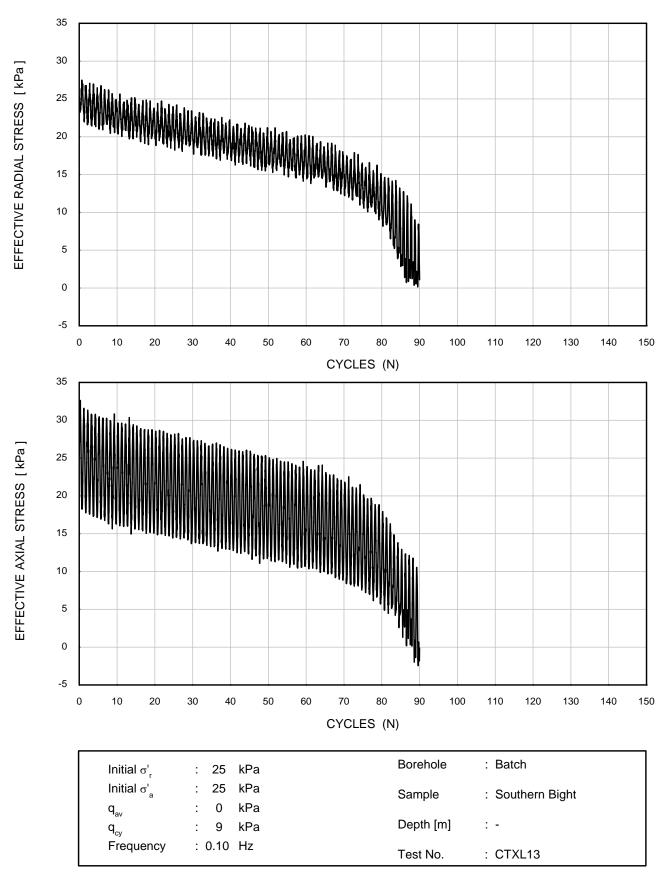

SHEARING STAGE		
Initial effective radial pressure	[kPa]	1
Initial effective axial pressure	[kPa]	2
Rate of strain	[%/hour]	0.94
At peak deviator stress		
Corrected deviator stress	[kPa]	37
Membrane correction applied	[kPa]	2
Drain correction applied	[kPa]	0
External axial strain	[%]	23.42
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	12
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	14
Effective axial pressure	[kPa]	50
Principal effective stress ratio	[-]	3.65
ε ₅₀	[%]	21.37
Secant modulus (E $_{50}$) at ϵ_{50}	[kPa]	83
At peak principal effective stress ra	atio	
Corrected deviator stress	[kPa]	3
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	15.06
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	24
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	0
Effective axial pressure	[kPa]	3
Principal effective stress ratio	[-]	300.31
At 10% axial strain		
Corrected deviator stress	[kPa]	1
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	24
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	1
Effective axial pressure	[kPa]	2
Principal effective stress ratio	[-]	1.57

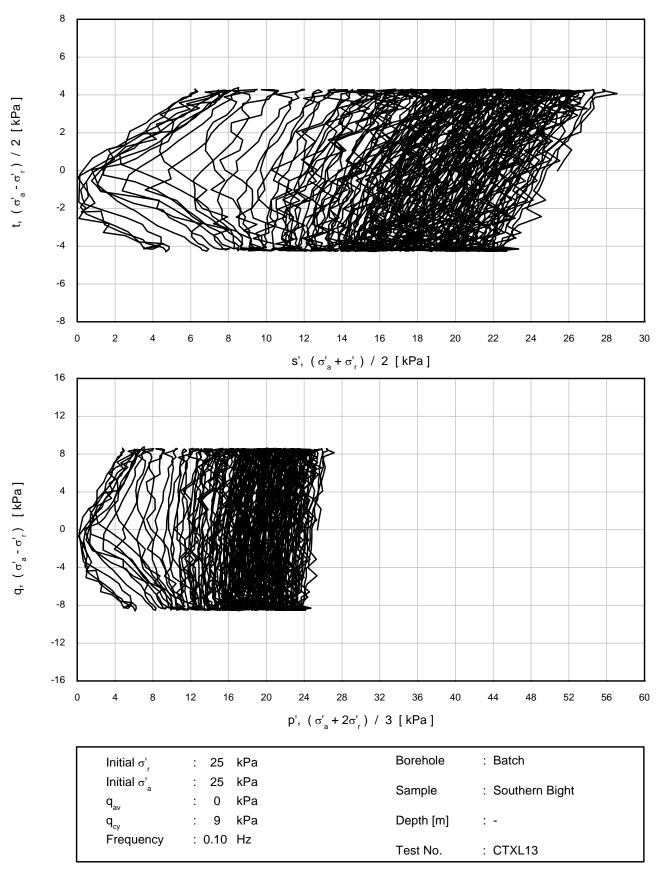
TEST IDENTIFICATION		
Borehole	Batch	
Sample	Southern Bight	
Depth [m]	-	
Test number	CTXL13	

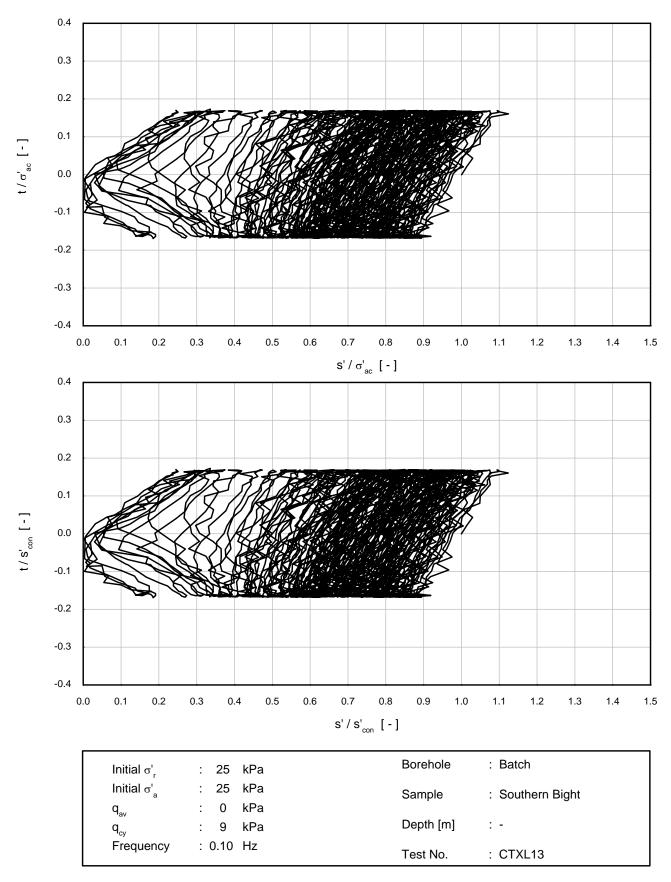


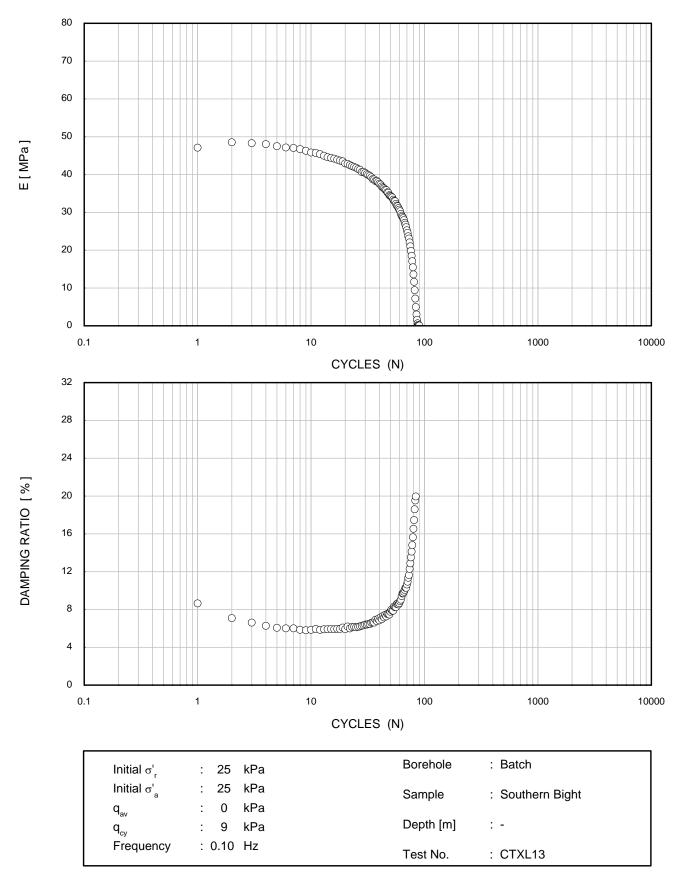

TEST IDENTIFICATION	
Borehole	Batch
Sample	Southern Bight
Depth [m]	-
Test number	CTXL13

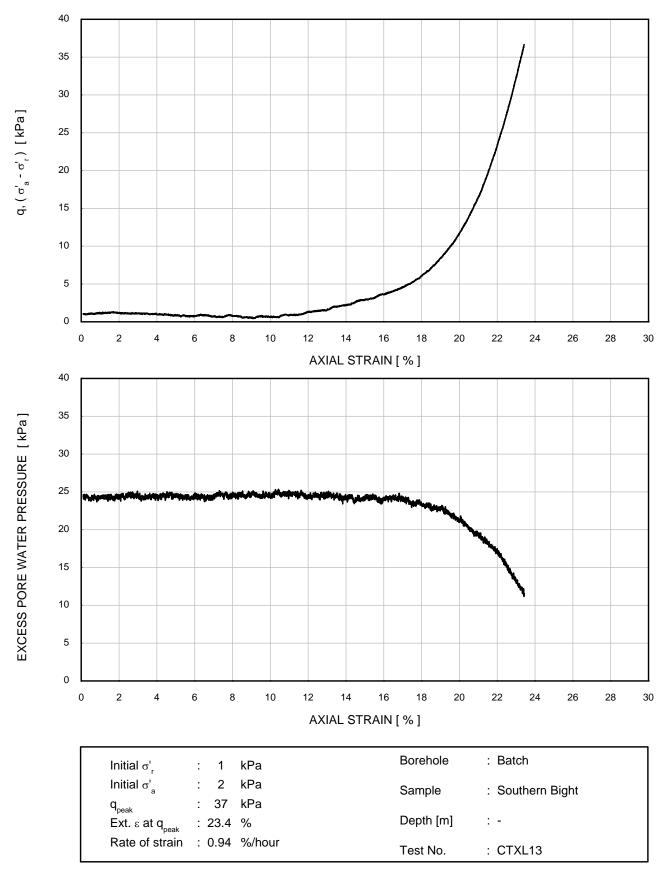


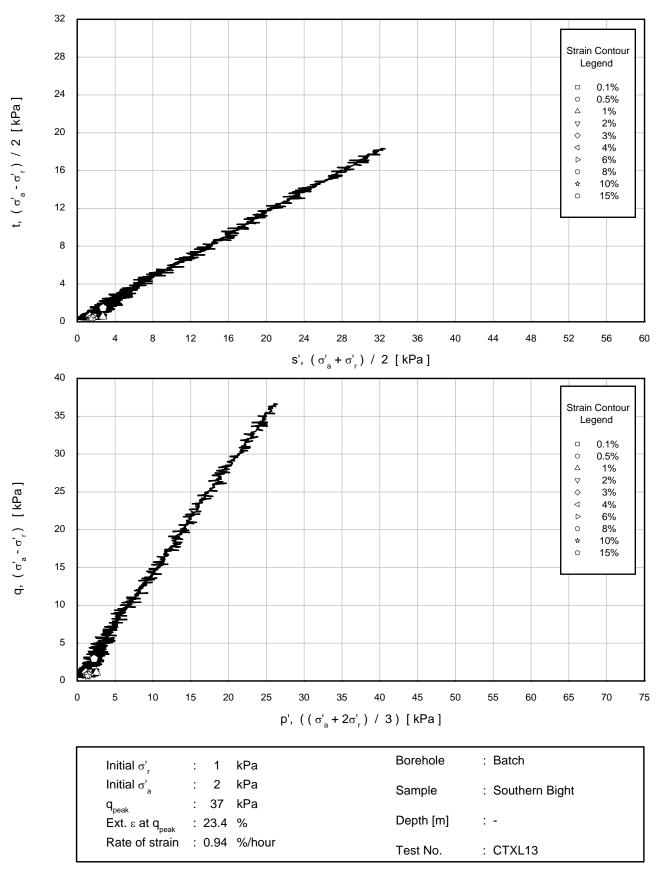



ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE









VISUAL DESCRIPTION

Light olive brown fine to medium SAND

GENERAL	
Date test started	23/07/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

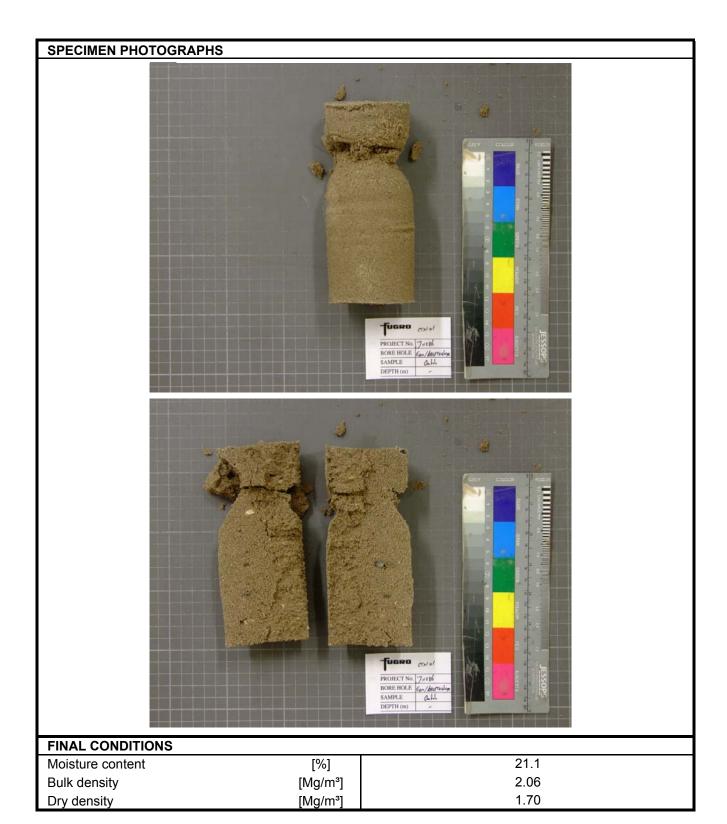
INITIAL			
Diameter	[mm]	72.0	
Length	[mm]	144.0	
Moisture content	[%]	9.9	
Bulk density	[Mg/m³]	1.87	
Dry density	[Mg/m³]	1.70	
Void ratio	[-]	0.560	
Degree of saturation	[%]	47	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	N/A
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon request	

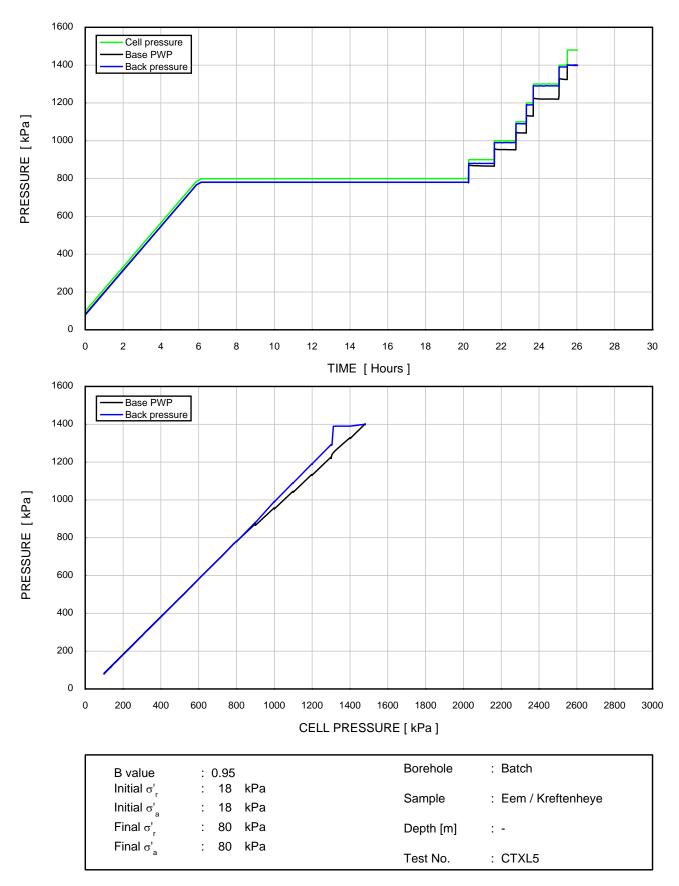
QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Eem_Kreftenheye_CTXL5
Processed by	LC
Date	11/08/2015
Checked by	LJ
Date	13/08/2015
Approved by	PH
Date	15/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL5

SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

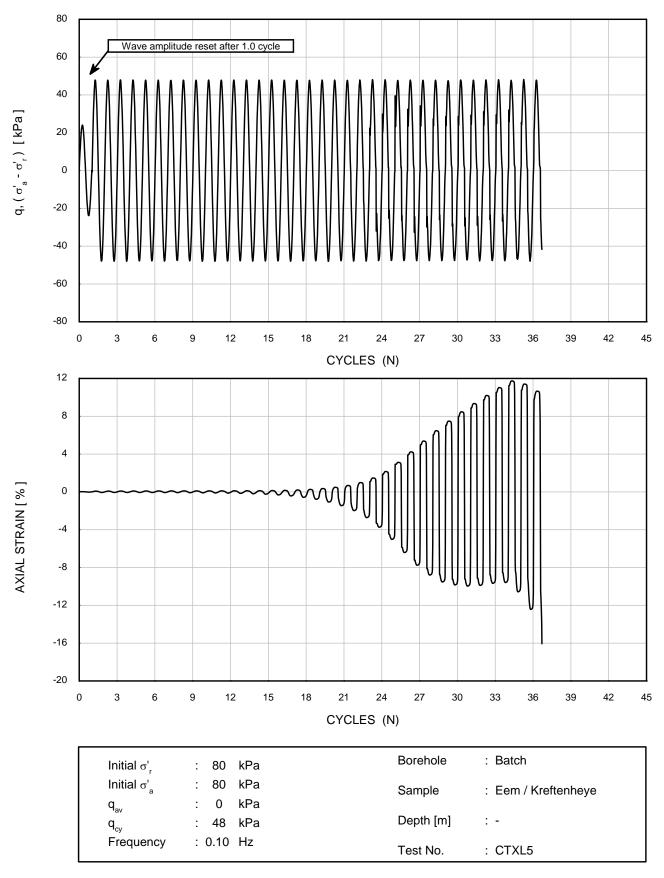

SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	20
Cell pressure	[kPa]	1480
Base PWP	[kPa]	1400
Mid height PWP	[kPa]	-
B value achieved	[-]	0.95

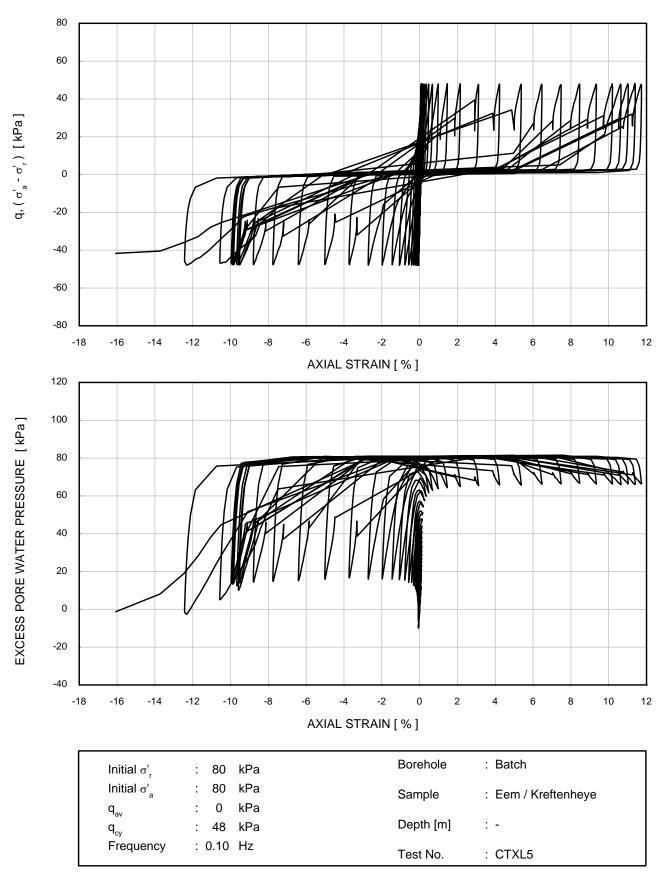
CONSOLIDATION: ISOTROPIC		
Cell pressure	[kPa]	1480
Back pressure	[kPa]	1400
Base PWP	[kPa]	1400
Mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	80
Effective axial pressure	[kPa]	80
Deviator stress	[kPa]	0
Volumetric strain	[%]	0.00
External axial strain	[%]	0.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Moisture content	[%]	21.1
Bulk density	[Mg/m³]	2.06
Dry density	[Mg/m³]	1.70
Void ratio	[-]	0.560
Degree of saturation	[%]	100

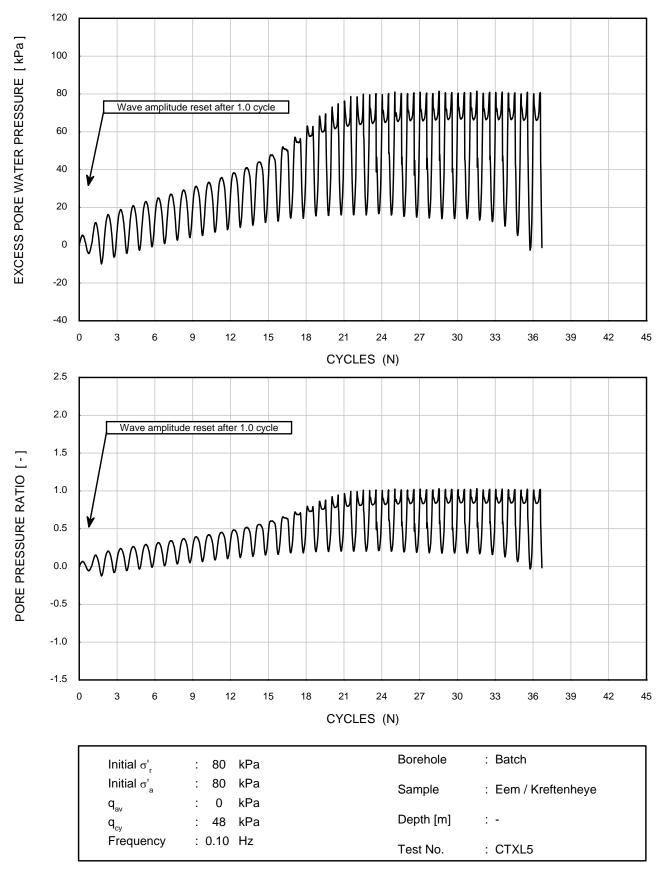

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL5

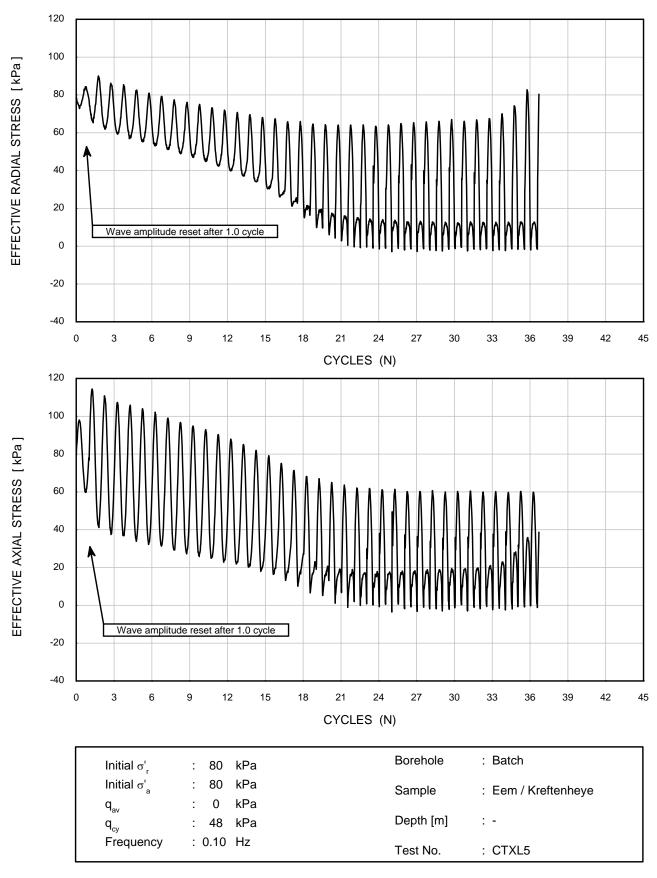
STRESS-CONTROLLED CYCLIC LOADING STAGE							
Reference stress		[kPa]			80	0	
Mean q _{av}		[kPa]			0)	
Mean q _{cv}		[kPa]			48	8	
Frequency		[Hz]			0.1	10	
Number of cycles at failure	(N_f)	[-]			33	3	
External ϵ_{av} at N_{f}		[%]			0.2	26	
External $\epsilon_{\sf cy}$ at $N_{\sf f}$		[%]			9.9	93	
Local ε _{av} at N _f		[%]			-		
Local ε _{cγ} at N _f		[%]			-		
Δ base PWP at N _f		[kPa]			4	7	
Δ mid height PWP at N _f		[kPa]			-		
Moisture content		[%]			21	.1	
Bulk density		[Mg/m³]			2.0)6	
Dry density		[Mg/m³]			1.7	70	
Void ratio		[-]			0.5	60	
Degree of saturation		[%]			10	0	
Cycle	ϵ_{av}	ϵ_{cy}	E _{ext}	E _{loc}	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	0.00	0.03	96	-	4.33	-	
2	0.01	0.07	66	-	13.34	_	
5	0.01	0.08	59	-	13.21	-	
10	0.00	0.10	46	-	15.19	-	
20	-0.36	0.71	7	-	17.04	-	
30	-1.18	8.66	1	-	5.42	-	
33	0.26	9.93	0	-	6.60	-	

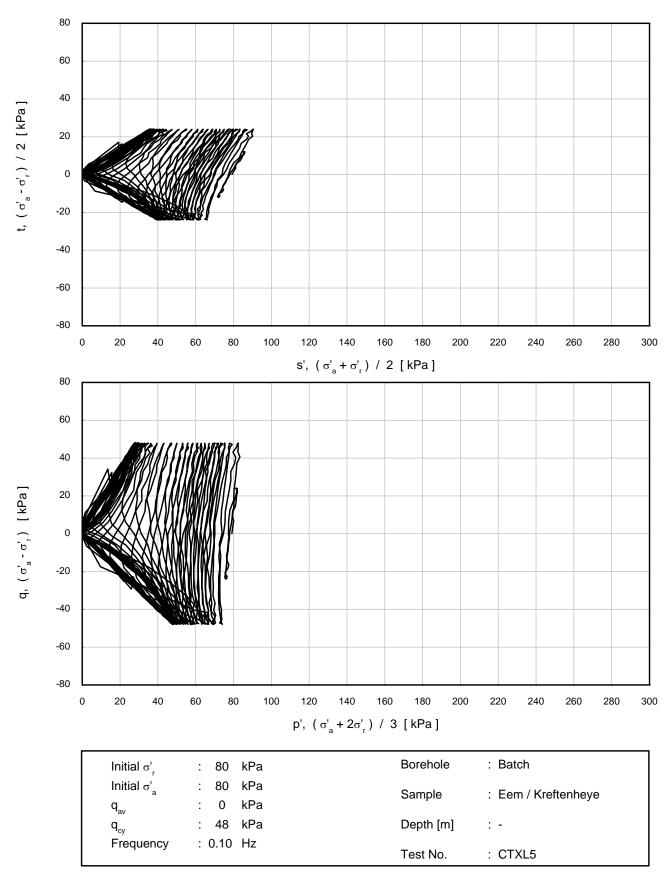
TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL5

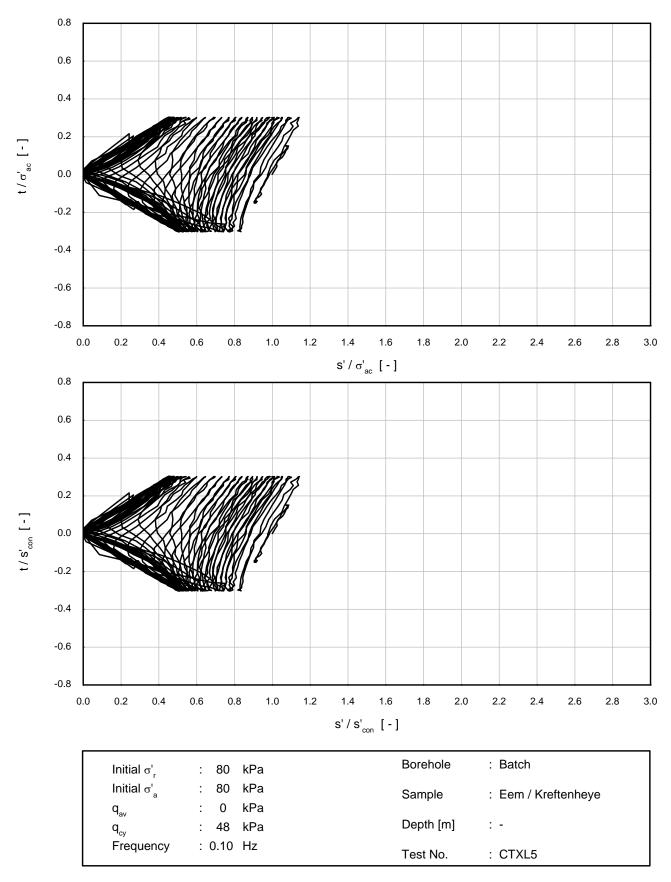


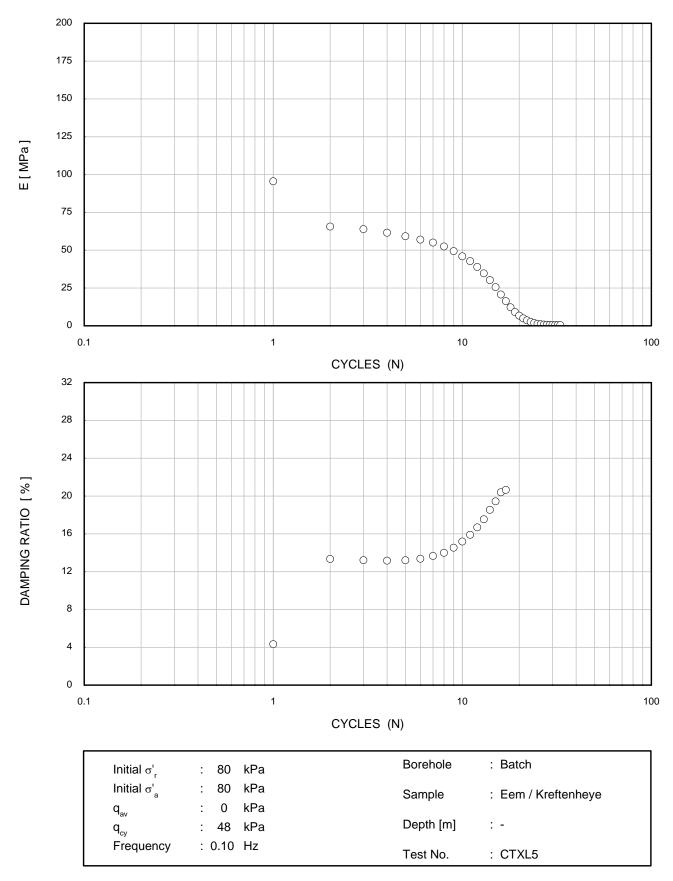

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL5






ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE





VISUAL DESCRIPTION

Light olive brown fine to medium SAND

GENERAL	
Date test started	31/07/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL		
Diameter	[mm]	72.0
Length	[mm]	144.0
Moisture content	[%]	10.0
Bulk density	[Mg/m³]	1.87
Dry density	[Mg/m³]	1.70
Void ratio	[-]	0.560
Degree of saturation	[%]	47
Assumed particle density	[Mg/m³]	2.65
Torvane	[kPa]	-
Pocket penetrometer	[kPa]	-

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	N/A
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available up	on request

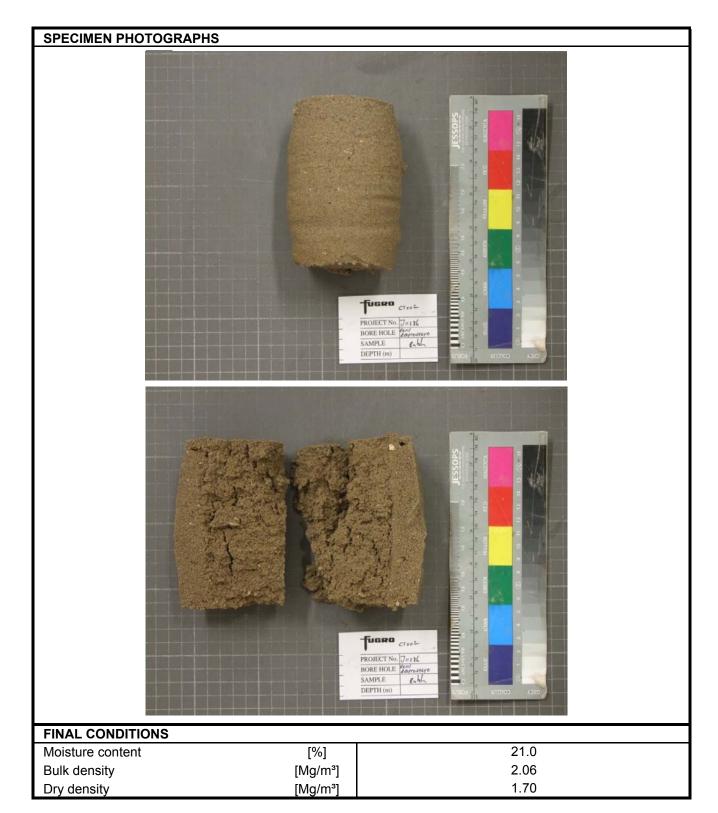
QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Eem_Krefteneye_CTXL6
Processed by	LJ
Date	13/08/2015
Checked by	PH
Date	15/08/2015
Approved by	PH
Date	15/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL6

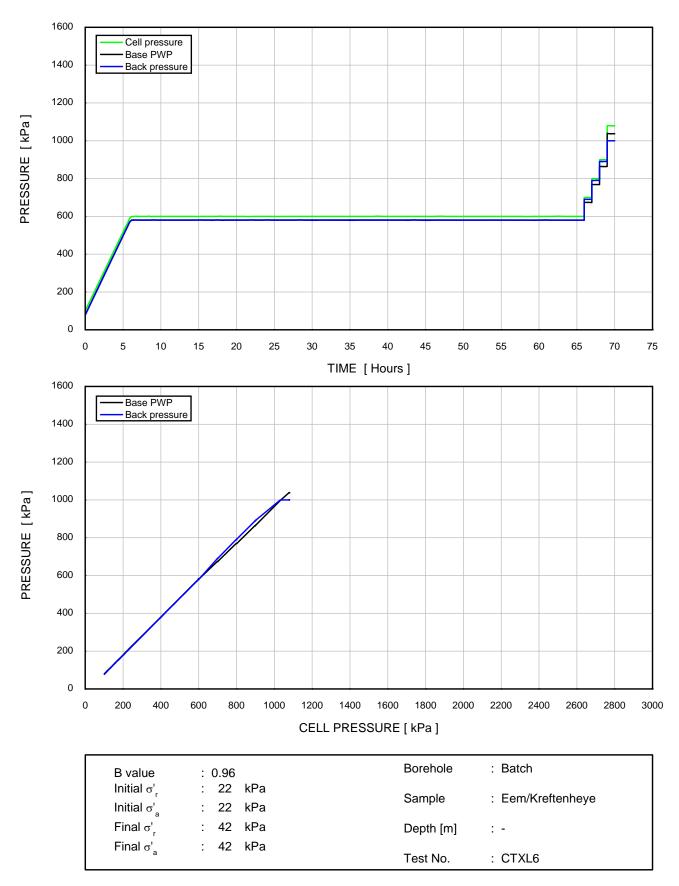
SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	20
Cell pressure	[kPa]	1079
Base PWP	[kPa]	1037
Mid height PWP	[kPa]	-
B value achieved	[-]	0.96

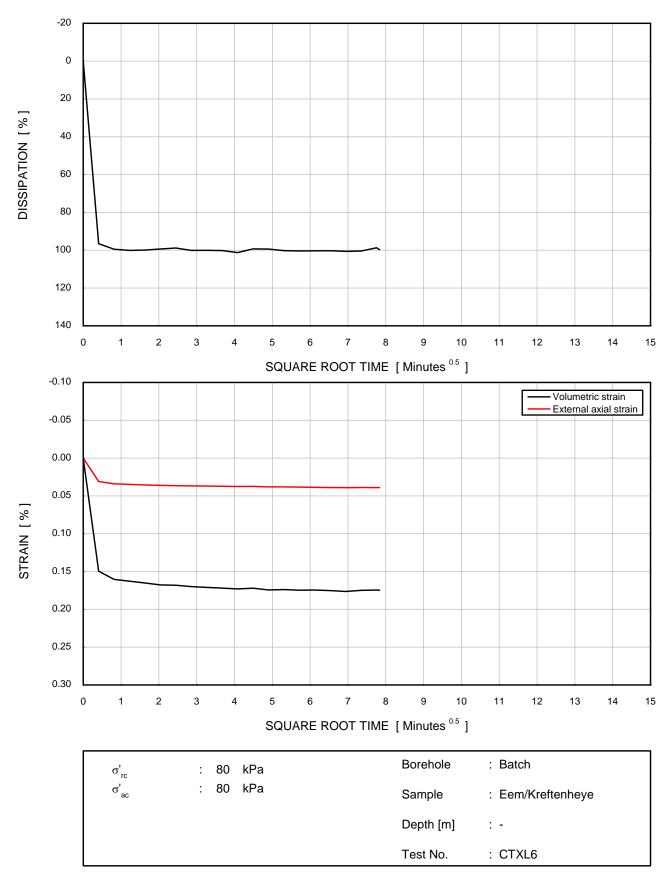
CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	1080	
Back pressure	[kPa]	1000	
Base PWP	[kPa]	1000	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	80	
Effective axial pressure	[kPa]	80	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	0.17	
External axial strain	[%]	0.04	
Local axial strain	[%]	-	
Local radial strain	[%]	-	
Moisture content	[%]	21.0	
Bulk density	[Mg/m³]	2.06	
Dry density	[Mg/m³]	1.70	
Void ratio	[-]	0.557	
Degree of saturation	[%]	100	

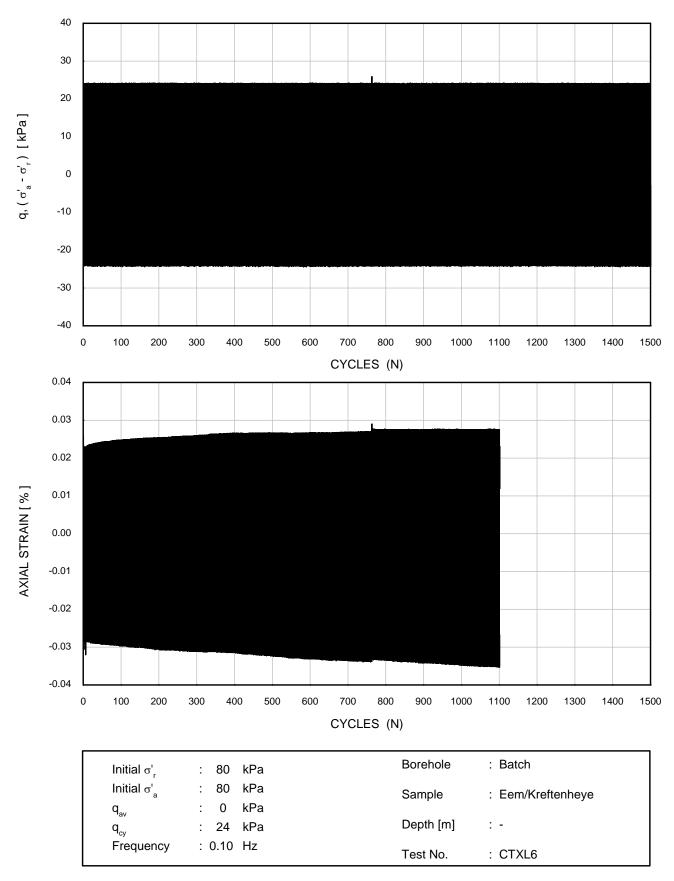

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL6

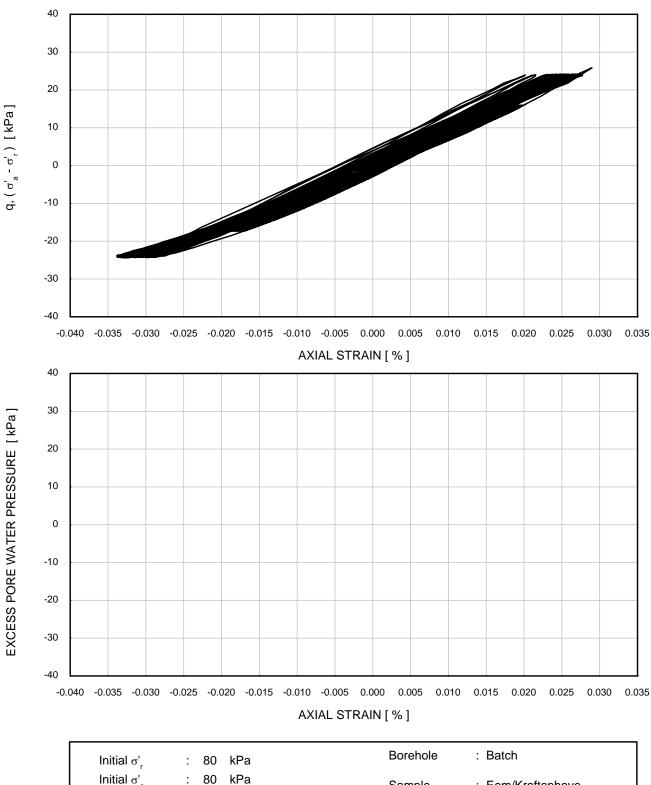
STRESS-CONTROLLED C	YCLIC LO	ADING STAGE					
Reference stress		[kPa]			8	0	
Mean q _{av}		[kPa]			C)	
Mean q _{cy}		[kPa]			2	4	
Frequency		[Hz]			0.1	10	
Number of cycles at failure	(N_f)	[-]			15	00	
External ε _{av} at N _f		[%]			0.0	00	
External ϵ_{cy} at N_f		[%]			0.0	03	
Local ε _{av} at N _f		[%]			-		
Local ε _{cy} at N _f		[%]			-		
Δ base PWP at N _f		[kPa]			1	7	
Δ mid height PWP at N $_{\mathrm{f}}$		[kPa]			-		
Moisture content		[%]			21		
Bulk density		[Mg/m³]			2.0		
Dry density		[Mg/m³]			1.7		
Void ratio		[-]			0.5		
Degree of saturation		[%]			10	00	
Cycle	ϵ_{av}	ϵ_{cy}	E _{ext}	E_loc	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	0.00	0.03	89	-	4.04	-	
2	0.00	0.03	93	-	2.52	-	
5	0.00	0.03	92	-	2.54	-	
10	0.00	0.03	93	-	1.09	-	
20	0.00	0.03	92	-	0.80	-	
30	0.00	0.03	91	-	0.70	-	
40	0.00	0.03	90	-	0.61	-	
50	0.00	0.03	90	-	0.61	-	
100	0.00	0.03	88	-	0.50	-	
500	0.00	0.03	82	-	0.38	-	
1000	0.00	0.03	77	-	0.57	-	
1500	0.00	0.03	74	-	0.75	-	


TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL6

SHEARING STAGE		
Initial effective radial pressure	[kPa]	63
Initial effective axial pressure	[kPa]	63
Rate of strain	[%/hour]	1.00
At peak deviator stress		
Corrected deviator stress	[kPa]	1652
Membrane correction applied	[kPa]	2
Drain correction applied	[kPa]	0
External axial strain	[%]	19.15
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	-680
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	741
Effective axial pressure	[kPa]	2394
Principal effective stress ratio	[-]	3.23
ε ₅₀	[%]	3.48
Secant modulus (E ₅₀) at ϵ_{50}	[kPa]	23748
At peak principal effective stress r	atio	
Corrected deviator stress	[kPa]	321
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	1.36
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	-50
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	111
Effective axial pressure	[kPa]	432
Principal effective stress ratio	[-]	3.89
At 10% axial strain		
Corrected deviator stress	[kPa]	1501
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	-568
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	629
Effective axial pressure	[kPa]	2130
Principal effective stress ratio	[-]	3.39

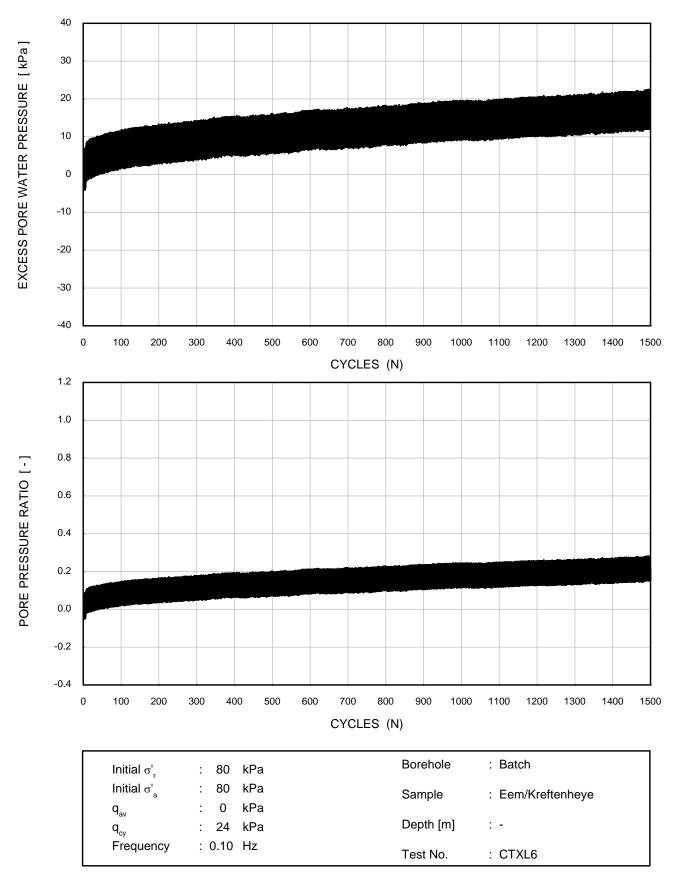

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL6

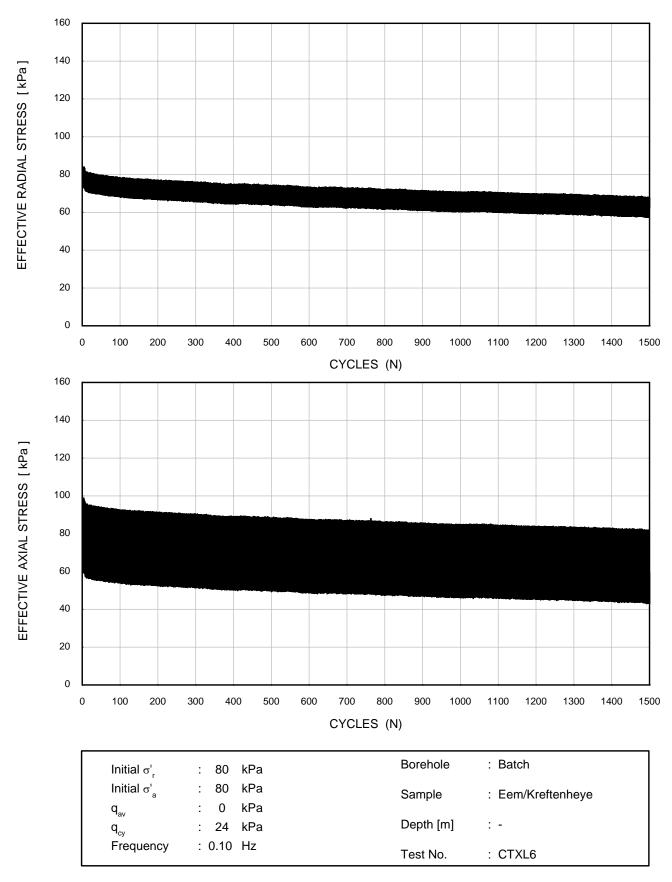

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL6

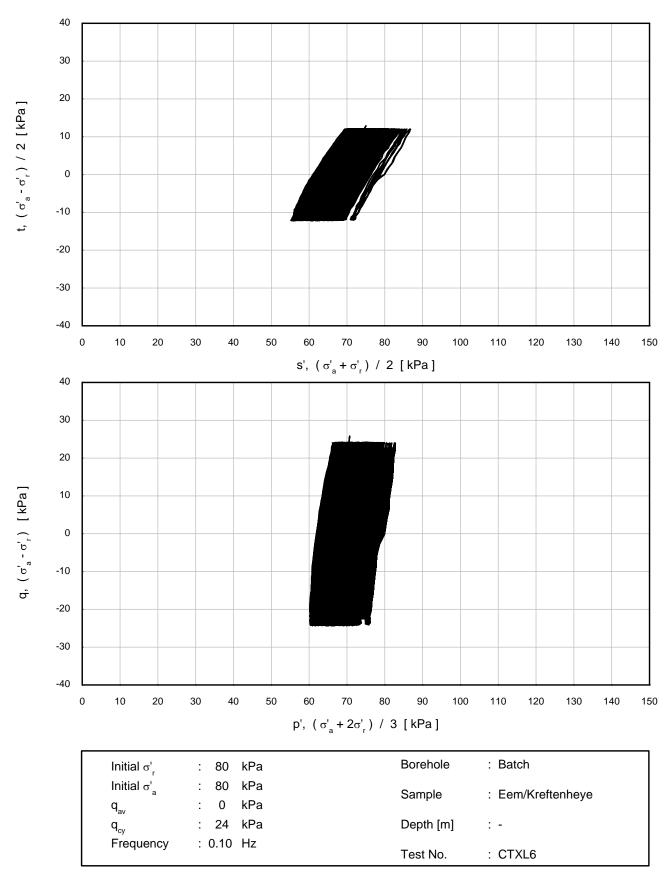


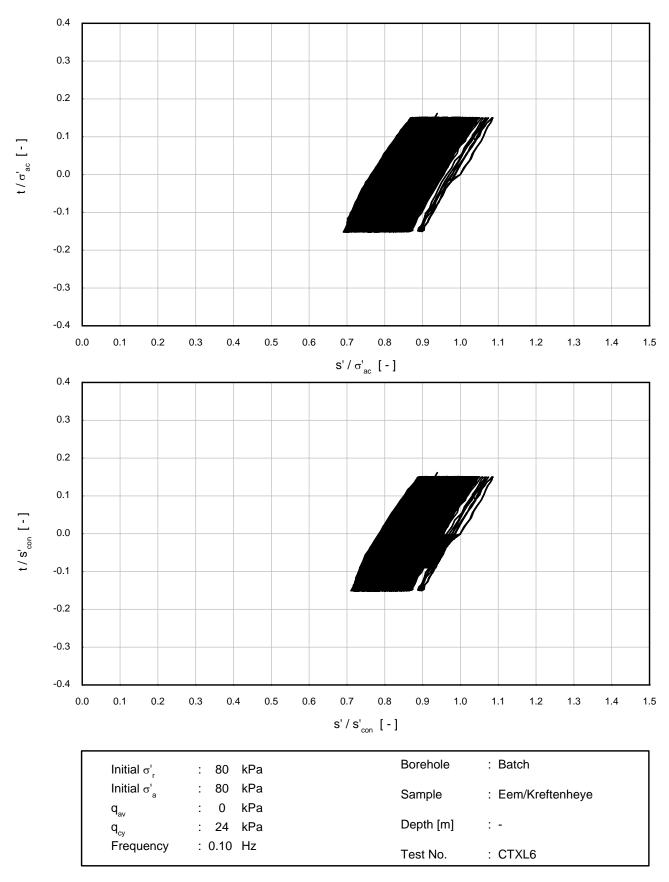
ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST SATURATION STAGE - DRAINED

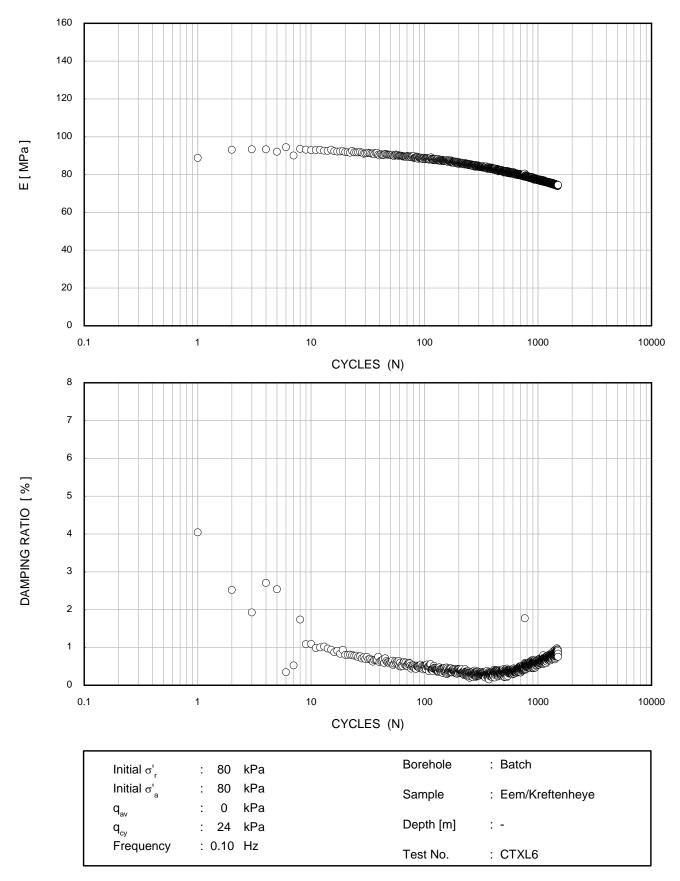
ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE

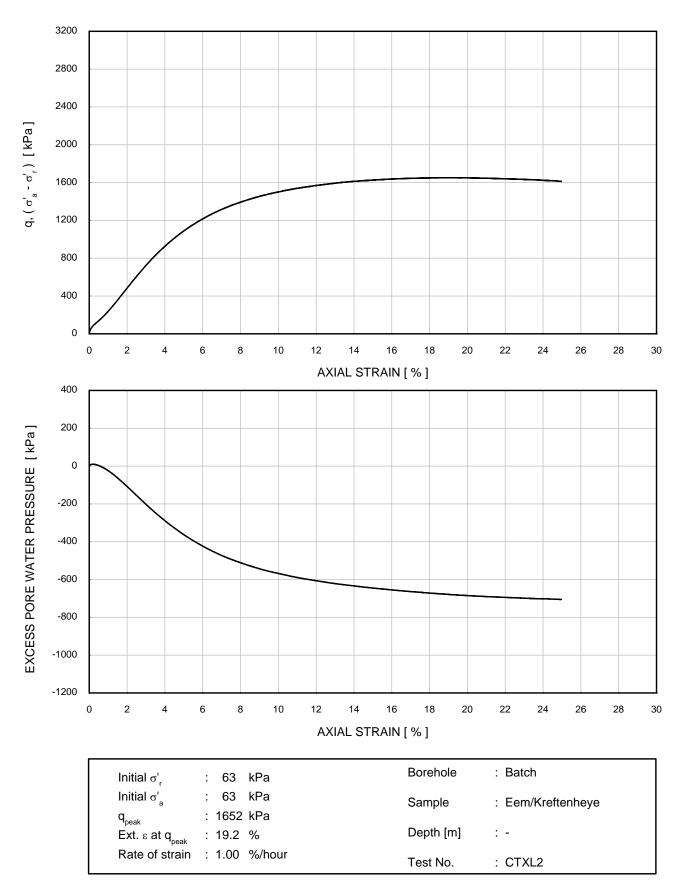




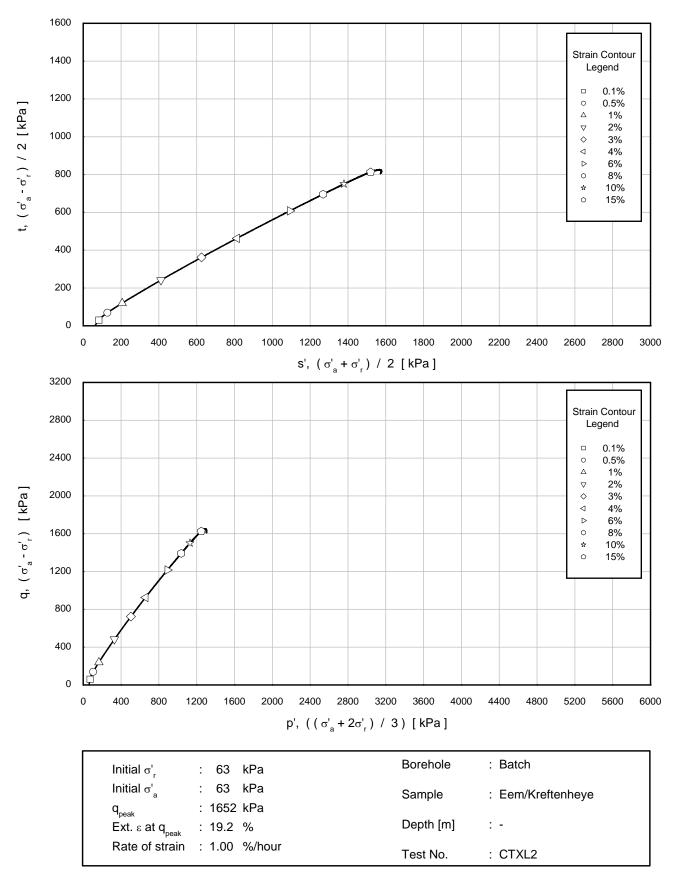

Initial σ'_r : 80 kPa Borehole : Batch


Initial σ'_a : 80 kPa Sample : Eem/Kreftenheye q_{av} : 0 kPa q_{cy} : 24 kPa Depth [m] :
Frequency : 0.10 Hz Test No. : CTXL6


ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST CYCLIC LOADING STAGE - UNDRAINED







VISUAL DESCRIPTION

Light olive brown fine to medium SAND

GENERAL	
Date test started	08/07/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.1	
Length	[mm]	144.0	
Moisture content	[%]	9.6	
Bulk density	[Mg/m³]	1.87	
Dry density	[Mg/m³]	1.71	
Void ratio	[-]	0.554	
Degree of saturation	[%]	46	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	N/A
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon rec	quest

QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Eem_Krefteneye_CTXL7
Processed by	LC
Date	12/08/2015
Checked by	LJ
Date	13/08/2015
Approved by	PH
Date	15/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL7

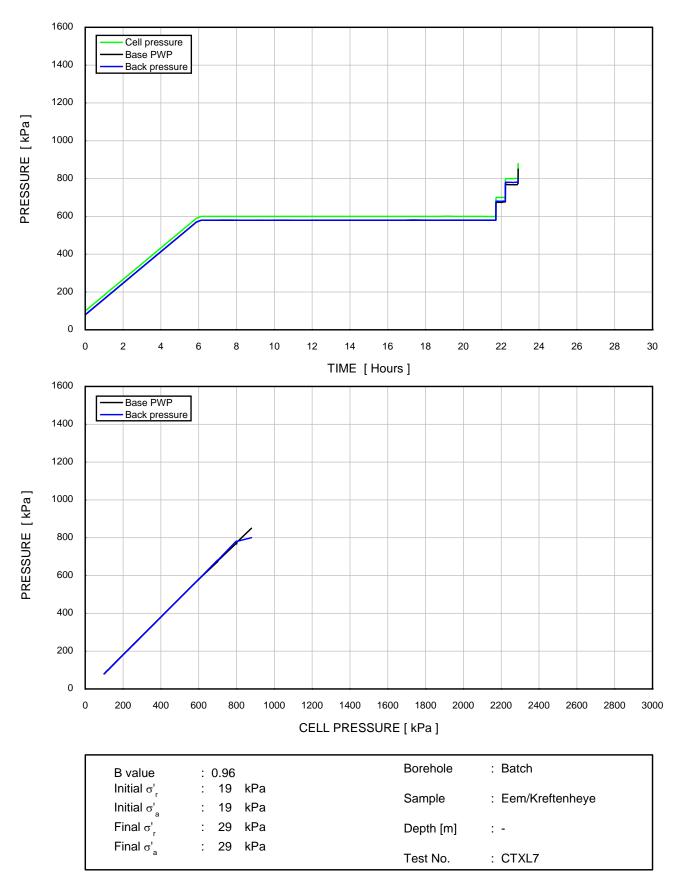
SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	20
Cell pressure	[kPa]	880
Base PWP	[kPa]	853
Mid height PWP	[kPa]	-
B value achieved	[-]	0.99

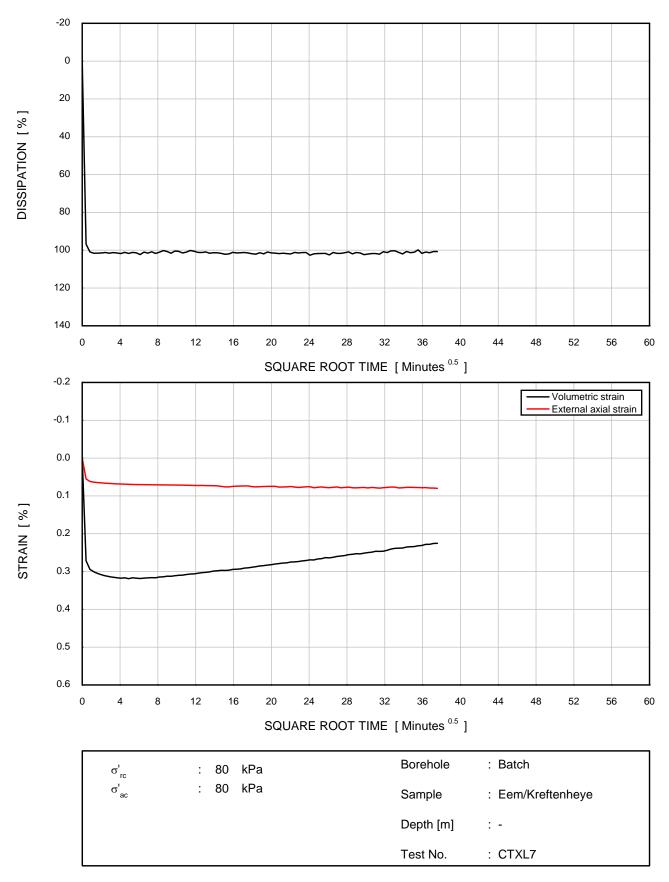
CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	880	
Back pressure	[kPa]	800	
Base PWP	[kPa]	800	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	80	
Effective axial pressure	[kPa]	80	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	0.23	
External axial strain	[%]	0.08	
Local axial strain	[%]	-	
Local radial strain	[%]	-	
Moisture content	[%]	20.8	
Bulk density	[Mg/m³]	2.06	
Dry density	[Mg/m³]	1.71	
Void ratio	[-]	0.551	
Degree of saturation	[%]	100	

TEST IDENTIFICATION			
Borehole	Batch		
Sample	Eem / Kreftenheye		
Depth [m]	-		
Test number	CTXL7		

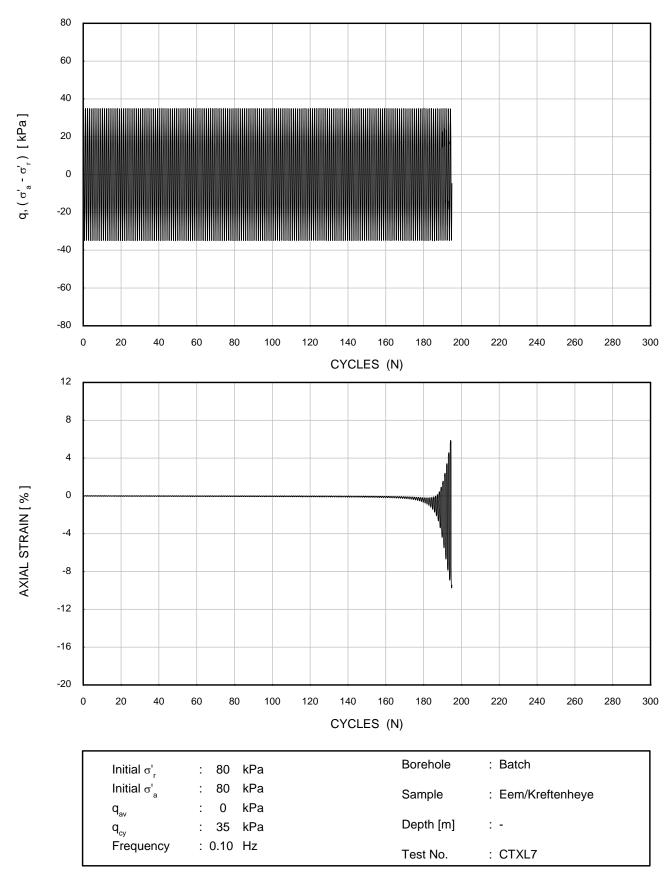
STRESS-CONTROLLED C	YCLIC LO	ADING STAGE					
Reference stress		[kPa]			8	0	
Mean q _{av}		[kPa]			C)	
Mean q _{cy}		[kPa]			3	5	
Frequency		[Hz]			0.	10	
Number of cycles at failure	(N_f)	[-]			19	95	
External ε _{av} at N _f		[%]			-1.	94	
External ε _{cy} at N _f		[%]			7.8	30	
Local ϵ_{av} at N_{f}		[%]			-		
Local ε _{cy} at N _f		[%]			-		
Δ base PWP at N _f		[kPa]			5	6	
Δ mid height PWP at N $_{\mathrm{f}}$		[kPa]			-		
Moisture content		[%]			20	.8	
Bulk density		[Mg/m³]			2.0	06	
Dry density		[Mg/m³]			1.3	71	
Void ratio		[-]			0.5		
Degree of saturation		[%]			10	00	
Cycle	ϵ_{av}	ϵ_{cy}	E_ext	E _{loc}	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	0.00	0.04	94	-	8.51	-	
2	-0.01	0.04	99	-	7.21	-	
5	-0.01	0.04	98	-	6.14	-	
10	-0.01	0.04	96	-	5.72	-	
20	-0.01	0.04	92	-	5.60	-	
30	-0.02	0.04	90	-	5.62	-	
40	-0.02	0.04	87	-	5.77	-	
50	-0.02	0.04	84	-	6.02	-	
100	-0.04	0.05	73	-	7.05	-	
195	-1.94	7.80	0	-	9.61	-	

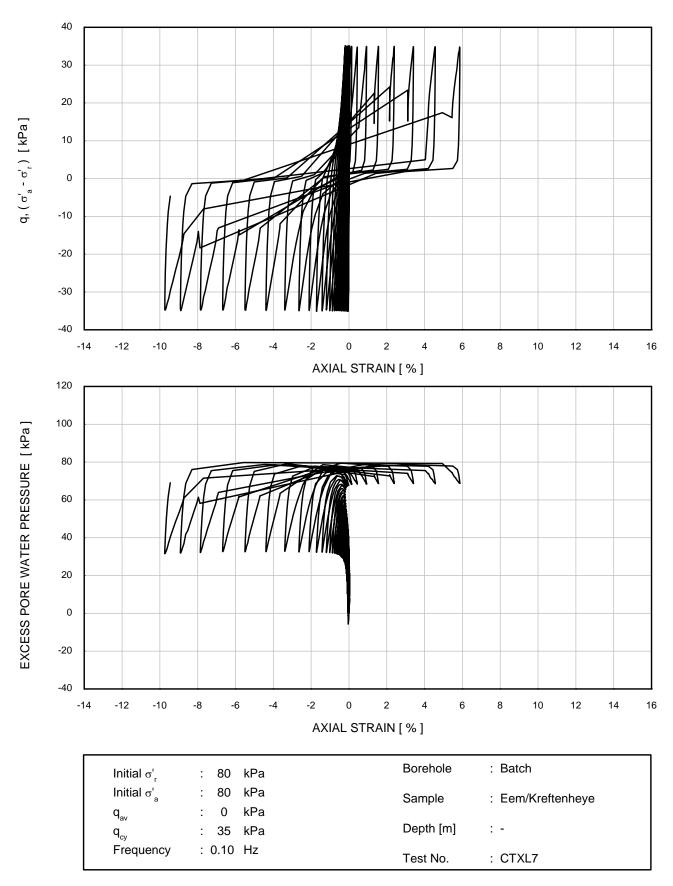

TEST IDENTIFICATION			
Borehole	Batch		
Sample	Eem / Kreftenheye		
Depth [m]	-		
Test number	CTXL7		

SHEARING STAGE		
Initial effective radial pressure	[kPa]	2
Initial effective axial pressure	[kPa]	2
Rate of strain	[%/hour]	0.87
At peak deviator stress		
Corrected deviator stress	[kPa]	1585
Membrane correction applied	[kPa]	2
Drain correction applied	[kPa]	0
External axial strain	[%]	24.01
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	-674
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	755
Effective axial pressure	[kPa]	2340
Principal effective stress ratio	[-]	3.10
ε ₅₀	[%]	12.75
Secant modulus (E ₅₀) at ϵ_{50}	[kPa]	3697
At peak principal effective stress ra	atio	
Corrected deviator stress	[kPa]	2
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	3.09
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	80
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	0
Effective axial pressure	[kPa]	2
Principal effective stress ratio	[-]	45.97
At 10% axial strain		
Corrected deviator stress	[kPa]	326
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	-36
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	116
Effective axial pressure	[kPa]	442
Principal effective stress ratio	[-]	3.80

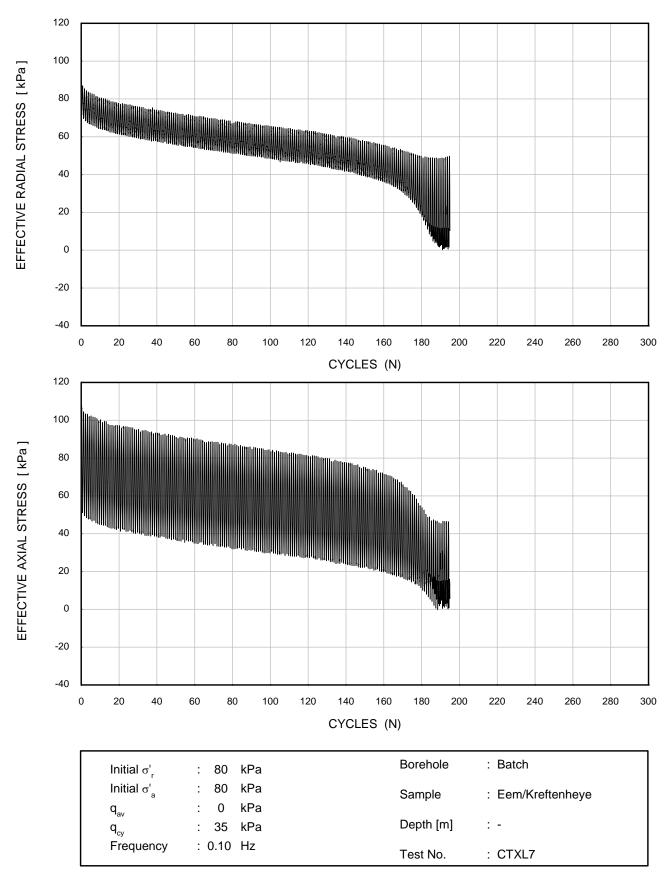

TEST IDENTIFICATION		
Borehole	Batch	
Sample	Eem / Kreftenheye	
Depth [m]	-	
Test number	CTXL7	

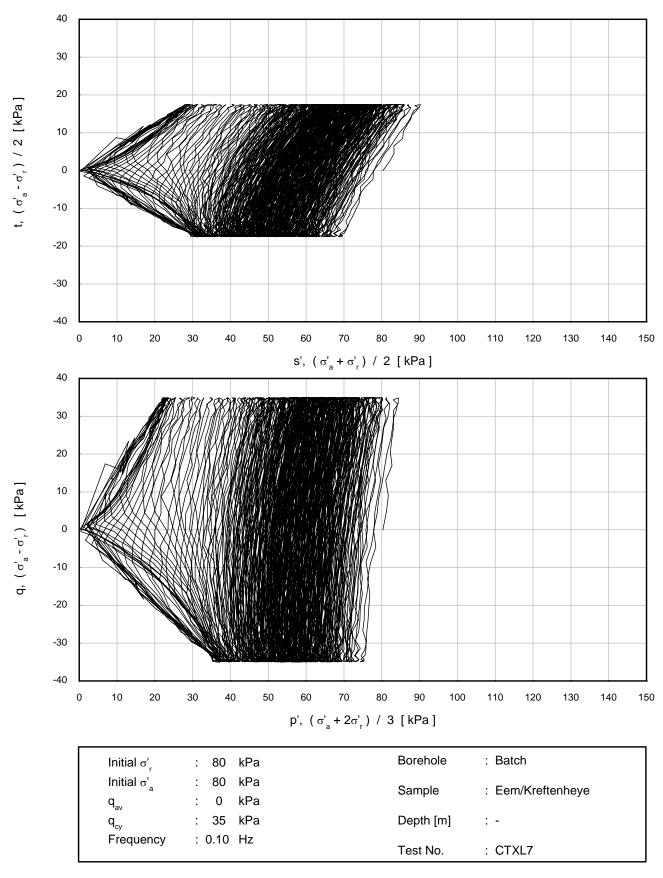
SPECIMEN PHOTOGRAPHS			
	Photograph unavailable		
	3 sp - 1 s - 1 s		
	Photograph unavailable		
FINAL CONDITIONS			
Moisture content	[%]	20.8	
Bulk density Dry density	[Mg/m³] [Mg/m³]	2.06 1.71	
Dry density	[ivig/iii]	1.7 1	

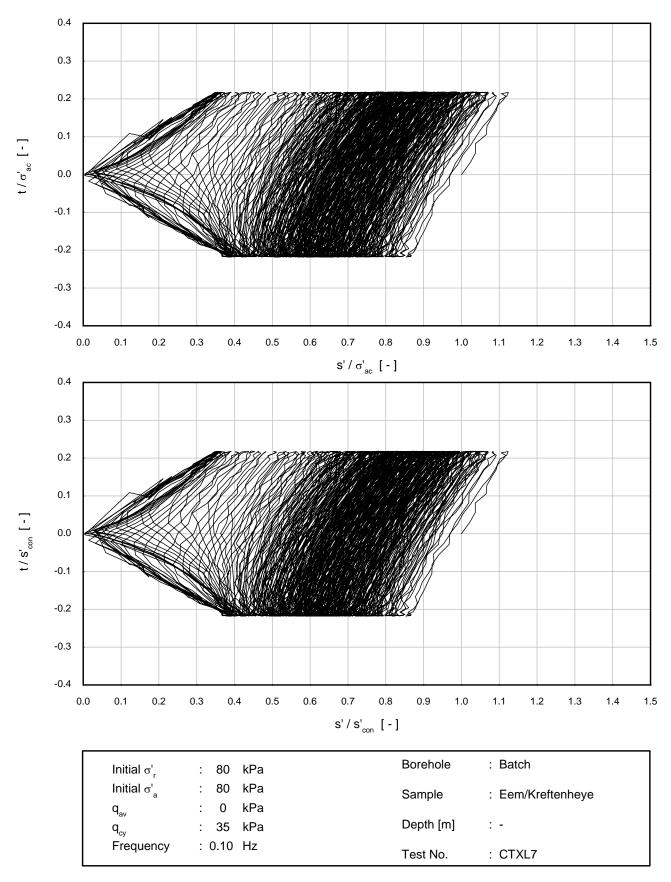

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem / Kreftenheye
Depth [m]	-
Test number	CTXL7

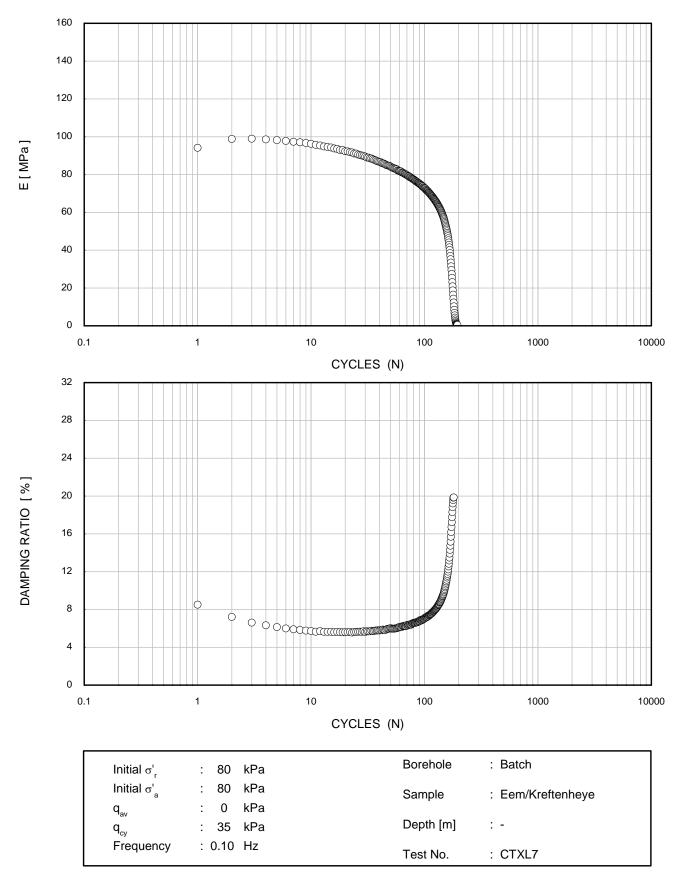


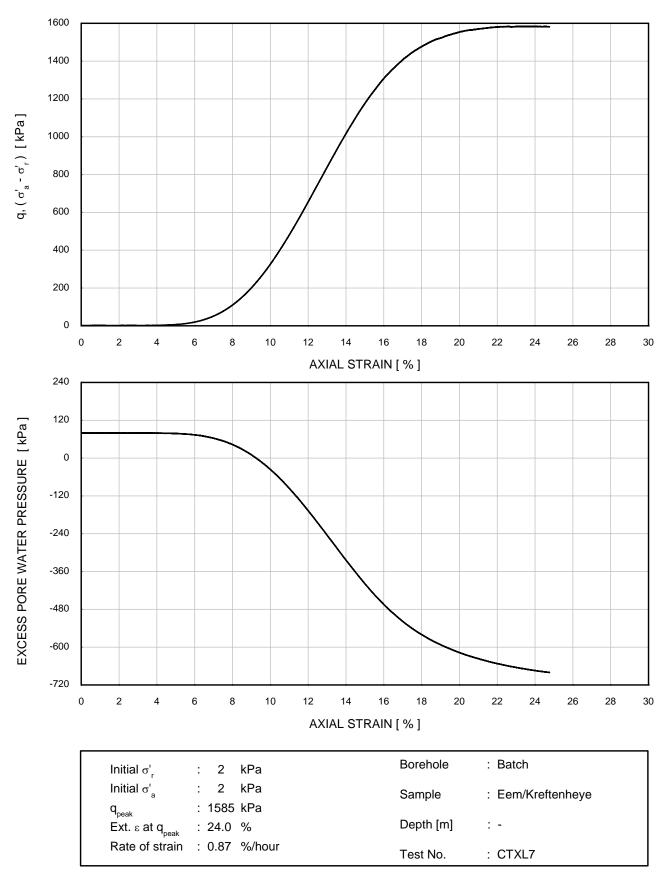
ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST SATURATION STAGE - DRAINED

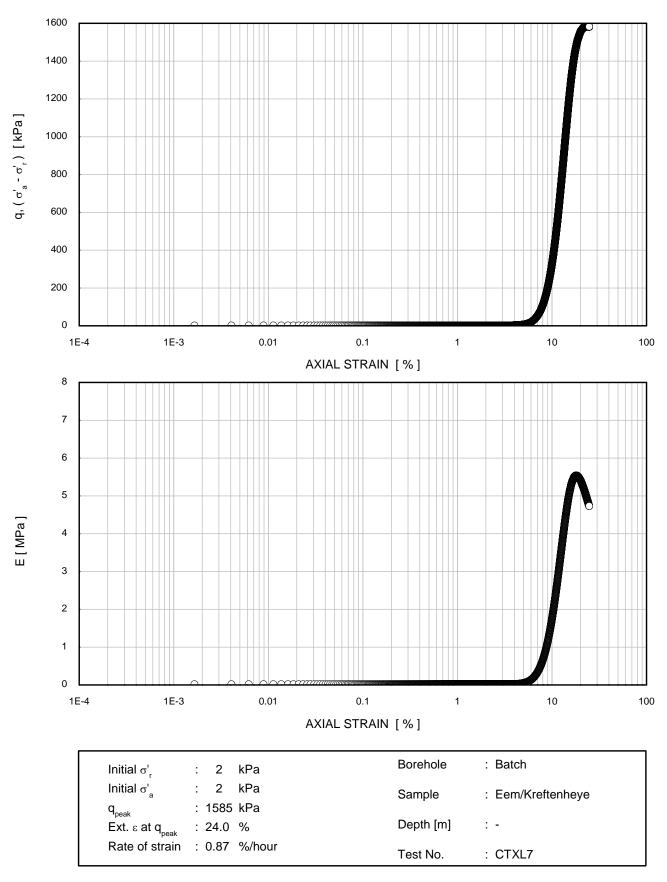


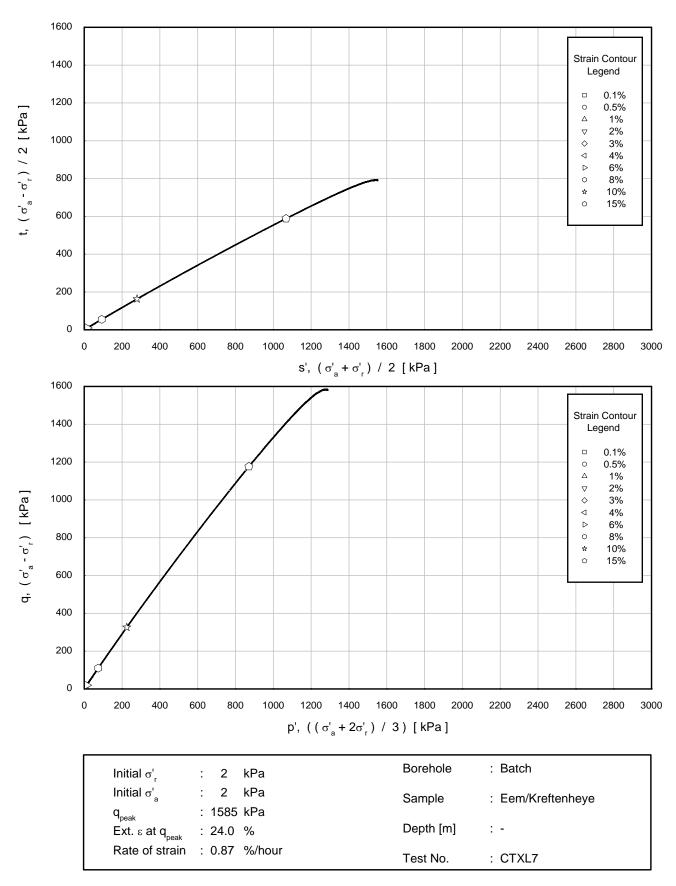

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE











VISUAL DESCRIPTION

Light olive brown fine to medium SAND

GENERAL	
Date test started	13/08/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	71.1	
Length	[mm]	144.0	
Moisture content	[%]	10.0	
Bulk density	[Mg/m³]	1.87	
Dry density	[Mg/m³]	1.70	
Void ratio	[-]	0.557	
Degree of saturation	[%]	48	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	N/A
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon request	

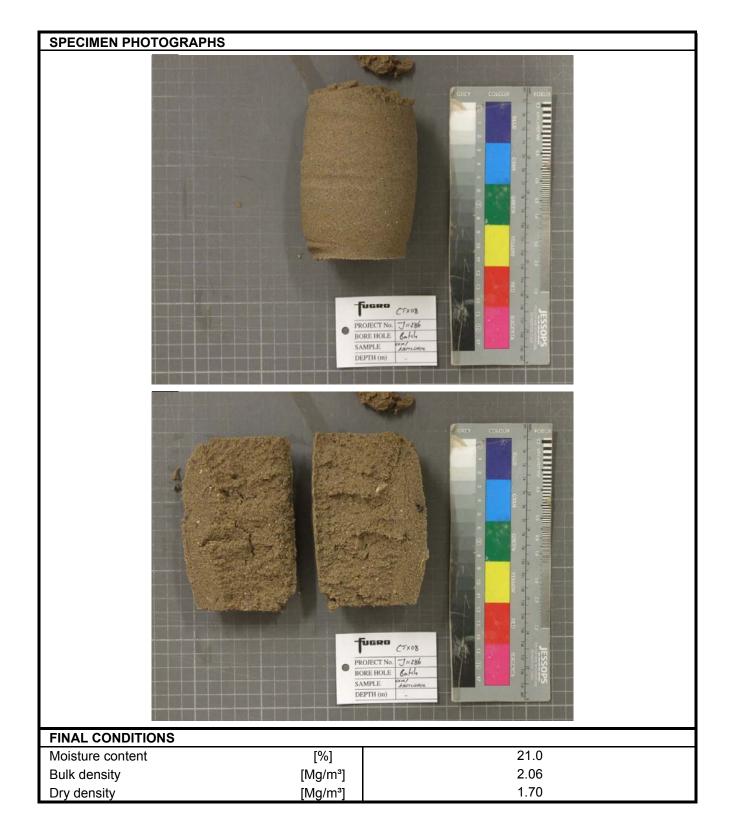
QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Eem_Kreftenheye_CTXL8
Processed by	LC
Date	19/08/2015
Checked by	LJ
Date	20/08/2015
Approved by	PH
Date	20/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem/Kreftenheye
Depth [m]	-
Test number	CTXL8

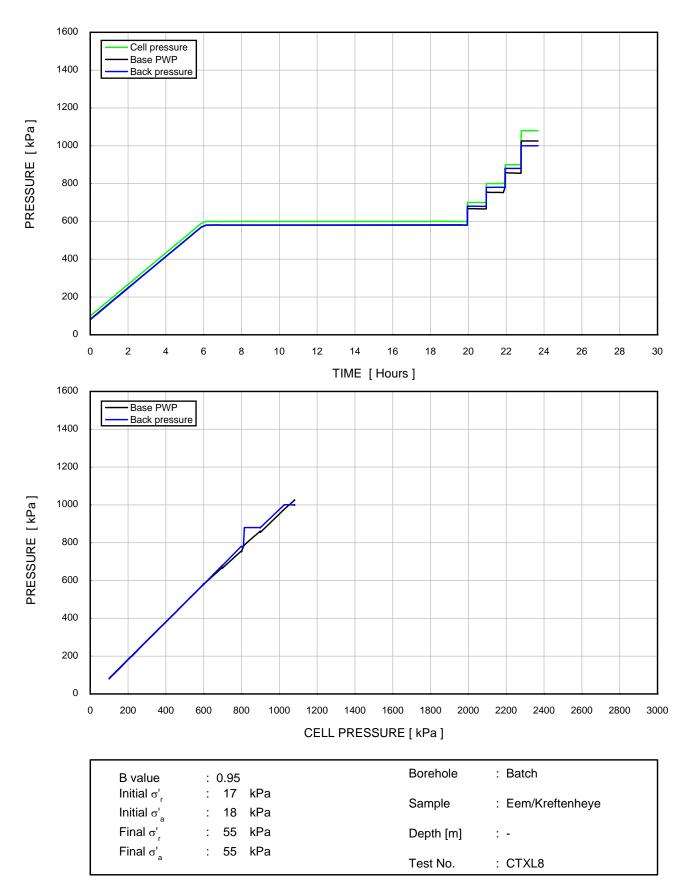
SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

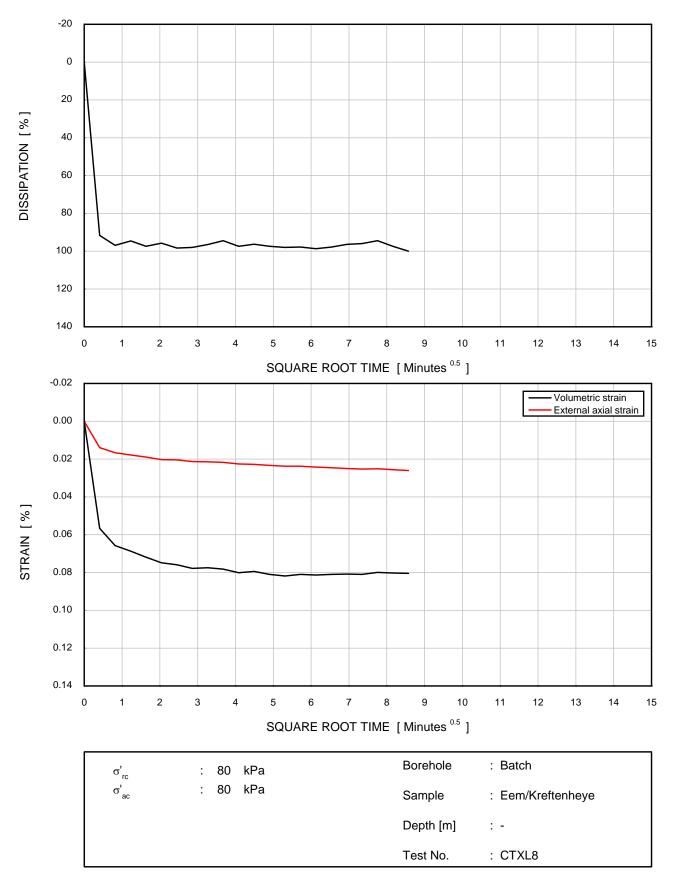
SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	20
Cell pressure	[kPa]	1080
Base PWP	[kPa]	1025
Mid height PWP	[kPa]	-
B value achieved	[-]	0.95

CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	1080	
Back pressure	[kPa]	1000	
Base PWP	[kPa]	1000	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	80	
Effective axial pressure	[kPa]	80	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	0.08	
External axial strain	[%]	0.03	
Local axial strain	[%]	-	
Local radial strain	[%]	-	
Moisture content	[%]	21.0	
Bulk density	[Mg/m³]	2.06	
Dry density	[Mg/m³]	1.70	
Void ratio	[-]	0.556	
Degree of saturation	[%]	100	

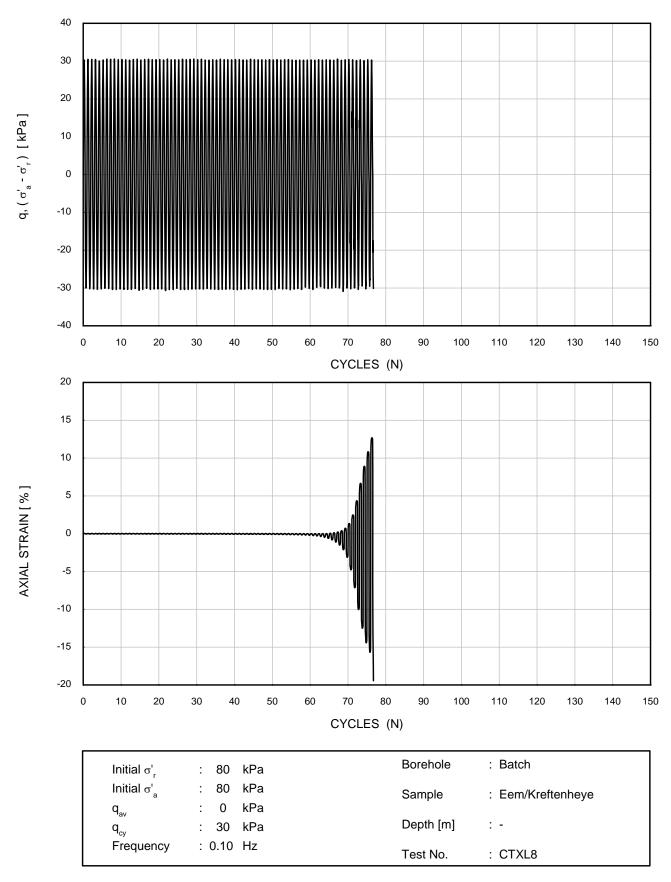

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem/Kreftenheye
Depth [m]	-
Test number	CTXL8

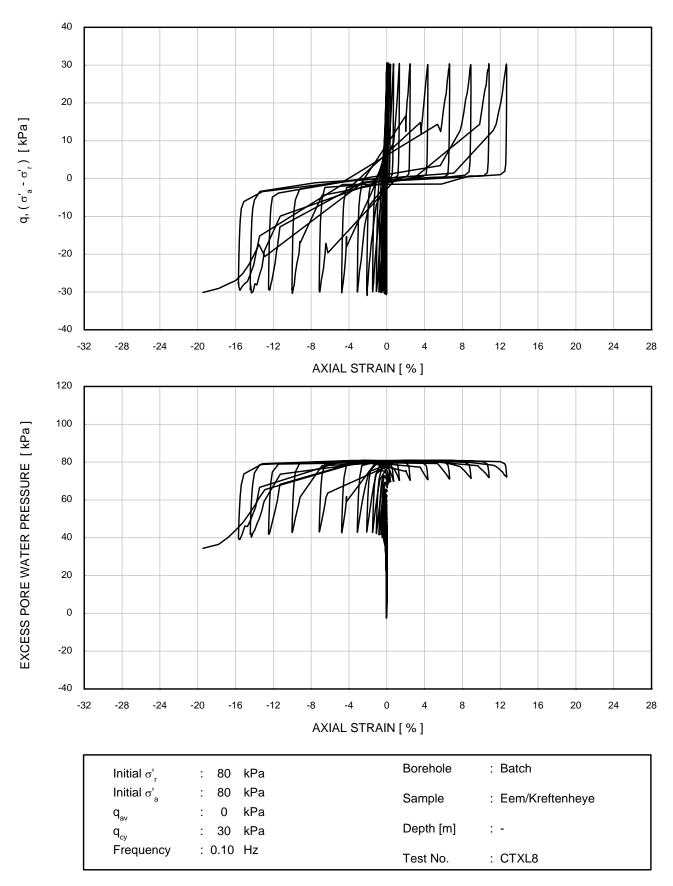
STRESS-CONTROLLED CYCLIC LOADING STAGE							
Reference stress		[kPa]			80)	
Mean q _{av}		[kPa]			0		
Mean q _{cy}		[kPa]			30)	
Frequency		[Hz]			0.1	10	
Number of cycles at failure	(N_f)	[-]			75	5	
External ϵ_{av} at N_f		[%]			-2.7	77	
External ε _{cy} at N _f		[%]			11.	67	
Local ϵ_{av} at N_{f}		[%]			-		
Local ε _{cy} at N _f		[%]			-		
Δ base PWP at N _f		[kPa]			60)	
Δ mid height PWP at N $_{\mathrm{f}}$		[kPa]			-		
Moisture content		[%]			21	.0	
Bulk density		[Mg/m³]			2.0)6	
Dry density		[Mg/m³]			1.7	70	
Void ratio		[-]			0.5		
Degree of saturation		[%]			10	0	
Cycle	ϵ_{av}	ϵ_{cy}	E_ext	E_loc	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	0.00	0.04	79	-	9.97	-	
2	0.00	0.04	85	-	7.20	-	
5	-0.01	0.04	83	-	6.02	-	
10	-0.01	0.04	80	-	5.67	-	
20	-0.01	0.04	73	-	6.11	-	
30	-0.01	0.05	67	-	6.83	-	
40	-0.02	0.05	59	-	8.23	-	
50	-0.04	0.06	50	-	10.09	-	
75	-2.77	11.67	0	-	6.61	-	

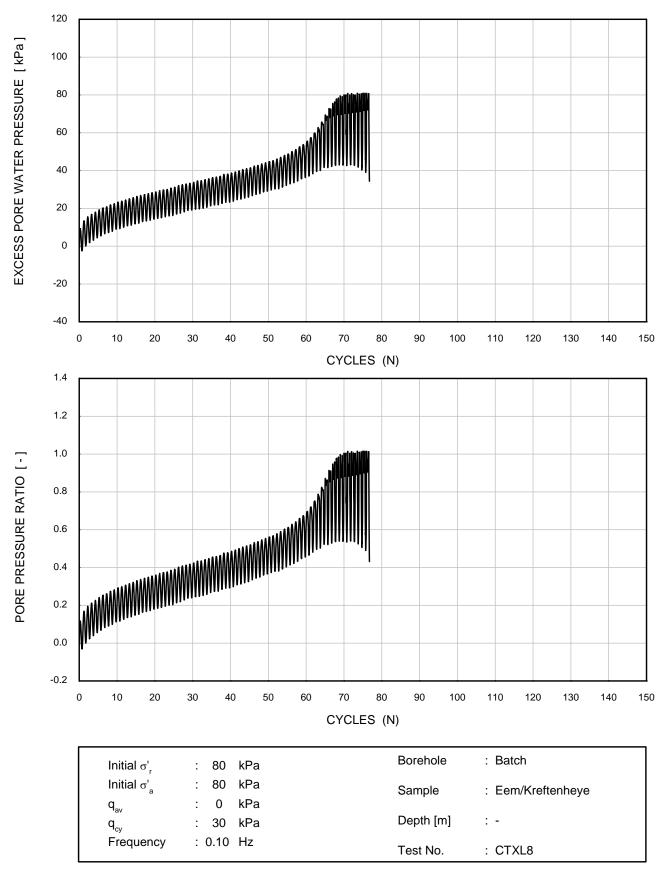

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem/Kreftenheye
Depth [m]	-
Test number	CTXL8

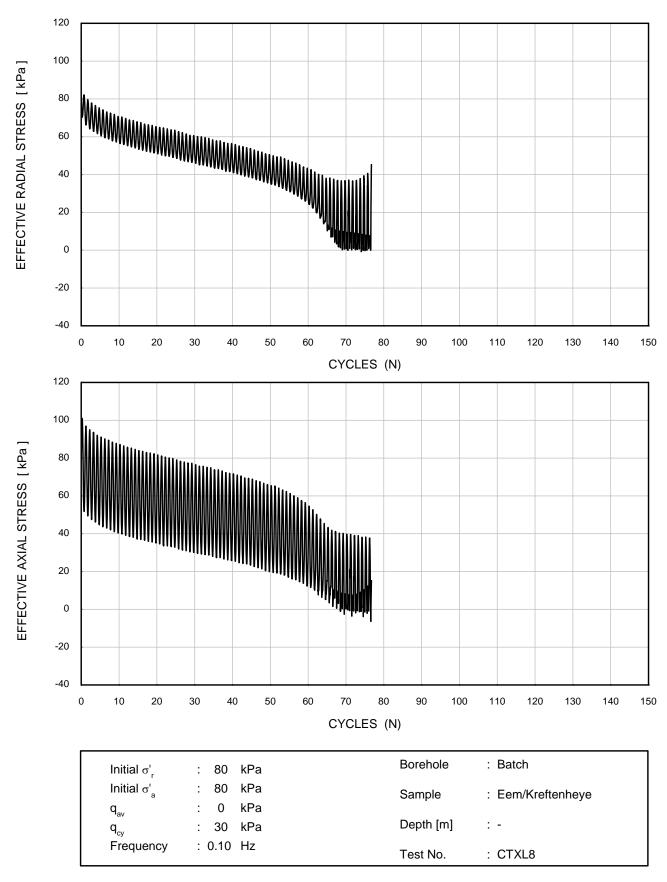

SHEARING STAGE		
Initial effective radial pressure	[kPa]	-2
Initial effective axial pressure	[kPa]	-3
Rate of strain	[%/hour]	0.84
At peak deviator stress		
Corrected deviator stress	[kPa]	787
Membrane correction applied	[kPa]	2
Drain correction applied	[kPa]	0
External axial strain	[%]	20.97
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	-210
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	290
Effective axial pressure	[kPa]	1076
Principal effective stress ratio	[-]	3.72
ε ₅₀	[%]	15.85
Secant modulus (E $_{50}$) at ϵ_{50}	[kPa]	2442
At peak principal effective stress r	ratio	
Corrected deviator stress	[kPa]	6
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	7.78
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	80
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	0
Effective axial pressure	[kPa]	6
Principal effective stress ratio	[-]	564.91
At 10% axial strain		
Corrected deviator stress	[kPa]	35
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	71
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	9
Effective axial pressure	[kPa]	43
Principal effective stress ratio	[-]	4.98

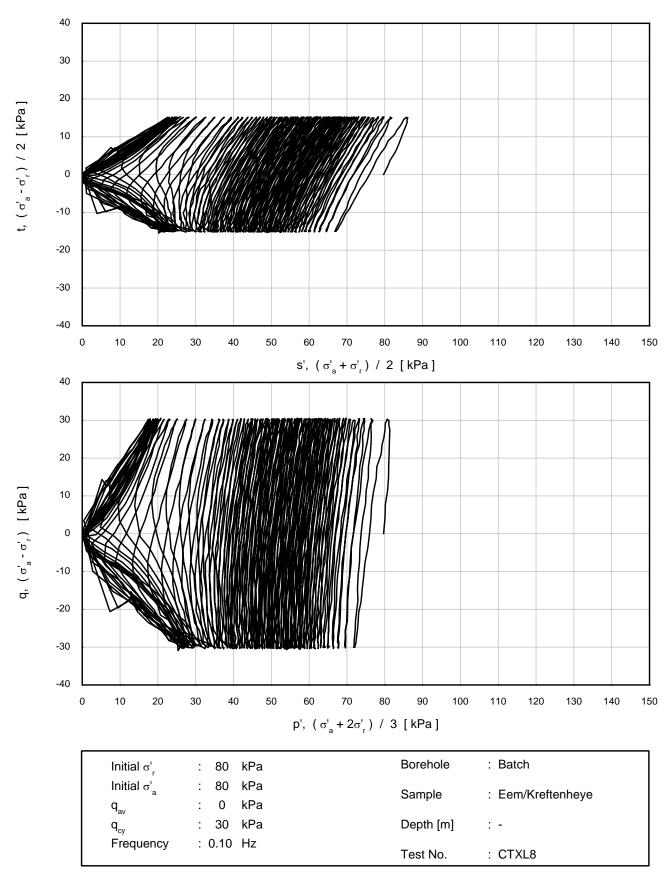
TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem/Kreftenheye
Depth [m]	-
Test number	CTXL8

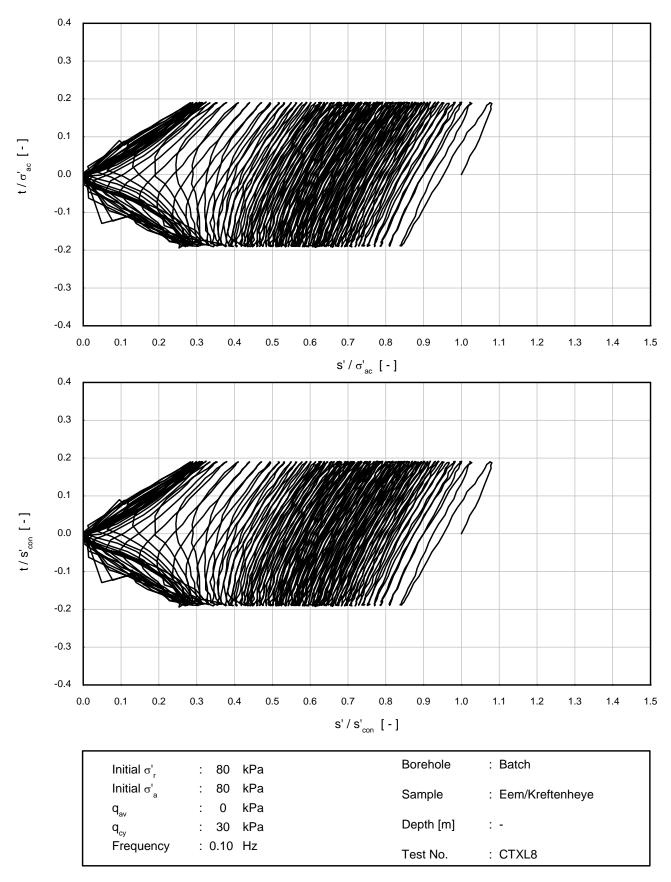


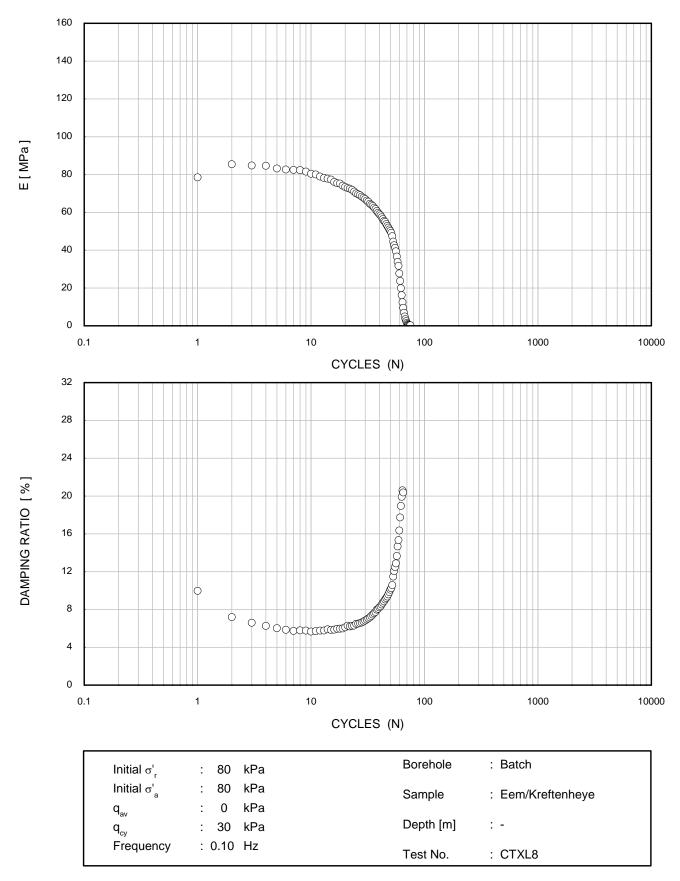

TEST IDENTIFICATION	
Borehole	Batch
Sample	Eem/Kreftenheye
Depth [m]	-
Test number	CTXL8

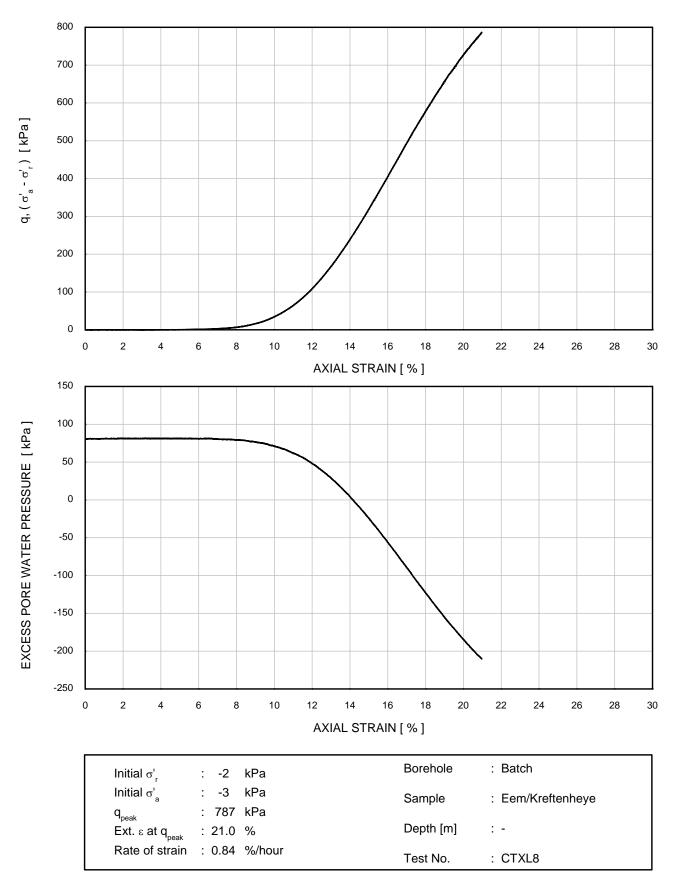


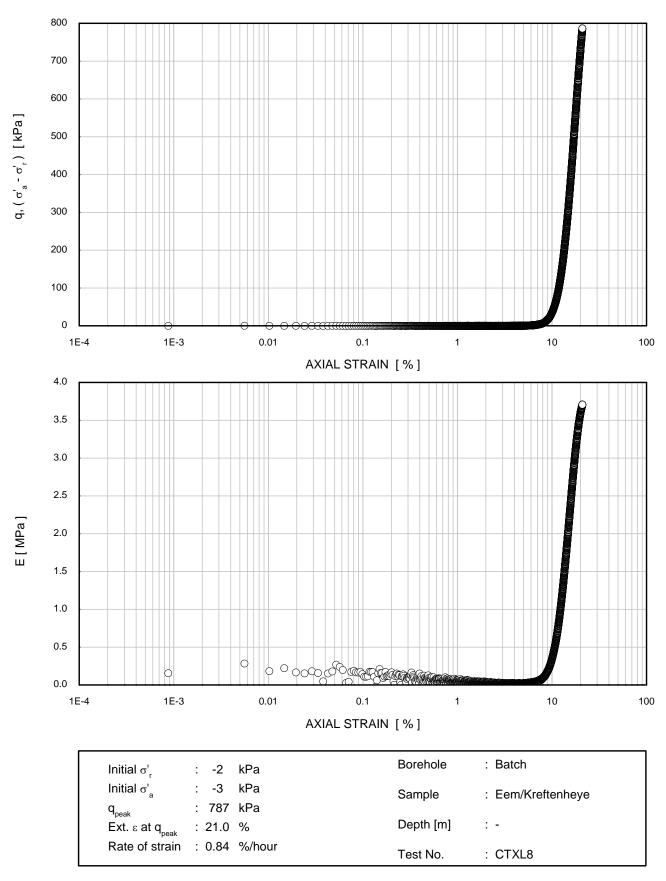


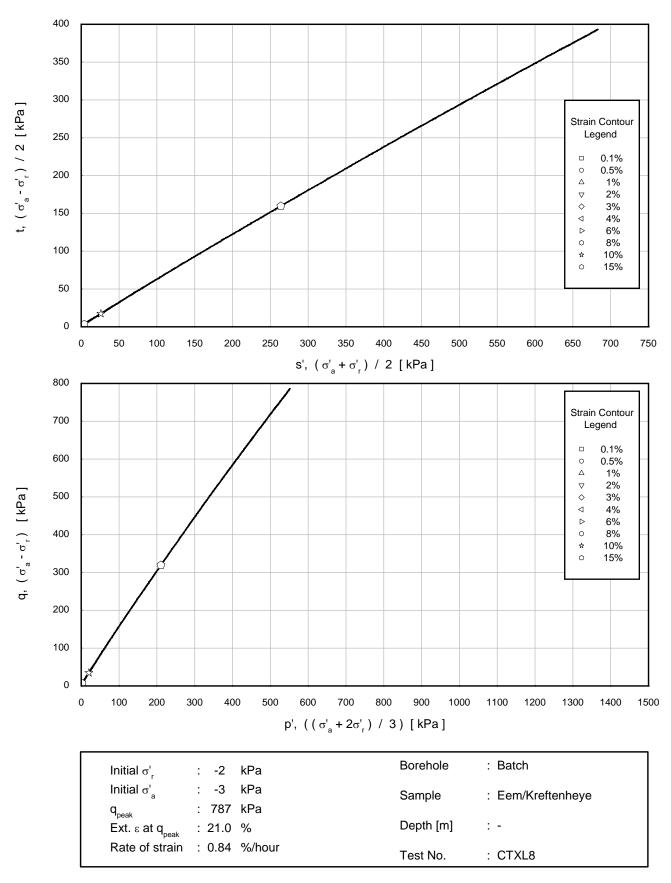

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE











VISUAL DESCRIPTION Olive grey silty fine SAND

GENERAL	
Date test started	27/07/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.0	
Length	[mm]	144.0	
Moisture content	[%]	10.1	
Bulk density	[Mg/m³]	1.77	
Dry density	[Mg/m³]	1.61	
Void ratio	[-]	0.645	
Degree of saturation	[%]	41	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	N/A
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon request	

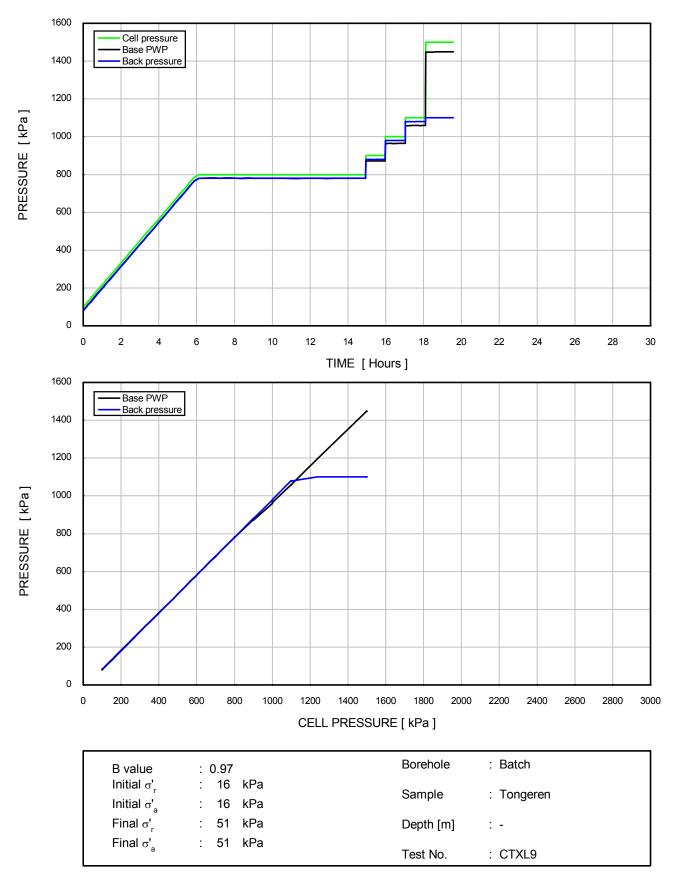
QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Tongeren_CTXL9
Processed by	LJ
Date	13/08/2015
Checked by	PH
Date	18/08/2015
Approved by	PH
Date	18/08/2015

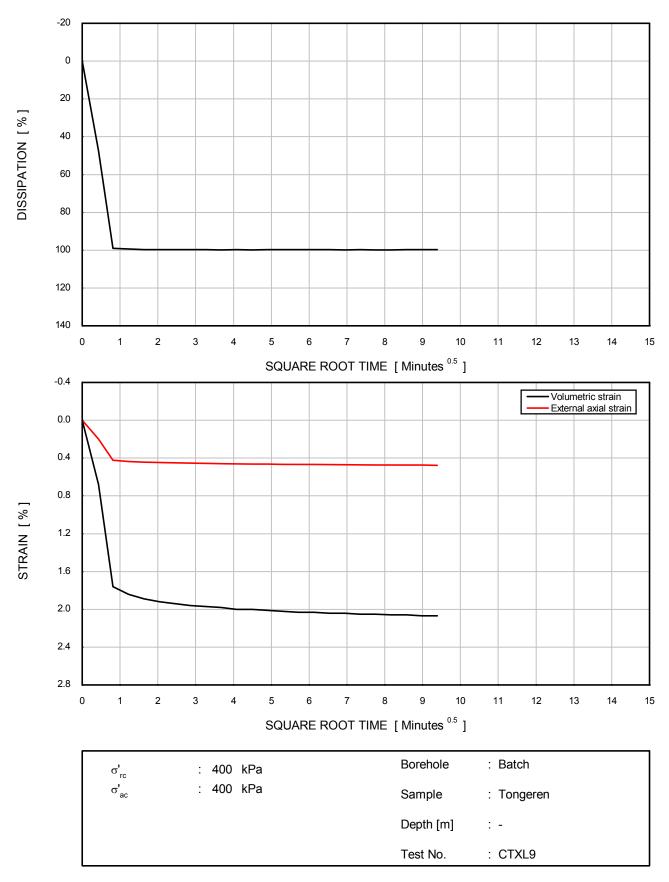
TEST IDENTIFICATION		
Borehole	Batch	
Sample	Tongeren	
Depth [m]	-	
Test number	CTXL9	

SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

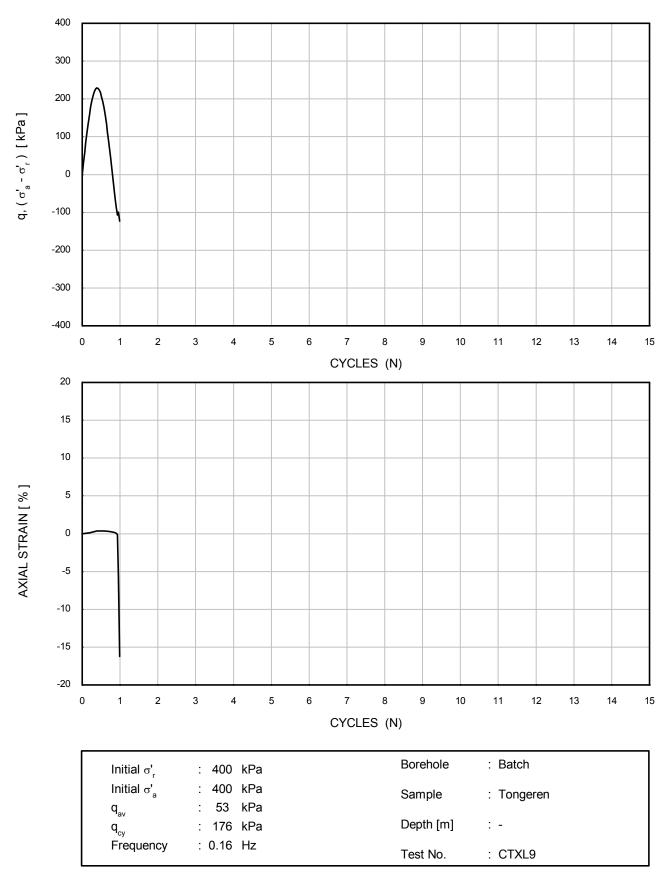
SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	10
Cell pressure	[kPa]	1500
Base PWP	[kPa]	1449
Mid height PWP	[kPa]	-
B value achieved	[-]	0.97

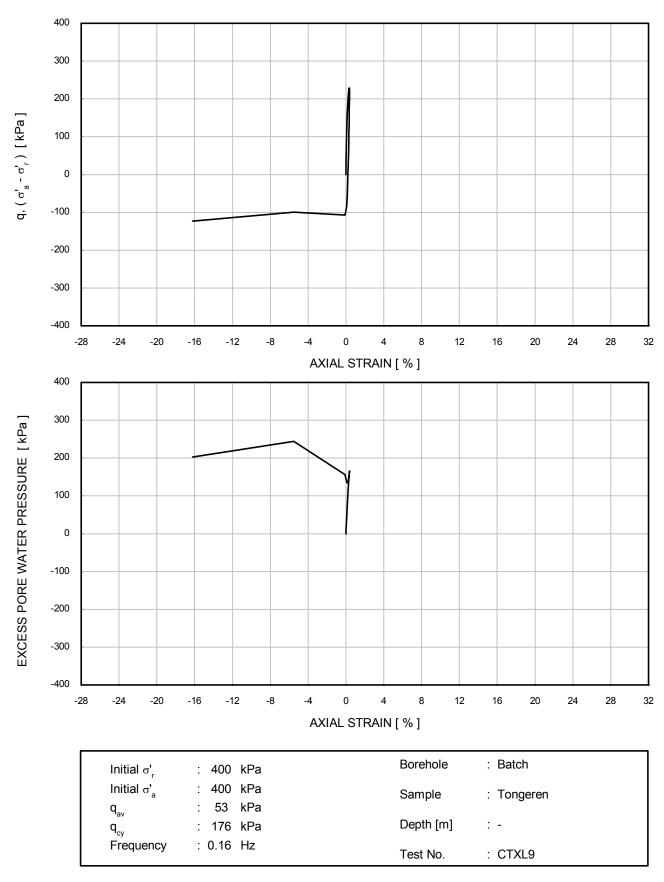
CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	1500	
Back pressure	[kPa]	1099	
Base PWP	[kPa]	1100	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	400	
Effective axial pressure	[kPa]	400	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	2.07	
External axial strain	[%]	0.48	
Local axial strain	[%]	-	
Local radial strain	[%]	-	
Moisture content	[%]	23.1	
Bulk density	[Mg/m³]	2.02	
Dry density	[Mg/m³]	1.65	
Void ratio	[-]	0.611	
Degree of saturation	[%]	100	

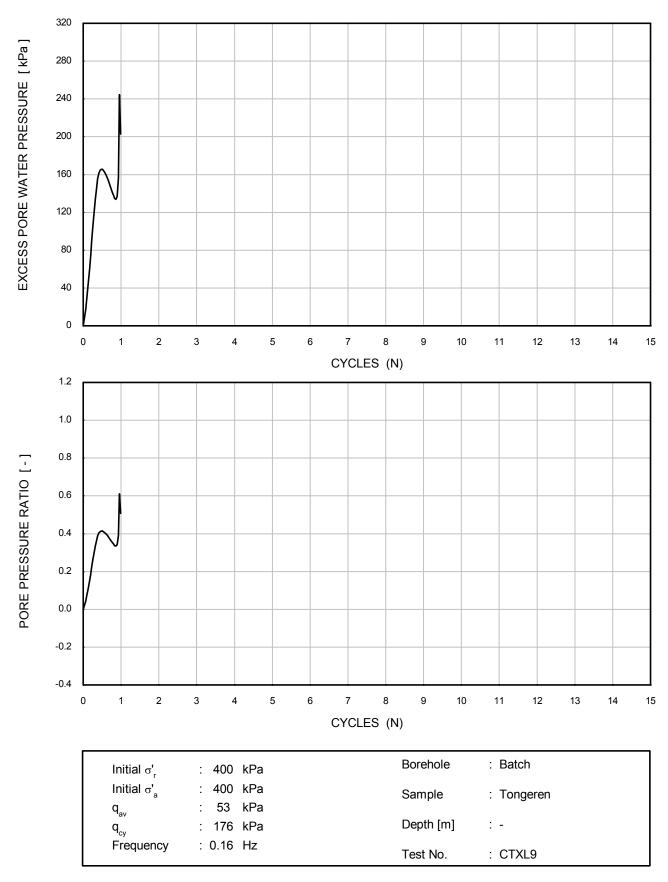

TEST IDENTIFICATION		
Borehole	Batch	
Sample	Tongeren	
Depth [m]	-	
Test number	CTXL9	

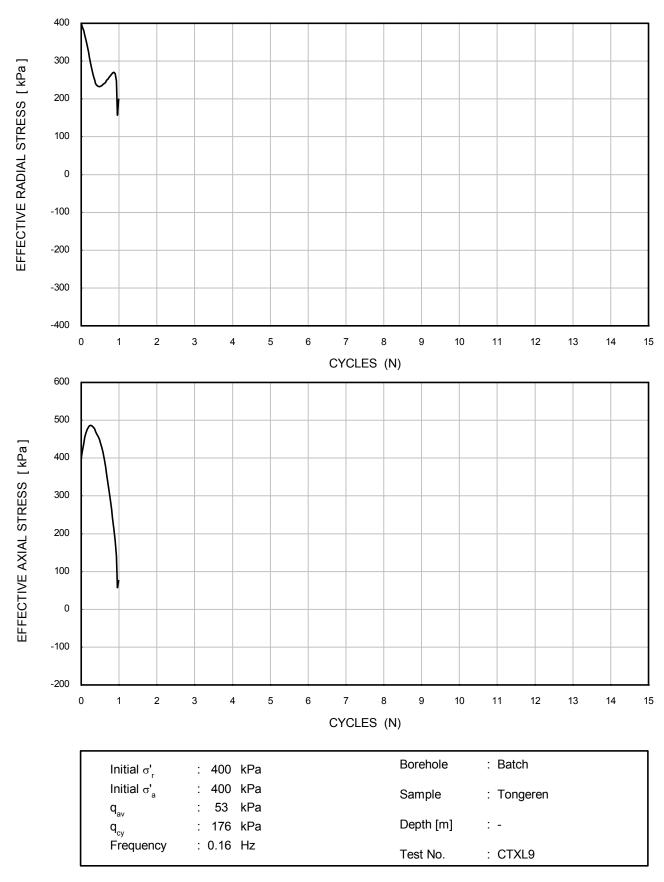

STRESS-CONTROLLED C	YCLIC LO	ADING STAGE					
Reference stress		[kPa]			40	0	
Mean q _{av}		[kPa]			5	5	
Mean q _{cy}		[kPa]			18	34	
Frequency		[Hz]			0.1	16	
Number of cycles at failure (N_f)	[-]			1		
External ϵ_{av} at N_f		[%]			-7.9	92	
External ϵ_{cy} at N_f		[%]			8.2	29	
Local ε _{av} at N _f		[%]			-		
Local $\epsilon_{\sf cy}$ at N $_{\sf f}$		[%]			-		
Δ base PWP at N _f		[kPa]			12	2	
Δ mid height PWP at N _f		[kPa]			-		
Moisture content		[%]			23	.1	
Bulk density		[Mg/m³]			2.0)2	
Dry density		[Mg/m³]			1.6	65	
Void ratio		[-]			0.6	11	
Degree of saturation		[%]			10	0	
Cycle	ϵ_{av}	ϵ_{cy}	E _{ext}	E _{loc}	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	-7.92	8.29	2	-	19.87	-	

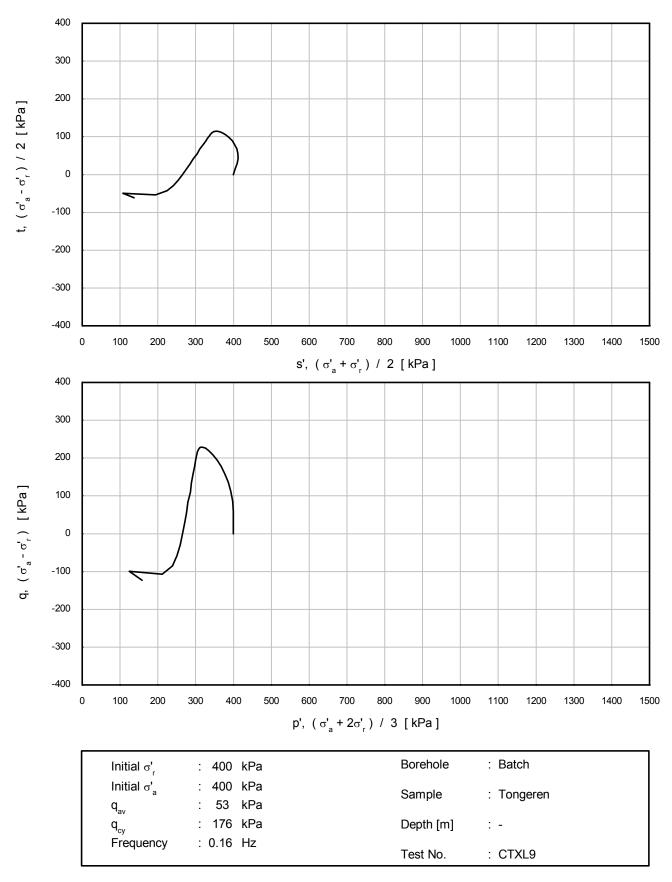
TEST IDENTIFICATION		
Borehole	Batch	
Sample	Tongeren	
Depth [m]	-	
Test number	CTXL9	

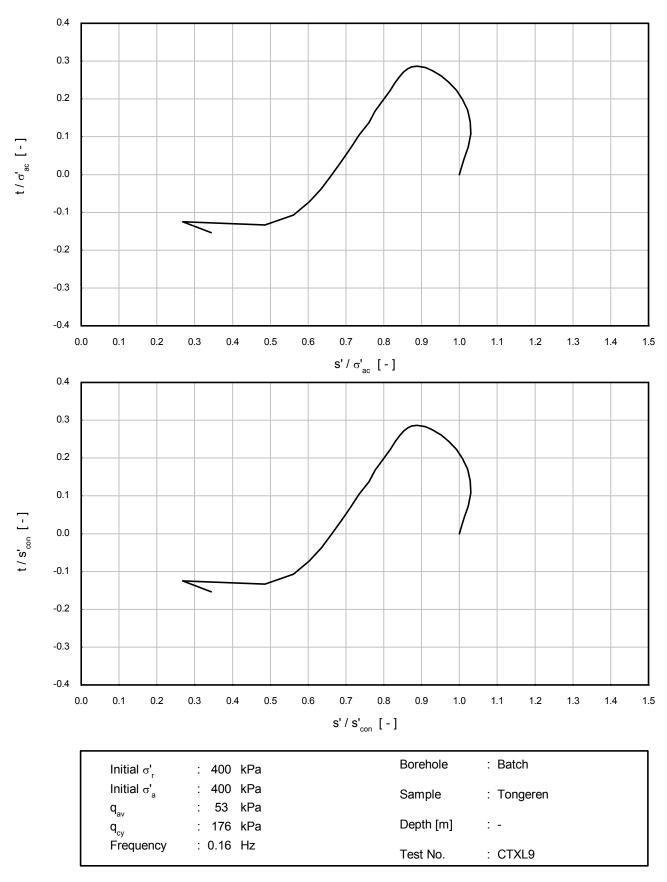


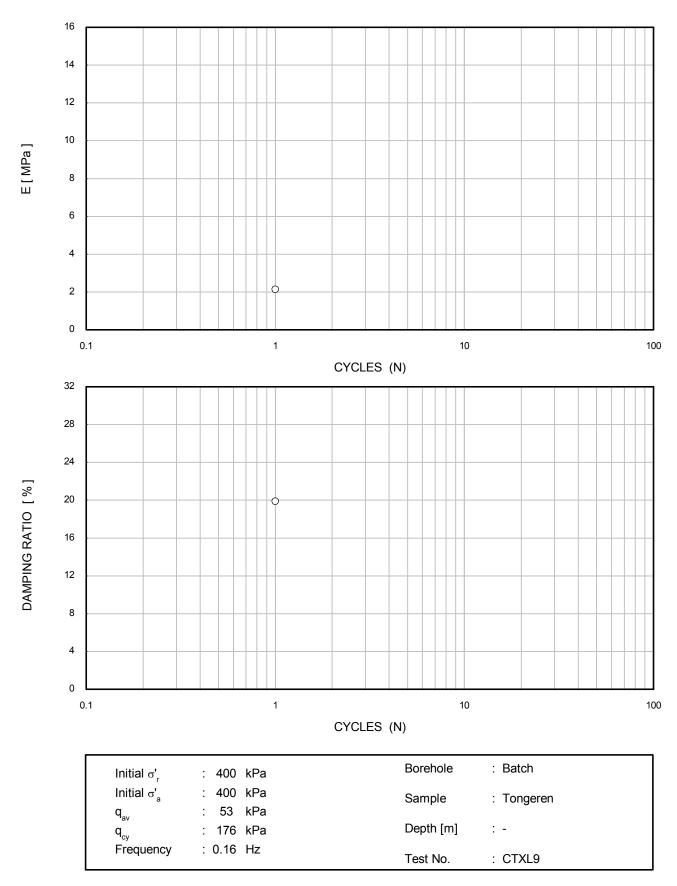

TEST IDENTIFICATION		
Borehole	Batch	
Sample	Tongeren	
Depth [m]	-	
Test number	CTXL9	






ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE





VISUAL DESCRIPTION Olive grey silty fine SAND

GENERAL	
Date test started	31/07/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.0	
Length	[mm]	144.0	
Moisture content	[%]	9.3	
Bulk density	[Mg/m³]	1.77	
Dry density	[Mg/m³]	1.62	
Void ratio	[-]	0.634	
Degree of saturation	[%]	39	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	N/A
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Tongeren_CTXL10
Processed by	LC
Date	13/08/2015
Checked by	LJ
Date	13/08/2015
Approved by	PH
Date	15/08/2015

TEST IDENTIFICATION			
Borehole	Batch		
Sample	Tongeren		
Depth [m]	-		
Test number	CTXL10		

SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

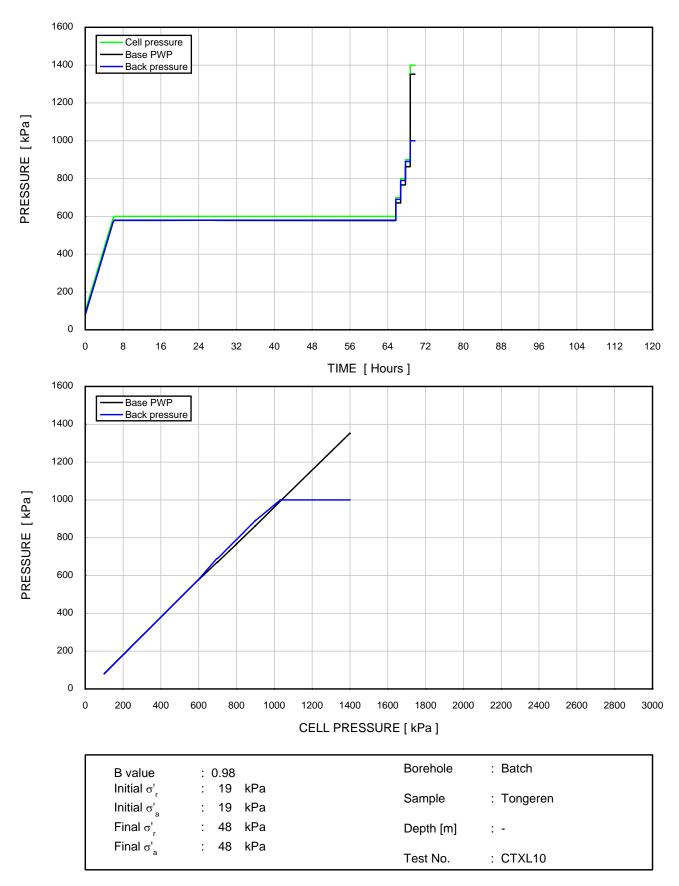
SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	20
Cell pressure	[kPa]	1400
Base PWP	[kPa]	1352
Mid height PWP	[kPa]	-
B value achieved	[-]	0.98

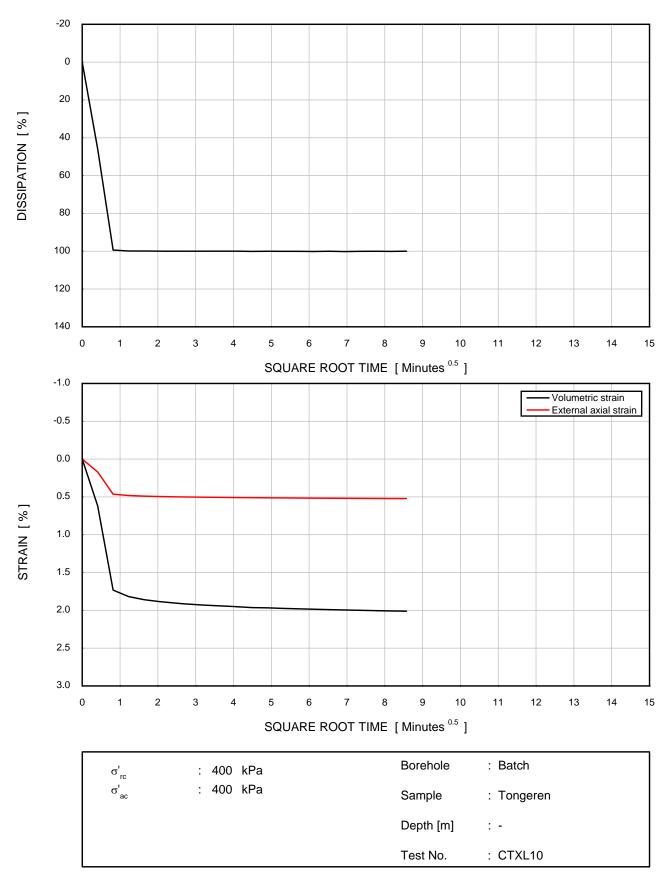
CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	1400	
Back pressure	[kPa]	1000	
Base PWP	[kPa]	1000	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	400	
Effective axial pressure	[kPa]	400	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	2.12	
External axial strain	[%]	0.52	
Local axial strain	[%]	-	
Local radial strain	[%]	-	
Moisture content	[%]	22.6	
Bulk density	[Mg/m³]	2.03	
Dry density	[Mg/m³]	1.66	
Void ratio	[-]	0.599	
Degree of saturation	[%]	100	

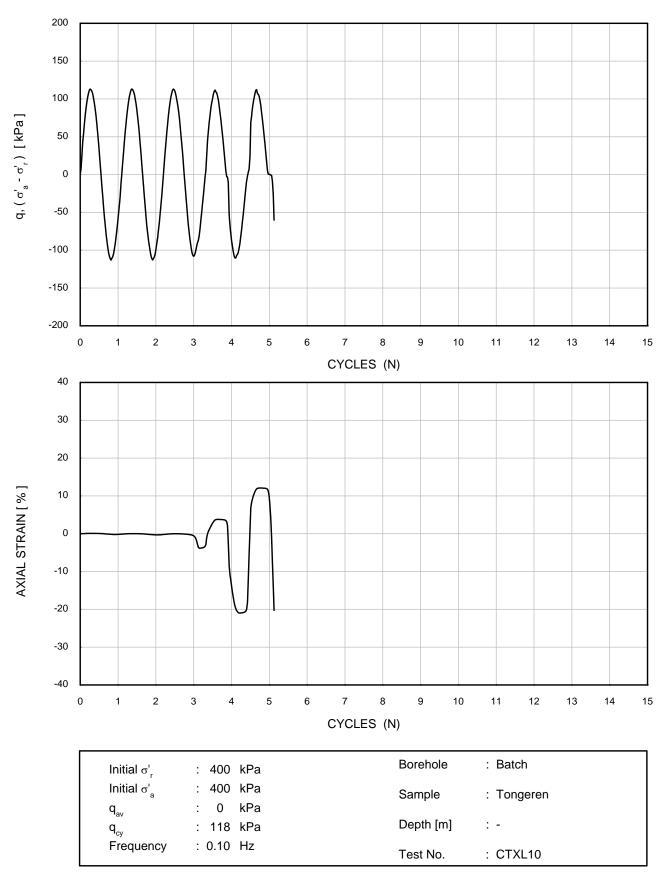
TEST IDENTIFICATION		
Borehole	Batch	
Sample	Tongeren	
Depth [m]	-	
Test number	CTXL10	

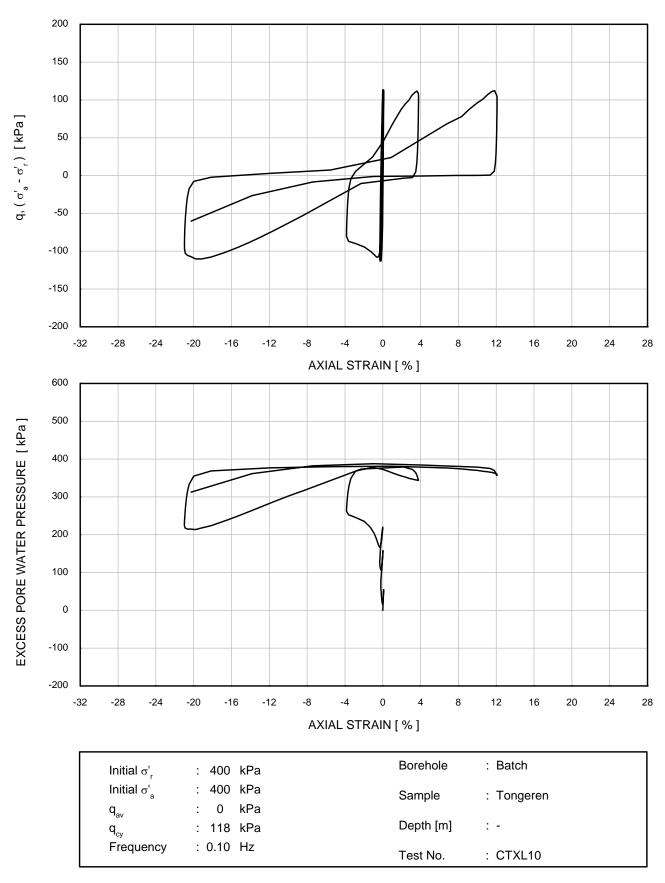
STRESS-CONTROLLED CYCLIC LOADING STAGE							
Reference stress		[kPa]			40	0	
Mean q _{av}		[kPa]	0				
Mean q _{cy}		[kPa]	118				
Frequency		[Hz]			0.1	10	
Number of cycles at failure	(N_f)	[-]			4		
External ϵ_{av} at N_{f}		[%]			-8.		
External ϵ_{cy} at N_{f}		[%]			12.	36	
Local ϵ_{av} at N_{f}		[%]			-		
Local $\epsilon_{\sf cy}$ at N $_{\sf f}$		[%]			-		
Δ base PWP at N _f		[kPa]			29	6	
Δ mid height PWP at N _f		[kPa]			-		
Moisture content		[%]			22		
Bulk density		[Mg/m³]			2.0		
Dry density		[Mg/m³]			1.6		
Void ratio		[-]	0.599				
Degree of saturation		[%]			10	0	
Cycle	ϵ_{av}	ϵ_{cy}	E_ext	E_loc	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	-0.06	0.15	80	-	17.99	-	
2	-0.15	0.17	69	-	19.06	-	
3	-1.91	1.91	6	-	26.28	-	
4	-8.59	12.36	1	-	19.52	-	
5	-4.08	16.15	1	-	14.69	-	

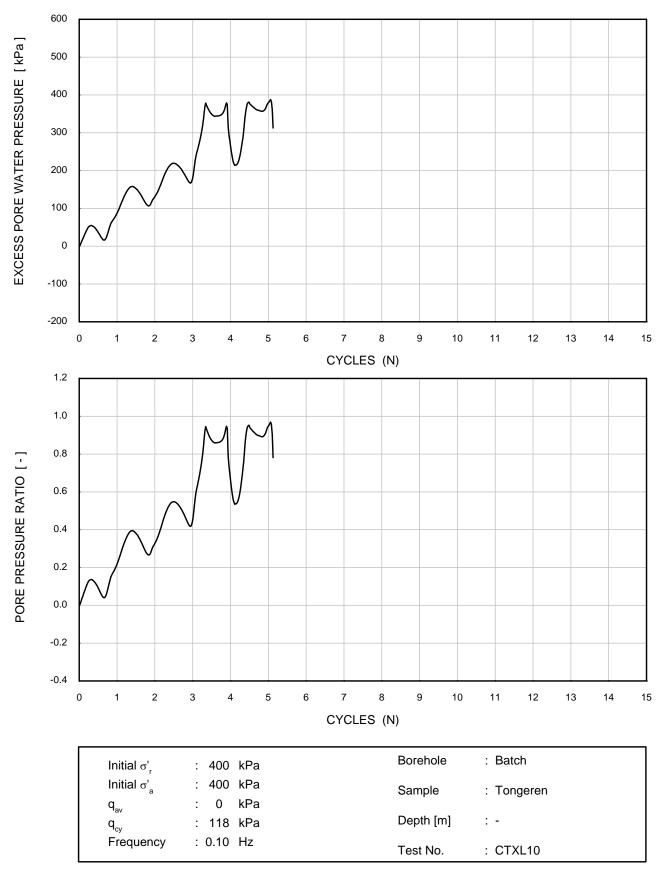
TEST IDENTIFICATION			
Borehole	Batch		
Sample	Tongeren		
Depth [m]	-		
Test number	CTXL10		

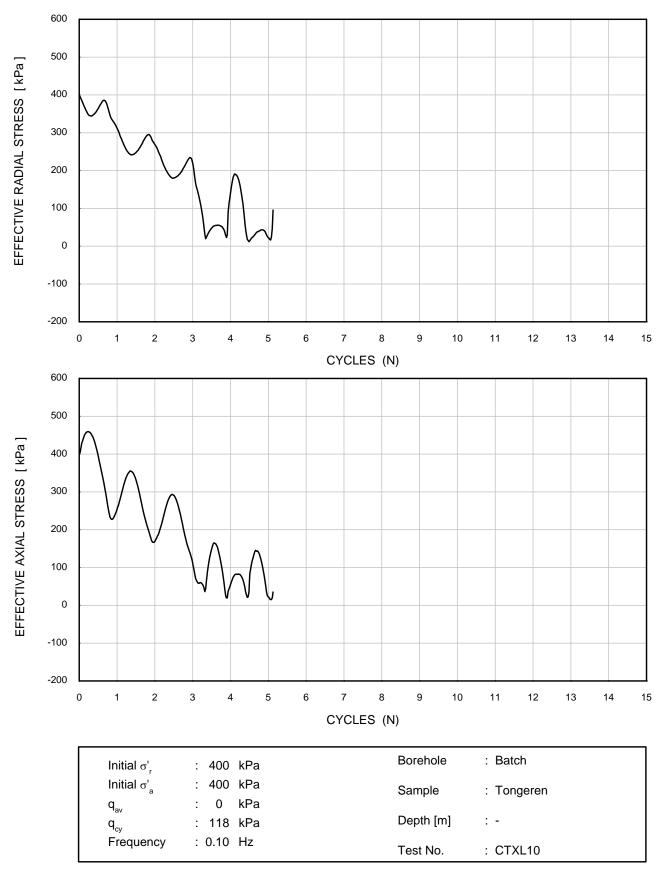

SHEARING STAGE		
Initial effective radial pressure	[kPa]	31
Initial effective axial pressure	[kPa]	22
Rate of strain	[%/hour]	1.06
At peak deviator stress	-	
Corrected deviator stress	[kPa]	108
Membrane correction applied	[kPa]	2
Drain correction applied	[kPa]	0
External axial strain	[%]	25.83
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	339
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	61
Effective axial pressure	[kPa]	170
Principal effective stress ratio	[-]	2.77
ε ₅₀	[%]	15.26
Secant modulus (E ₅₀) at ϵ_{50}	[kPa]	141
At peak principal effective stress ra	atio	
Corrected deviator stress	[kPa]	103
Membrane correction applied	[kPa]	2
Drain correction applied	[kPa]	0
External axial strain	[%]	24.49
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	343
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	57
Effective axial pressure	[kPa]	160
Principal effective stress ratio	[-]	2.80
At 10% axial strain		
Corrected deviator stress	[kPa]	23
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	381
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	19
Effective axial pressure	[kPa]	42
Principal effective stress ratio	[-]	2.21

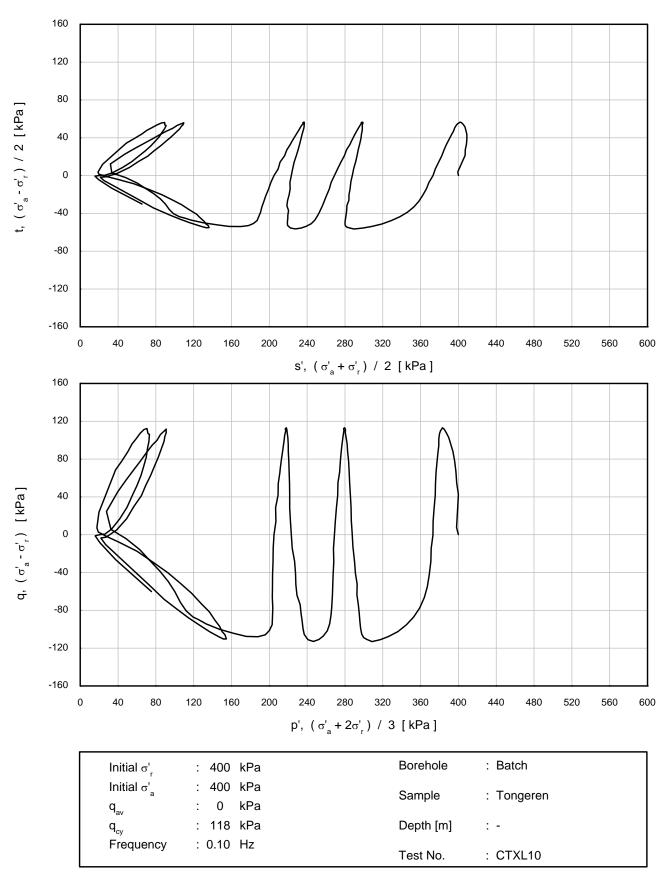

TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CTXL10

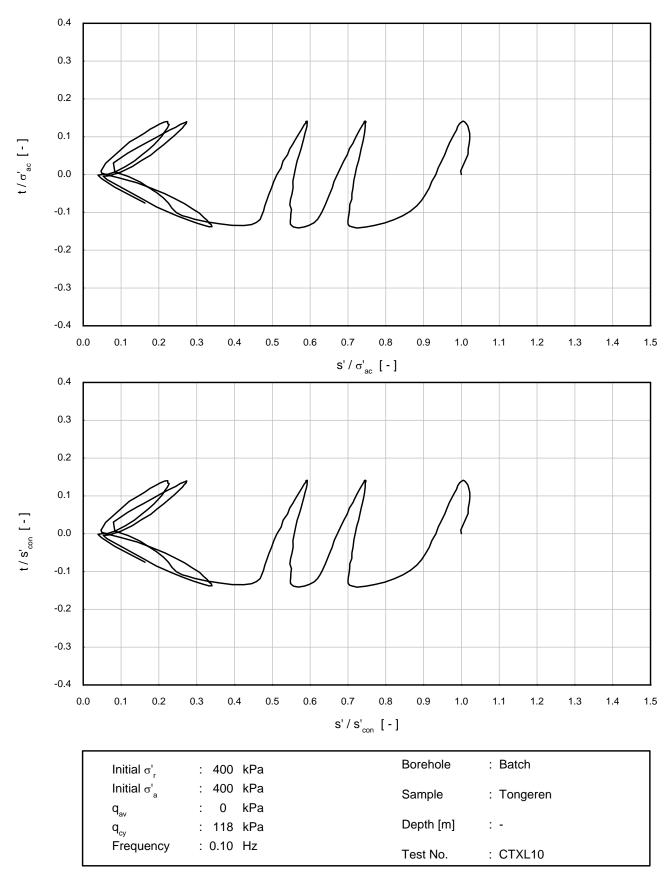

FINAL CONDITIONS		
Moisture content	[%]	22.6
Bulk density	[Mg/m³]	2.03
Dry density	[Mg/m³]	1.66

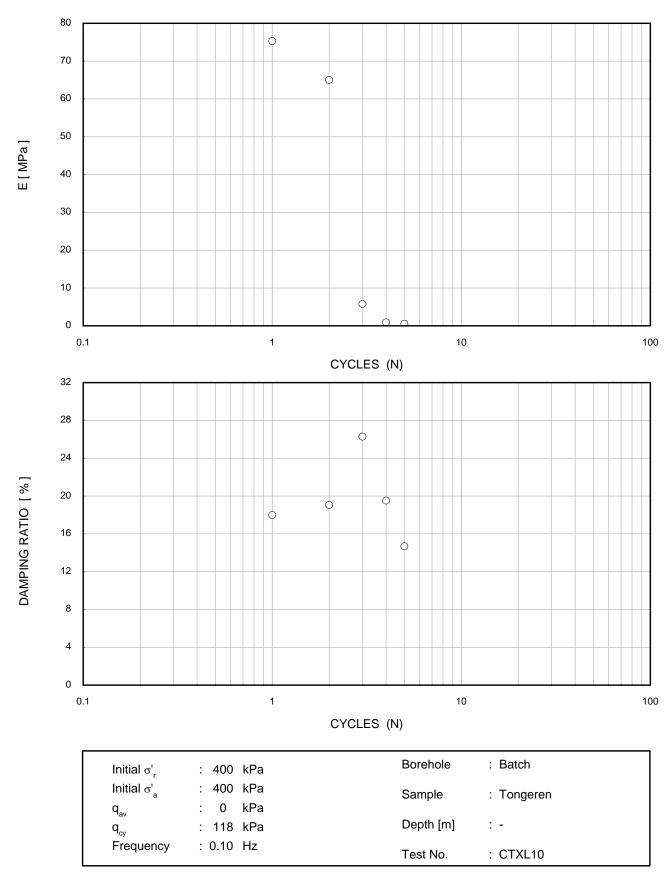

TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CTXL10

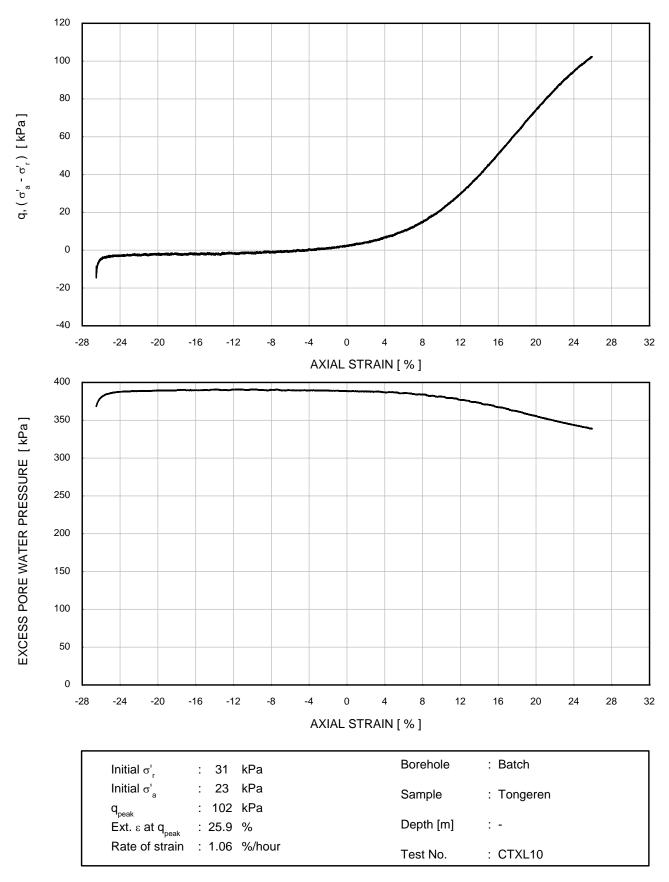


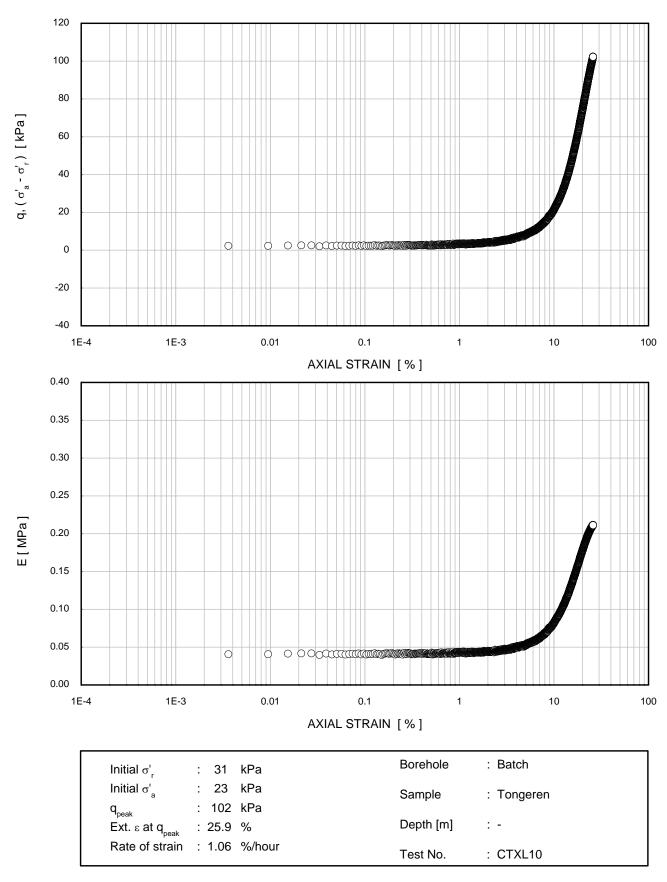


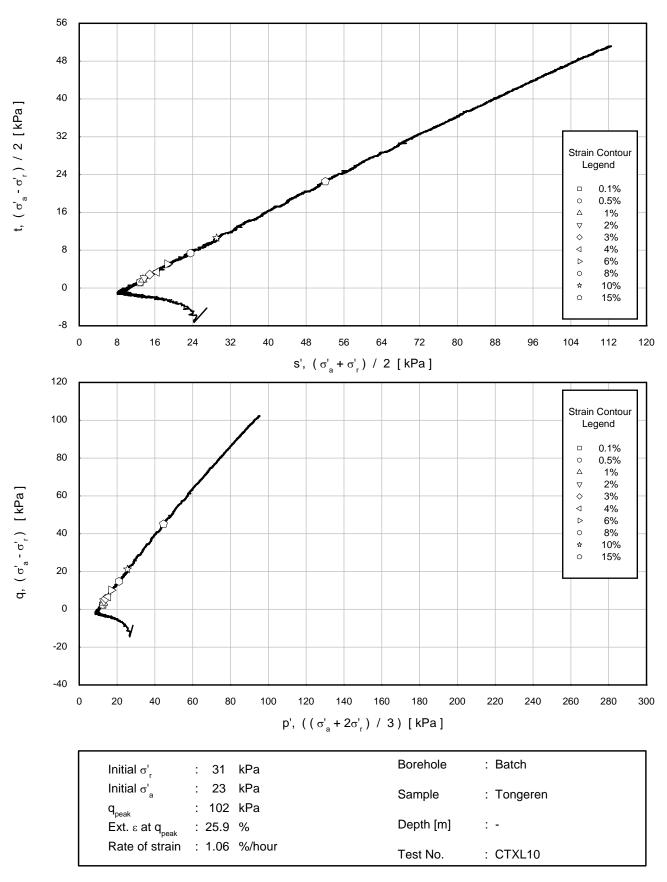

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE











VISUAL DESCRIPTION Olive grey silty fine SAND

GENERAL	
Date test started	08/05/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	72.1	
Length	[mm]	144.0	
Moisture content	[%]	9.5	
Bulk density	[Mg/m³]	1.77	
Dry density	[Mg/m³]	1.62	
Void ratio	[-]	0.637	
Degree of saturation	[%]	40	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED	
Specimen Set-up	Fugro in house procedure
Saturation	Fugro in house procedure
Consolidation - Isotropic	Fugro in house procedure
Consolidation - Anisotropic	N/A
Shearing	Fugro in house procedure
Note:	
Fugro testing procedures are available upon request	

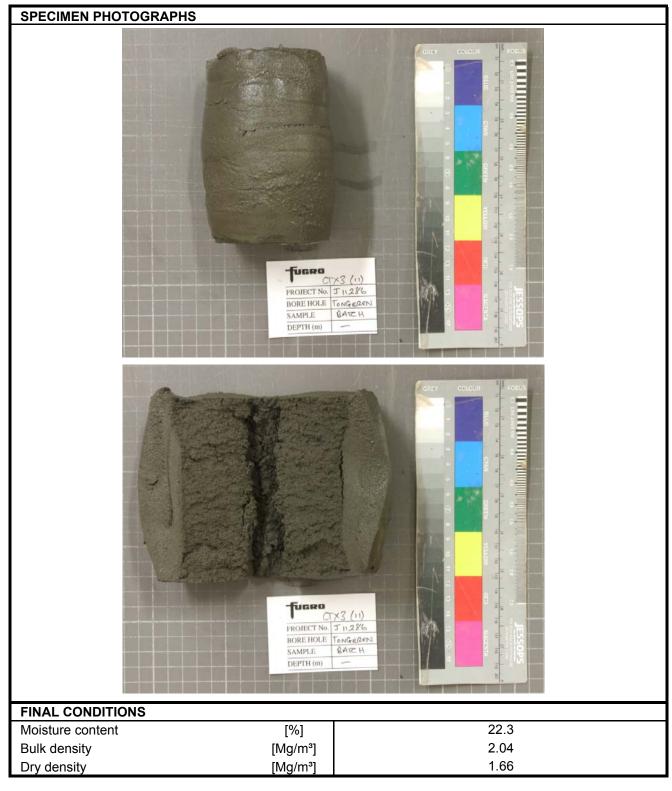
QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Tongeren_CTXL11
Processed by	LJ
Date	13/08/2015
Checked by	PH
Date	15/08/2015
Approved by	PH
Date	15/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CTXL11

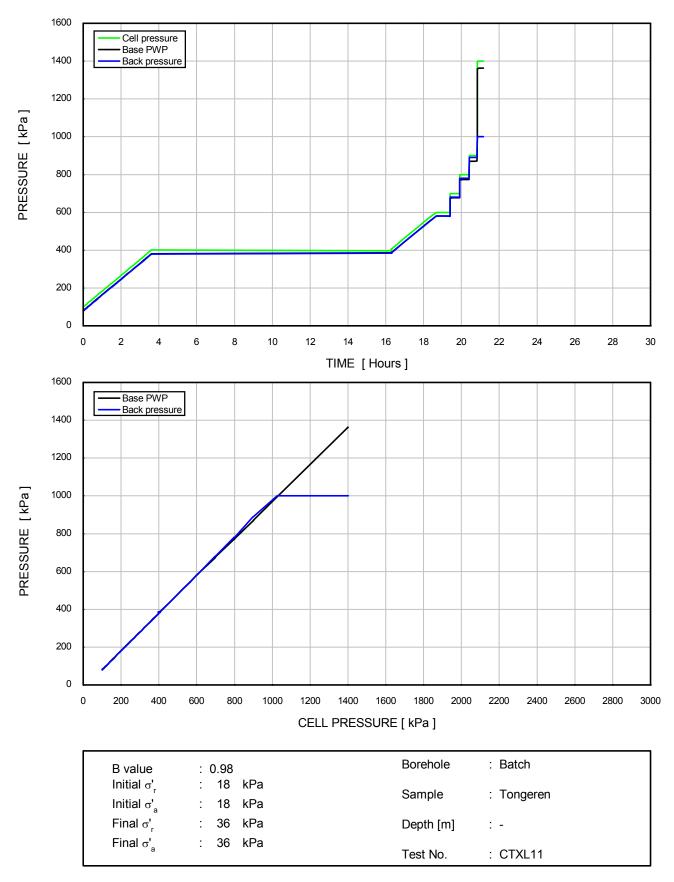
SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

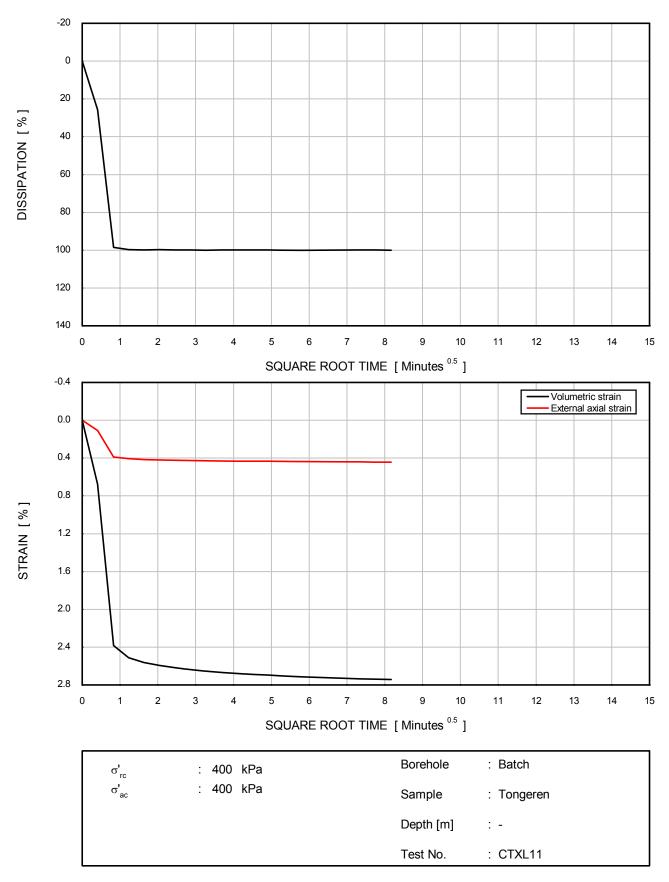
SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	20
Cell pressure	[kPa]	1400
Base PWP	[kPa]	1364
Mid height PWP	[kPa]	-
B value achieved	[-]	0.98

CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	1400	
Back pressure	[kPa]	1000	
Base PWP	[kPa]	1000	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	400	
Effective axial pressure	[kPa]	400	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	2.74	
External axial strain	[%]	0.44	
Local axial strain	[%]	-	
Local radial strain	[%]	-	
Moisture content	[%]	22.3	
Bulk density	[Mg/m³]	2.04	
Dry density	[Mg/m³]	1.66	
Void ratio	[-]	0.592	
Degree of saturation	[%]	100	

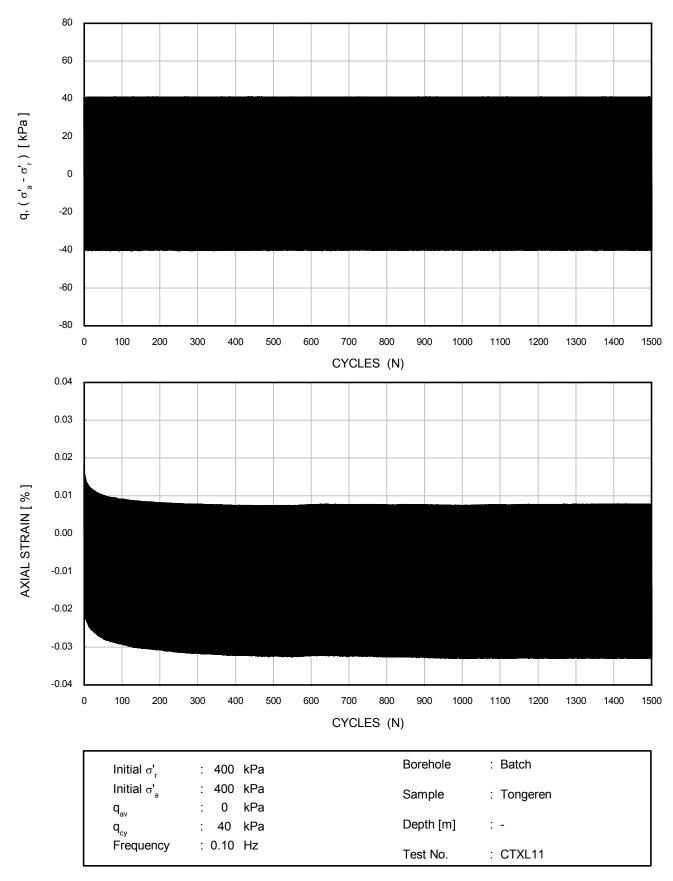

TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CTXL11

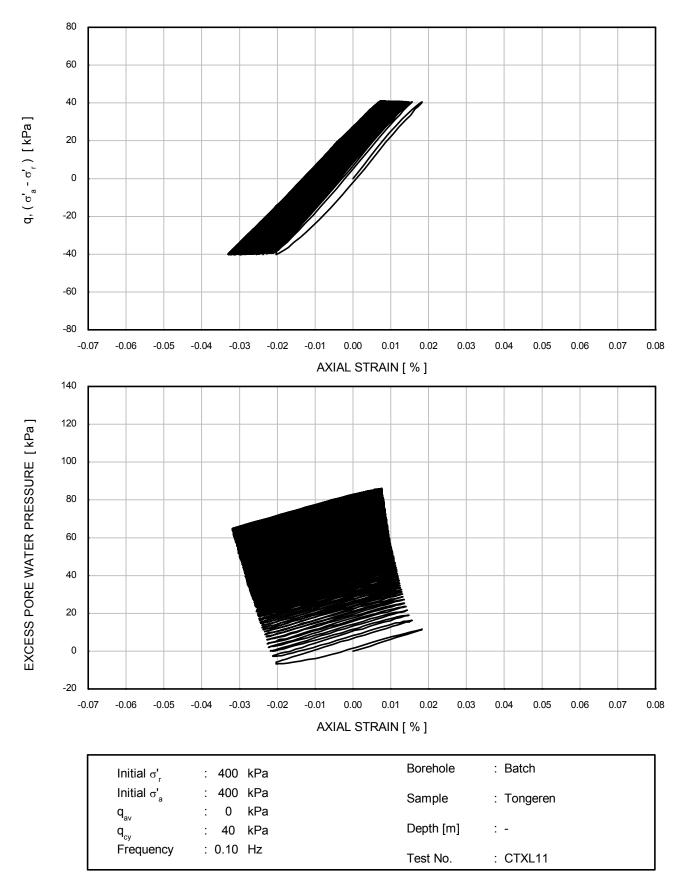
STRESS-CONTROLLED CYCLIC LOADING STAGE							
Reference stress		[kPa]			40	00	
Mean q _{av}		[kPa]			C)	
Mean q _{cy}		[kPa]			4	0	
Frequency		[Hz]			0.1	10	
Number of cycles at failure	(N_f)	[-]			15	00	
External ε _{av} at N _f		[%]			-0.	01	
External ϵ_{cy} at N_f		[%]			0.0	02	
Local ε _{av} at N _f		[%]			-		
Local ε _{cy} at N _f		[%]			-		
Δ base PWP at N_{f}		[kPa]			9:	2	
Δ mid height PWP at N_{f}		[kPa]			-		
Moisture content		[%]			22		
Bulk density		[Mg/m³]			2.0		
Dry density		[Mg/m³]			1.6		
Void ratio		[-]			0.5		
Degree of saturation		[%]			10	00	
Cycle	ϵ_{av}	ϵ_{cy}	E_{ext}	E_loc	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	0.00	0.02	209	-	3.69	-	
2	0.00	0.02	217	-	2.13	-	
5	0.00	0.02	219	-	1.12	-	
10	-0.01	0.02	220	-	0.67	-	
20	-0.01	0.02	217	-	0.22	-	
30	-0.01	0.02	216	-	0.09	-	
40	-0.01	0.02	215	-	0.08	-	
50	-0.01	0.02	214	-	0.19	-	
100	-0.01	0.02	211	-	0.44	-	
500	-0.01	0.02	203	-	1.00	-	
1000	-0.01	0.02	200	-	1.33	-	
1500	-0.01	0.02	199	-	1.38	-	

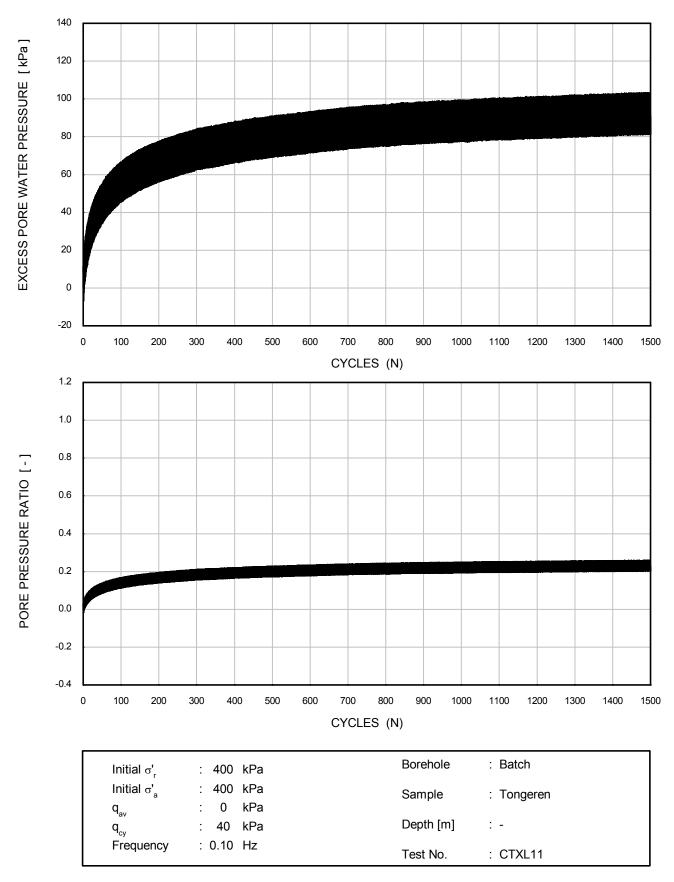

TEST IDENTIFICATION		
Borehole	Batch	
Sample	Tongeren	
Depth [m]	-	
Test number	CTXL11	

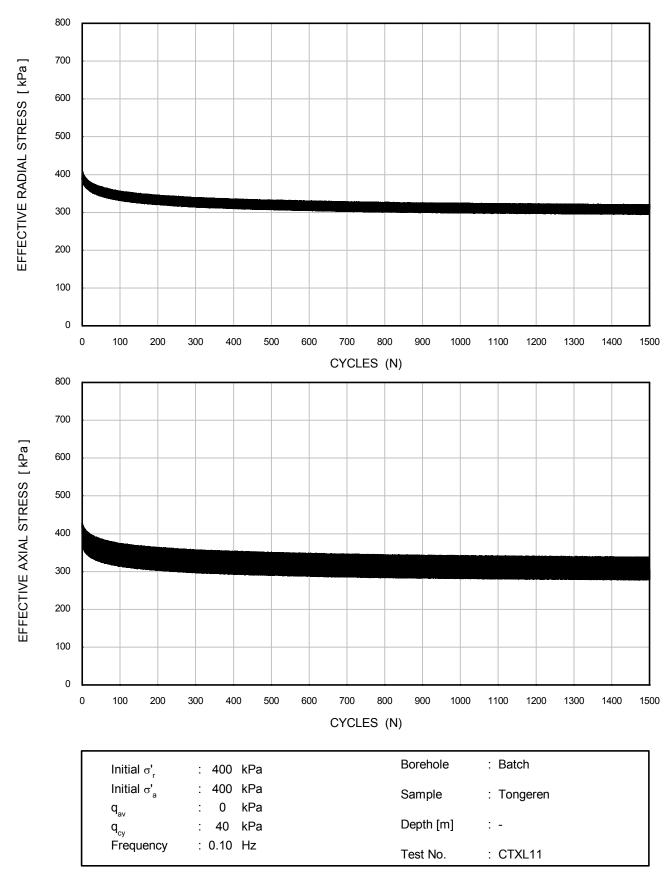

SHEARING STAGE		
Initial effective radial pressure	[kPa]	308
Initial effective axial pressure	[kPa]	307
Rate of strain	[%/hour]	1.00
At peak deviator stress		
Corrected deviator stress	[kPa]	219
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	0.79
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	257
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	143
Effective axial pressure	[kPa]	362
Principal effective stress ratio	[-]	2.53
ε ₅₀	[%]	0.06
Secant modulus (E ₅₀) at ϵ_{50}	[kPa]	158284
At peak principal effective stress r	atio	
Corrected deviator stress	[kPa]	194
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.37
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	320
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	80
Effective axial pressure	[kPa]	274
Principal effective stress ratio	[-]	3.44
At 10% axial strain		
Corrected deviator stress	[kPa]	193
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	9.70
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	319
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	80
Effective axial pressure	[kPa]	274
Principal effective stress ratio	[-]	3.40

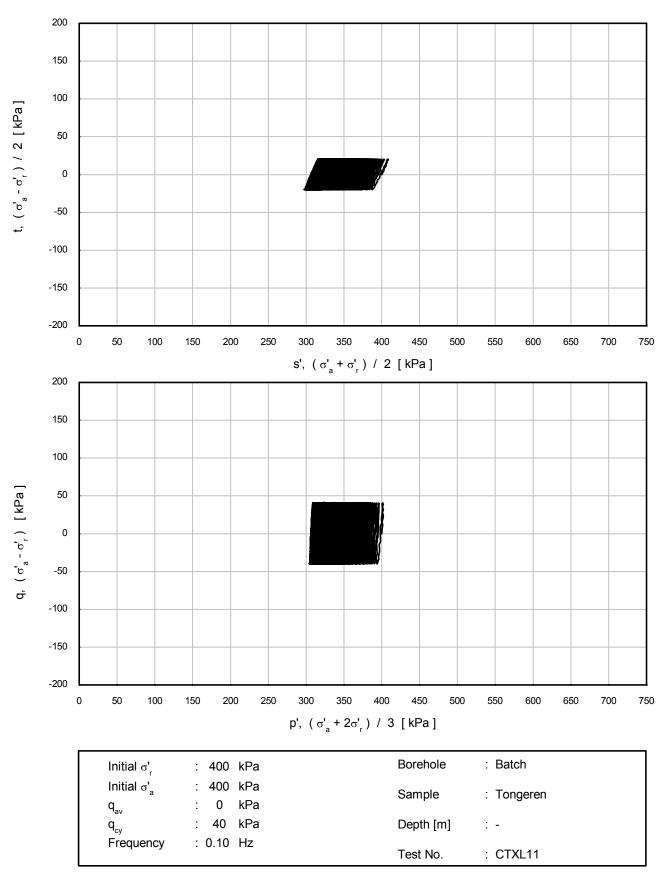
TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CTXL11

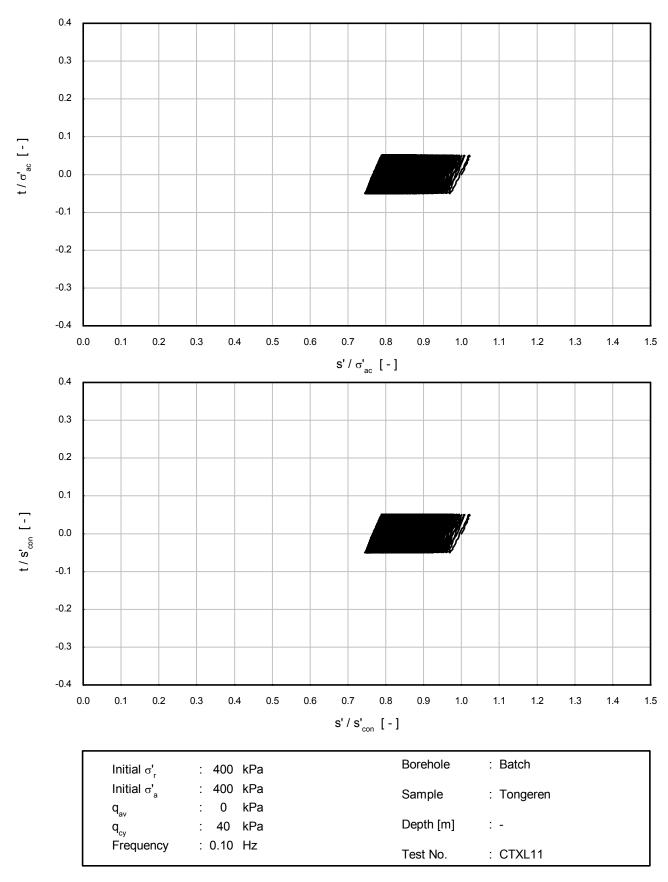


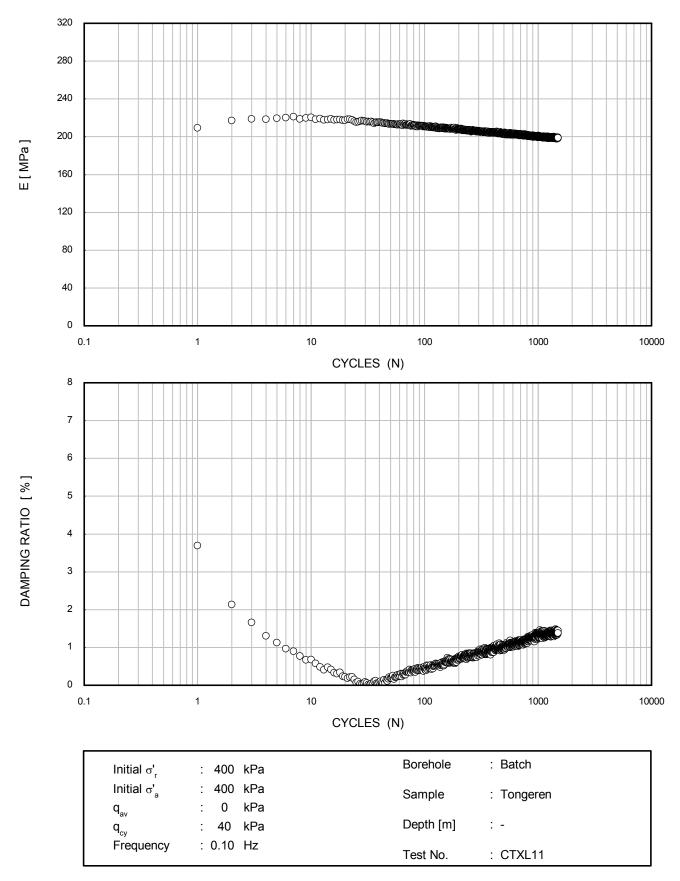

TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CTXL11

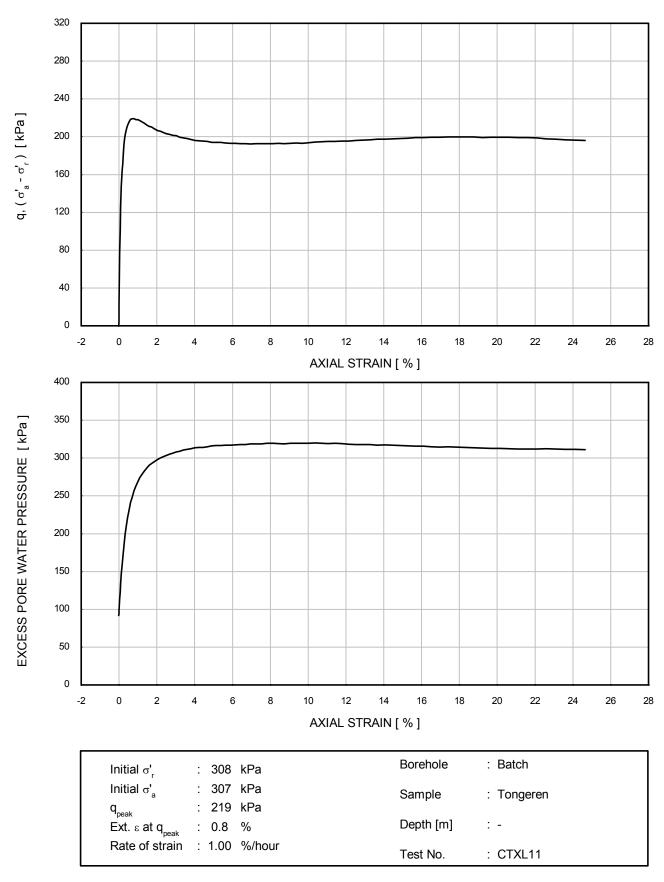


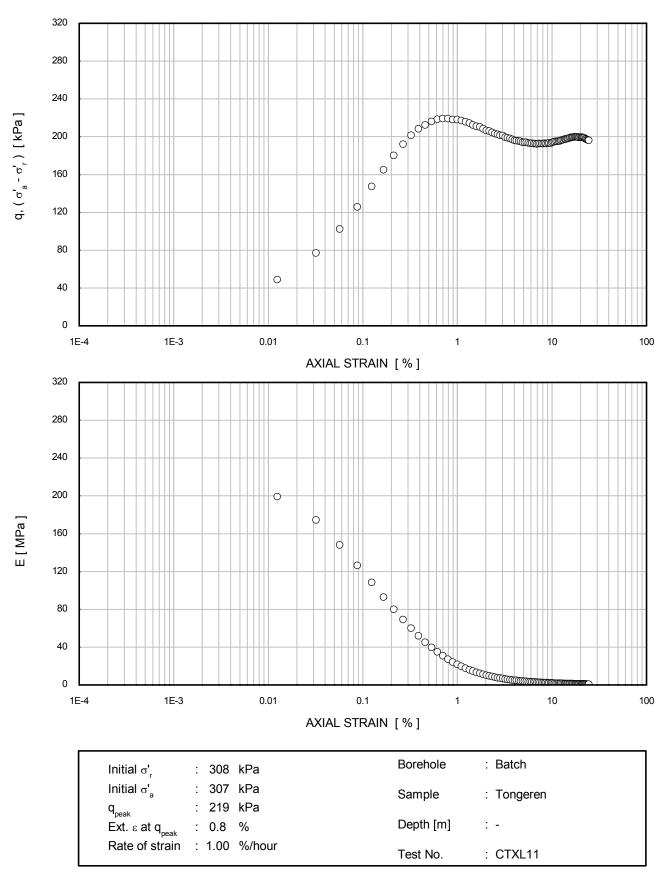


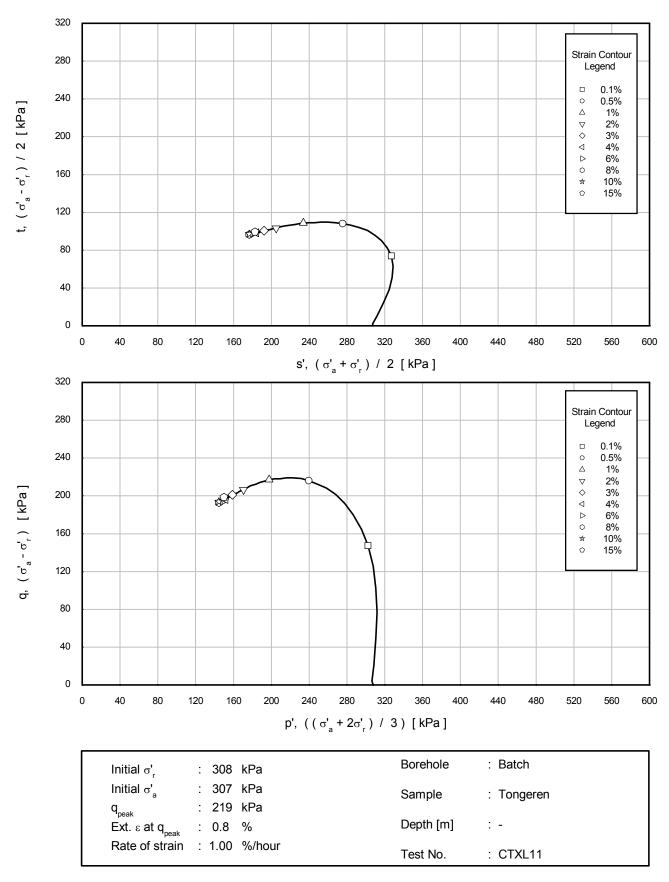

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE











VISUAL DESCRIPTION Olive grey silty fine SAND

GENERAL	
Date test started	18/08/2015
Type of sample	Re-compacted
Type of drains fitted	One end only

INITIAL			
Diameter	[mm]	71.1	
Length	[mm]	144.0	
Moisture content	[%]	9.7	
Bulk density	[Mg/m³]	1.77	
Dry density	[Mg/m³]	1.61	
Void ratio	[-]	0.642	
Degree of saturation	[%]	40	
Assumed particle density	[Mg/m³]	2.65	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	

TESTING PROCEDURES USED				
Specimen Set-up	Fugro in house procedure			
Saturation	Fugro in house procedure			
Consolidation - Isotropic	Fugro in house procedure			
Consolidation - Anisotropic	N/A			
Shearing	Fugro in house procedure			
Note:				
Fugro testing procedures are available upon request				

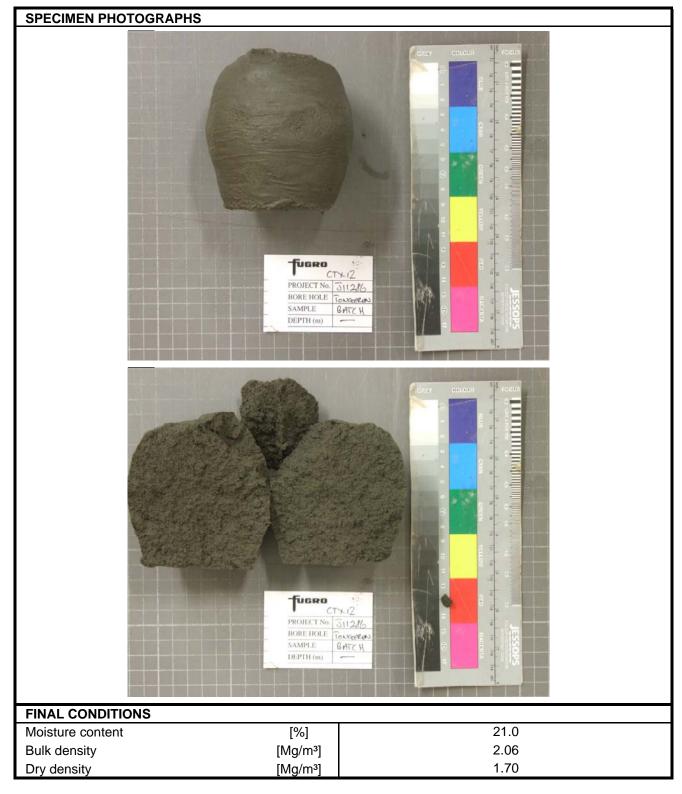
QUALITY ASSURANCE	
Template Issue	1.0
Filename	J11286 \ Batch_Tongeren_CTXL12
Processed by	LC
Date	19/08/2015
Checked by	LJ
Date	20/08/2015
Approved by	PH
Date	20/08/2015

TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CTXL12

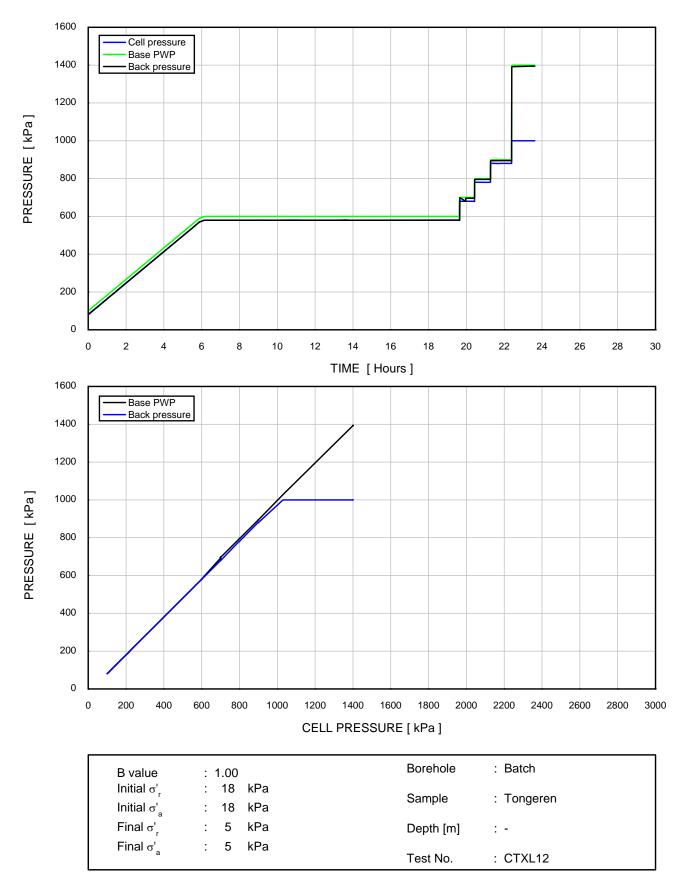
SUMMARY OF ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST

SATURATION		
Pressure increments applied	[kPa]	Drained ramp, with subsequent 100 kPa increments
Differential pressure used	[kPa]	10
Cell pressure	[kPa]	1400
Base PWP	[kPa]	1395
Mid height PWP	[kPa]	-
B value achieved	[-]	1.00

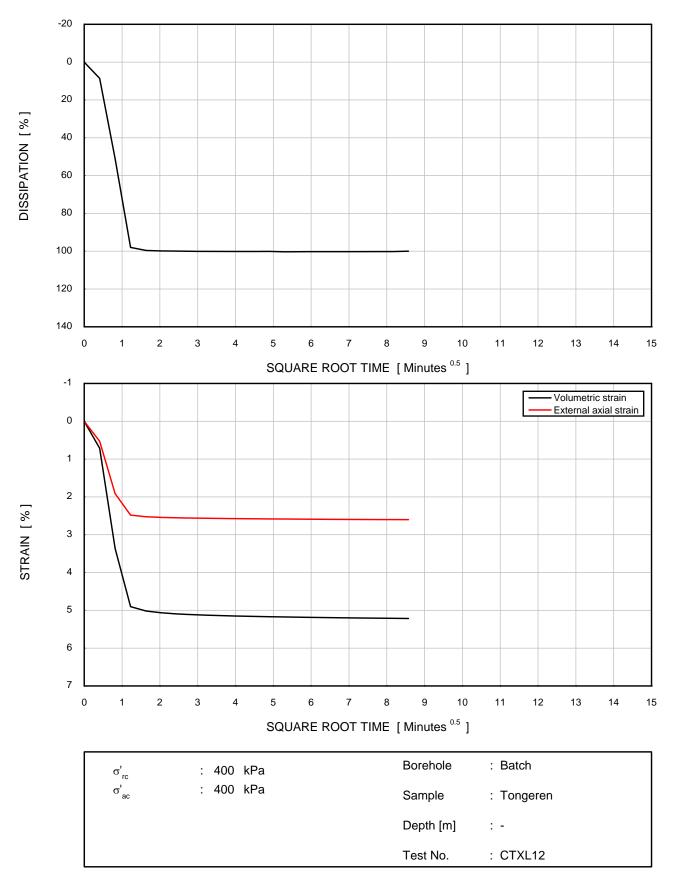
CONSOLIDATION: ISOTROPIC			
Cell pressure	[kPa]	1400	
Back pressure	[kPa]	1000	
Base PWP	[kPa]	1000	
Mid height PWP	[kPa]	-	
Effective radial pressure	[kPa]	400	
Effective axial pressure	[kPa]	400	
Deviator stress	[kPa]	0	
Volumetric strain	[%]	5.22	
External axial strain	[%]	2.60	
Local axial strain	[%]	-	
Local radial strain	[%]	-	
Moisture content	[%]	21.0	
Bulk density	[Mg/m³]	2.06	
Dry density	[Mg/m³]	1.70	
Void ratio	[-]	0.556	
Degree of saturation	[%]	100	

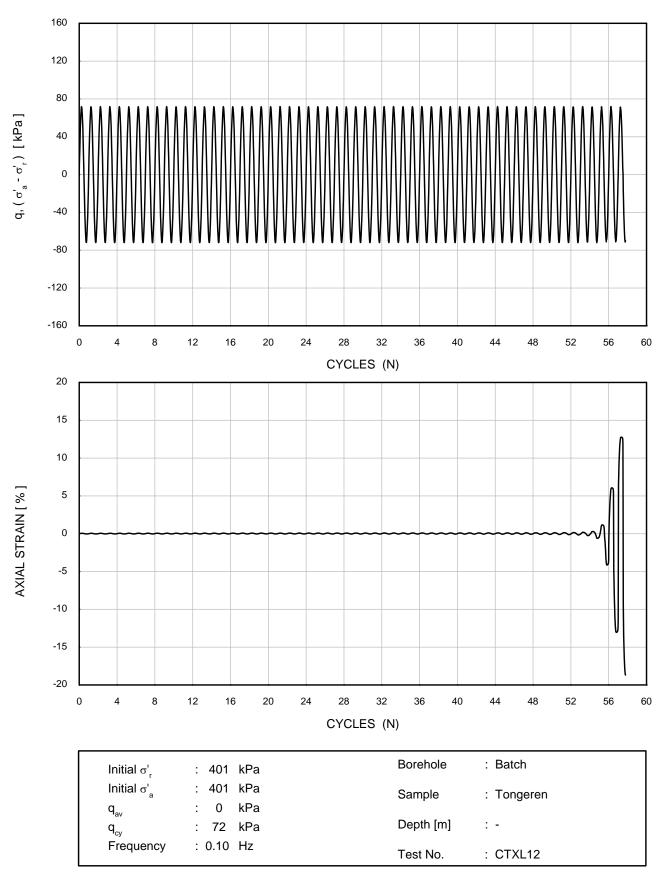

TEST IDENTIFICATION		
Borehole	Batch	
Sample	Tongeren	
Depth [m]	-	
Test number	CTXL12	

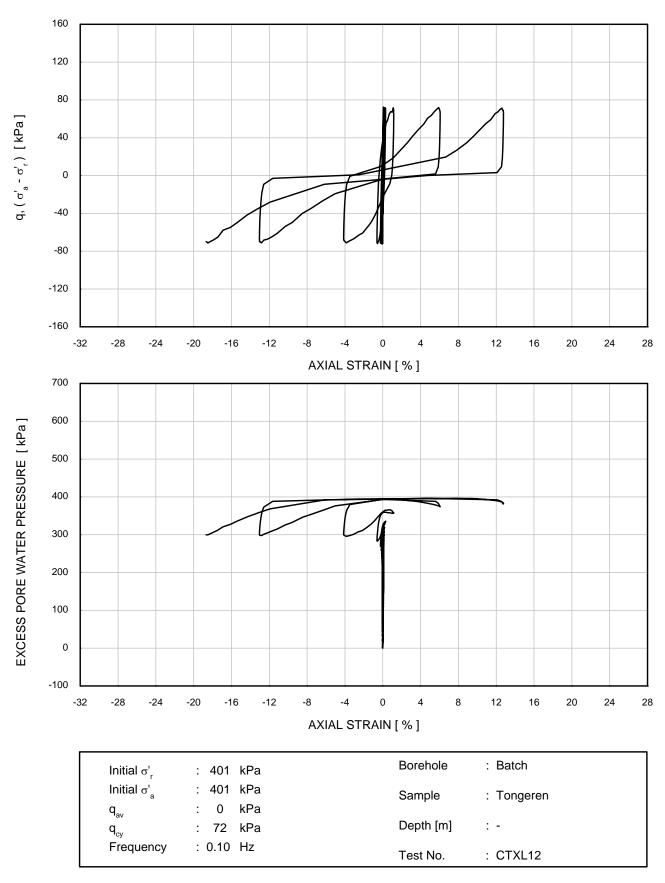
STRESS-CONTROLLED CYCLIC LOADING STAGE							
Reference stress		[kPa]	400				
Mean q _{av}		[kPa]			0		
Mean q _{cy}		[kPa]			72	2	
Frequency		[Hz]			0.1	0	
Number of cycles at failure	(N_f)	[-]			58	3	
External ε _{av} at N _f		[%]			-2.9	96	
External $\epsilon_{\sf cy}$ at ${\sf N_f}$		[%]			15.	72	
Local ε _{av} at N _f		[%]			-		
Local ε _{cy} at N _f		[%]			-		
Δ base PWP at N _f		[kPa]			34	7	
Δ mid height PWP at N _f		[kPa]	-				
Moisture content		[%]	21.0				
Bulk density		[Mg/m³]	2.06				
Dry density		[Mg/m³]			1.7	' 0	
Void ratio		[-]			0.5		
Degree of saturation		[%]			10	0	
Cycle	ϵ_{av}	ϵ_{cy}	E _{ext}	E_loc	λ_{ext}	λ_{loc}	
(N)	[%]	[%]	[MPa]	[MPa]	[%]	[%]	
1	0.01	0.05	149	-	13.40	-	
2	0.01	0.05	155	-	10.48	-	
5	0.01	0.05	151	-	8.44	-	
10	0.02	0.05	144	-	7.73	-	
20	0.02	0.06	129	-	7.74	-	
30	0.02	0.06	115	-	8.47	-	
40	0.03	0.07	97	-	10.11	-	
50	0.02	0.11	66	-	14.75	-	
58	-2.96	15.72	0	-	11.59	-	

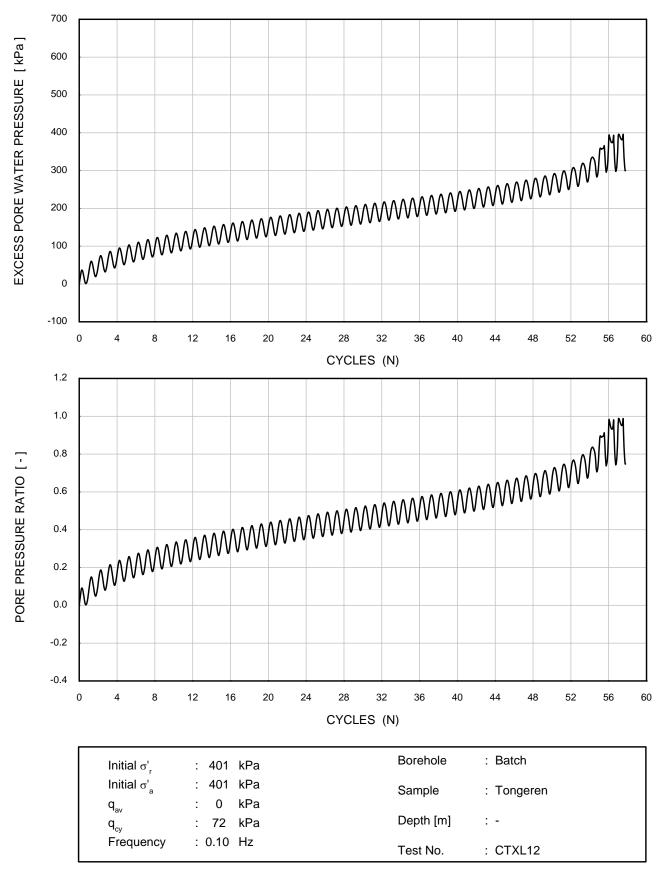

TEST IDENTIFICATION		
Borehole	Batch	
Sample	Tongeren	
Depth [m]	-	
Test number	CTXL12	

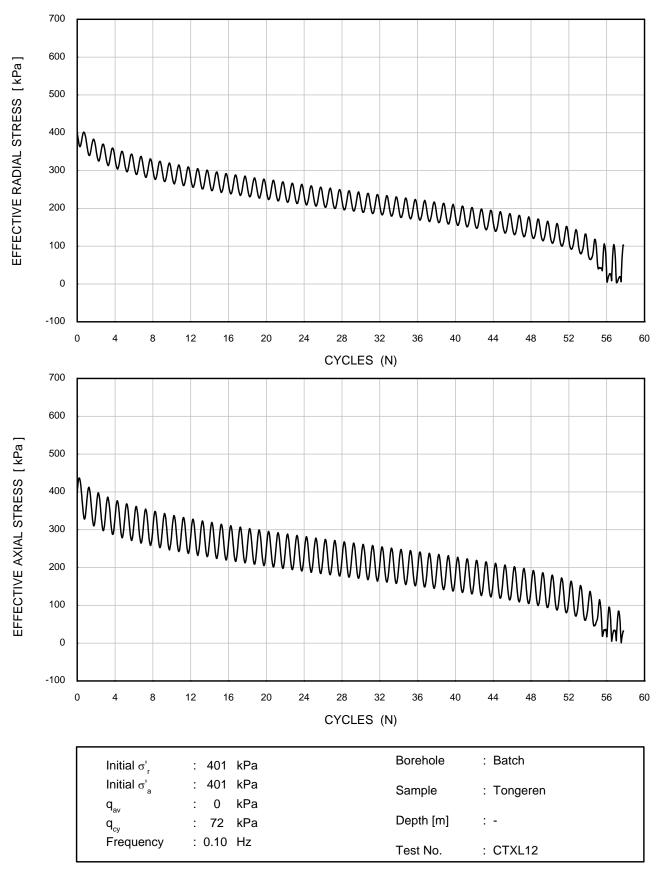
SHEARING STAGE		
Initial effective radial pressure	[kPa]	1
Initial effective axial pressure	[kPa]	2
Rate of strain	[%/hour]	0.87
At peak deviator stress		
Corrected deviator stress	[kPa]	140
Membrane correction applied	[kPa]	2
Drain correction applied	[kPa]	0
External axial strain	[%]	19.43
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	351
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	49
Effective axial pressure	[kPa]	189
Principal effective stress ratio	[-]	3.86
ε ₅₀	[%]	14.40
Secant modulus (E ₅₀) at ϵ_{50}	[kPa]	471
At peak principal effective stress r	atio	
Corrected deviator stress	[kPa]	3
Membrane correction applied	[kPa]	0
Drain correction applied	[kPa]	0
External axial strain	[%]	1.70
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	399
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	0
Effective axial pressure	[kPa]	3
Principal effective stress ratio	[-]	14.19
At 10% axial strain		
Corrected deviator stress	[kPa]	26
Membrane correction applied	[kPa]	1
Drain correction applied	[kPa]	0
External axial strain	[%]	10.00
Local axial strain	[%]	-
Local radial strain	[%]	-
Excess base PWP	[kPa]	391
Excess mid height PWP	[kPa]	-
Effective radial pressure	[kPa]	9
Effective axial pressure	[kPa]	35
Principal effective stress ratio	[-]	4.09

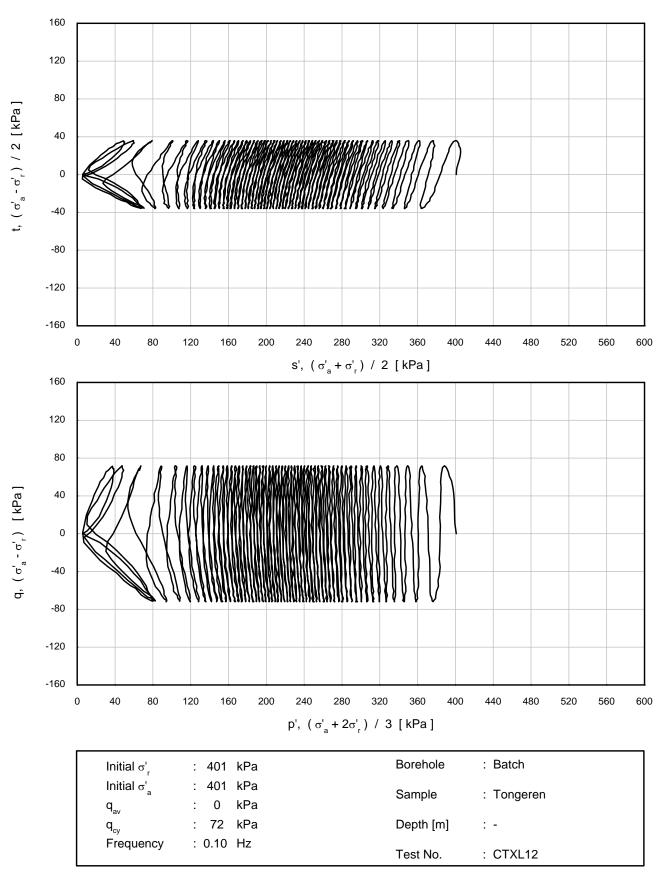

TEST IDENTIFICATION		
Borehole	Batch	
Sample	Tongeren	
Depth [m]	-	
Test number	CTXL12	

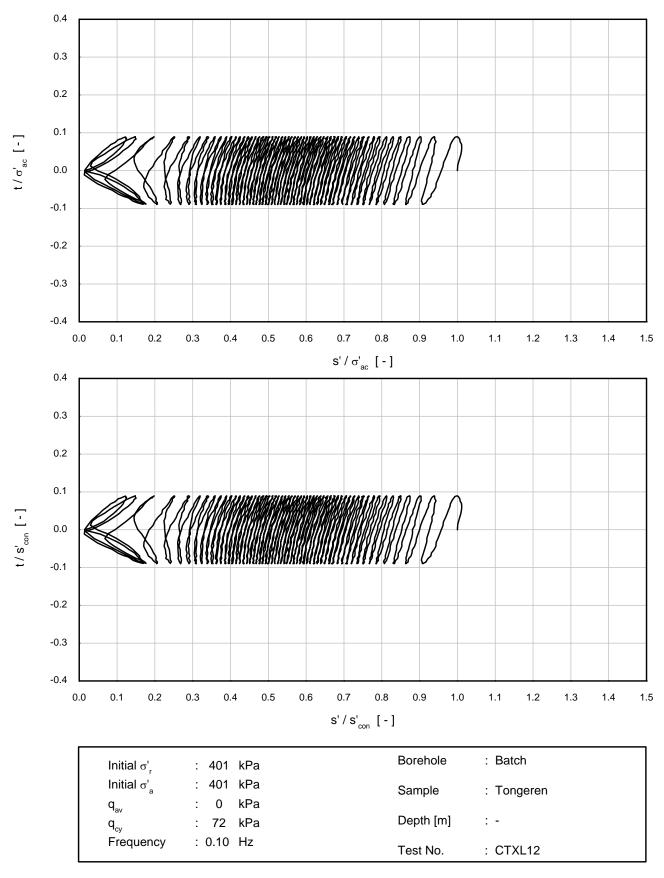

TEST IDENTIFICATION	
Borehole	Batch
Sample	Tongeren
Depth [m]	-
Test number	CTXL12

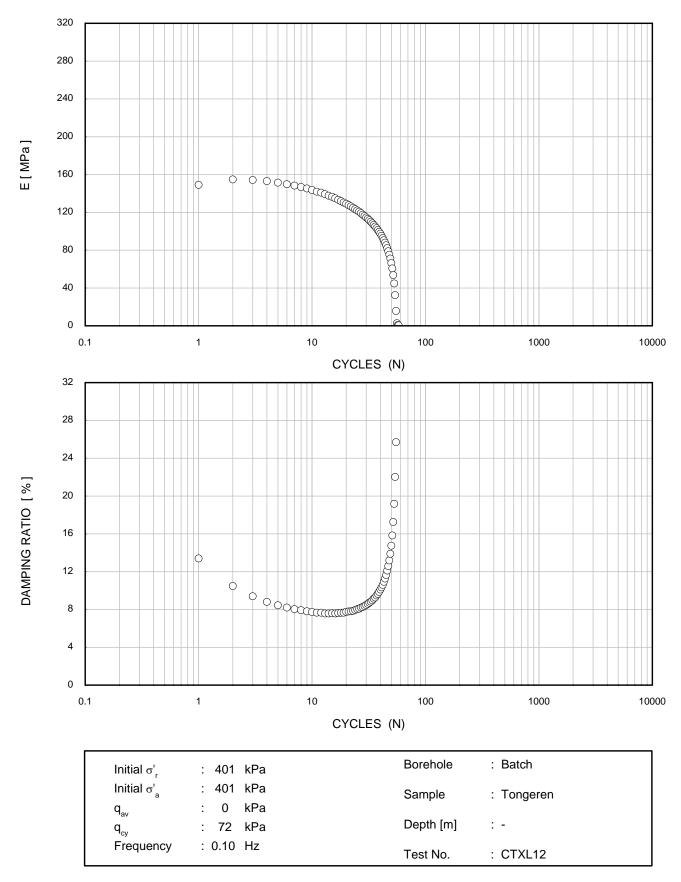


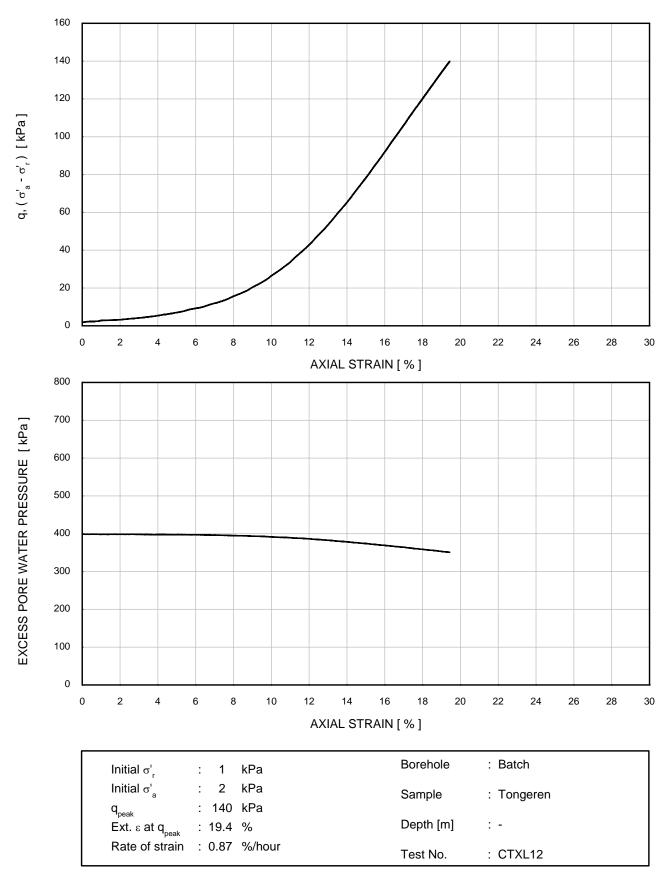

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST SATURATION STAGE - DRAINED

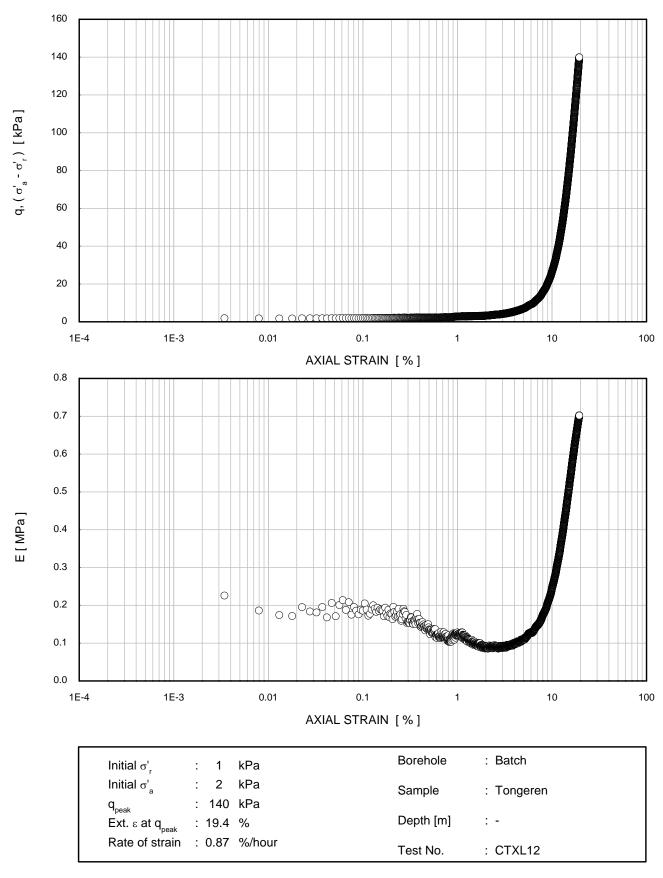


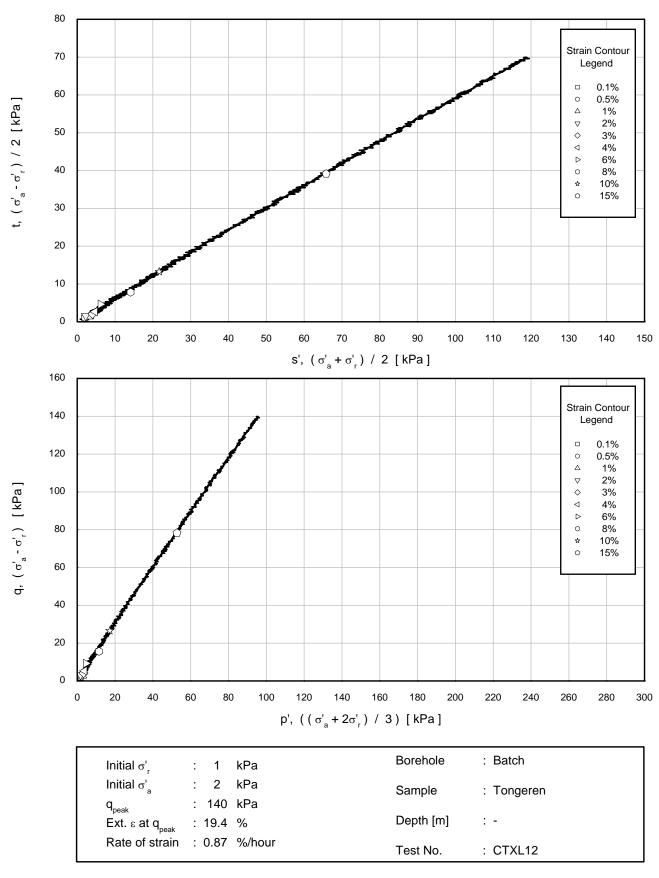

ISOTROPICALLY CONSOLIDATED CYCLIC TRIAXIAL TEST ISOTROPIC CONSOLIDATION STAGE











SECTION A7: CYCLIC SIMPLE SHEAR TESTS

LIST OF PLATES IN SECTION A+: Plate

Cyclic Simple Shear Test Results A7-1 to A7-132

VISUAL DESCRIPTION

Very high strength brown slightly sandy CLAY

GENERAL	
Date test started	16/07/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL		
Diameter	[mm]	65.8
Length	[mm]	30.0
Moisture content	[%]	20.5
Bulk density	[Mg/m³]	2.05
Dry density	[Mg/m³]	1.71
Void ratio	[-]	0.584
Degree of saturation	[%]	95
Assumed particle density	[Mg/m³]	2.70
Torvane	[kPa]	113
Pocket penetrometer	[kPa]	300
Torvane 90°	[kPa]	-
Pocket penetrometer 90°	[kPa]	-

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE	
Filename	J11286 \ BH-WFS 1-4_17C_CSS01
Template issue	1.2
Processed by	НВ
Date	20/07/2015
Checked by	PH
Date	04/08/2015
Approved by	PH
Date	12/08/2015

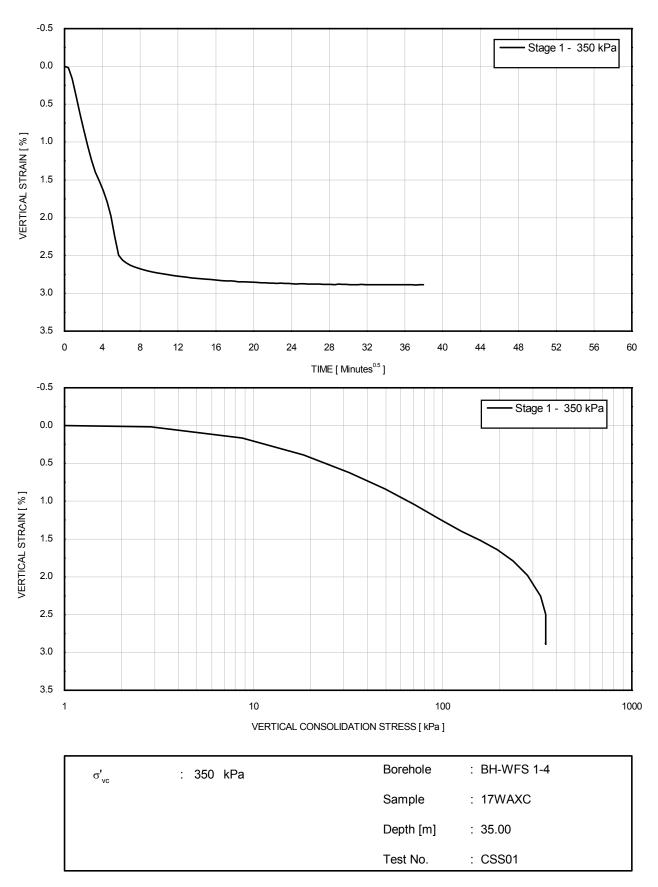
TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXC
Depth [m]	35.00
Test number	CSS01

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

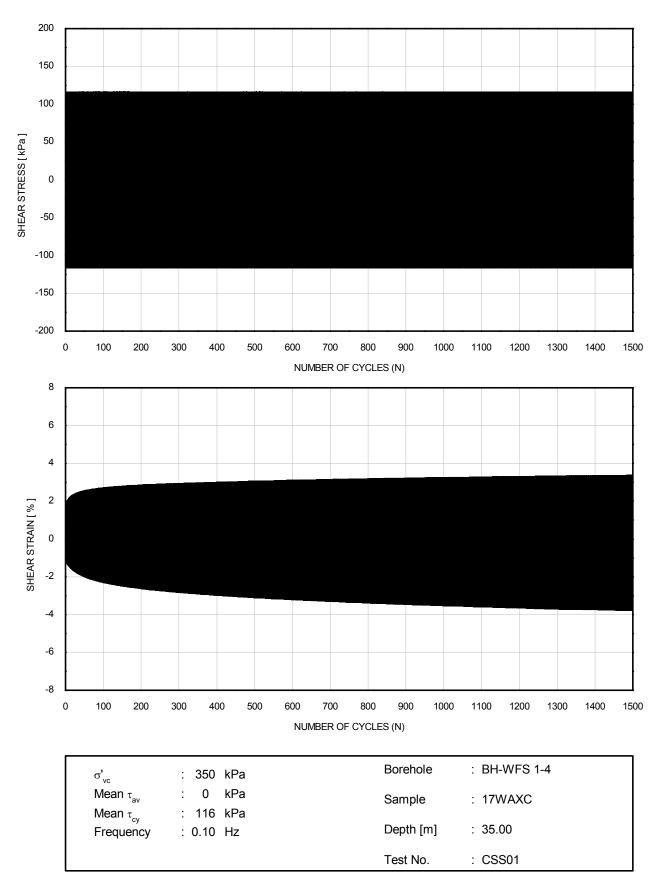
CONSOLIDATION			
σ' _{vc}	[kPa]	350	
Vertical strain	[%]	2.89	
Bulk density	[Mg/m³]	2.09	
Dry density	[Mg/m ³]	1.76	
Void ratio	[-]	0.538	
Moisture content	[%]	18.8	

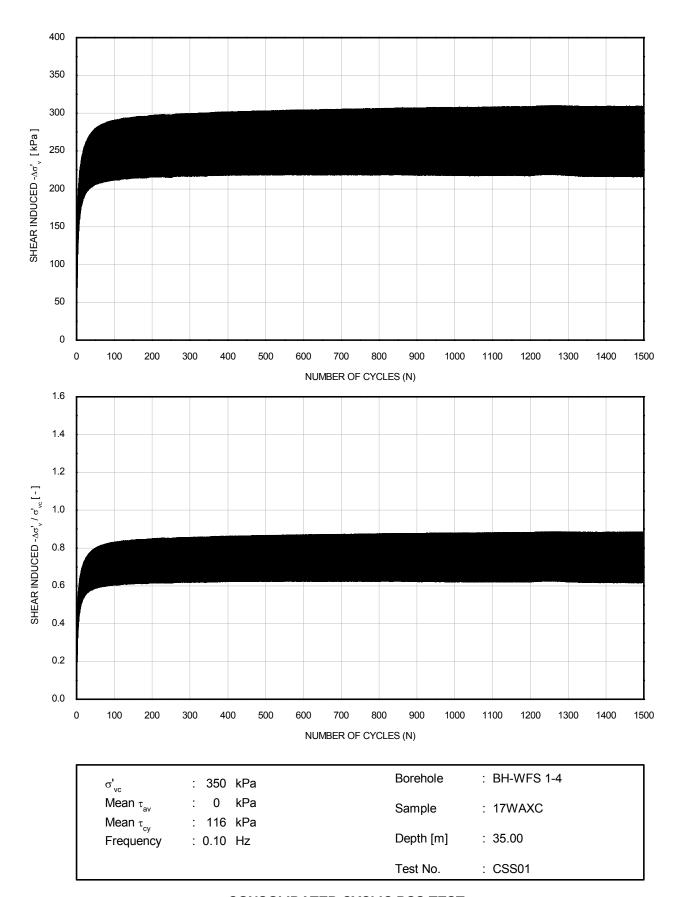
STRESS-CONTROLLED CYCLIC LOADING - CONSTANT VOLUME		
Reference stress	[kPa]	316
Mean τ_{av}	[kPa]	0
Mean τ_{cy}	[kPa]	116
Frequency	[Hz]	0.10
Number of cycles at failure (N _f)	[-]	1500
$\gamma_{\sf av}$ at ${\sf N_f}$	[%]	-0.20
$\gamma_{\sf cy}$ at N $_{\sf f}$	[%]	3.56
Shear induced - $\Delta\sigma'_{v}$ at N $_{f}$	[kPa]	263
Vertical strain	[%]	0.00

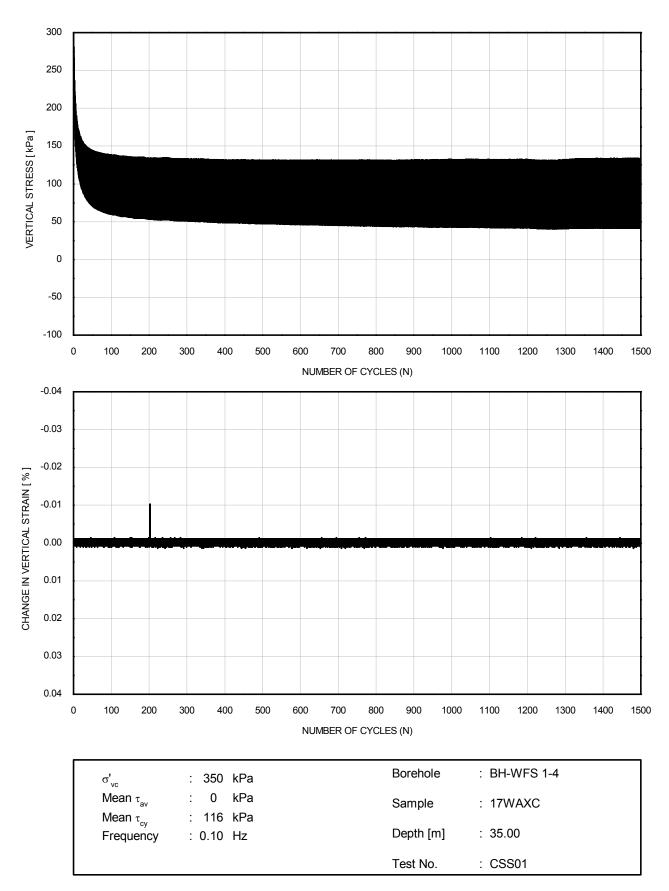
SHEARING - CONSTANT VOL	UME		
At peak shear stress			
Shear stress	[kPa]	211	
Shear strain	[%]	20.76	
Shear induced $\Delta\sigma'_{v}$	[kPa]	89	
Vertical stress	[kPa]	261	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	2.57	
At 15 % shear strain			
Shear stress	[kPa]	206	
Shear induced -∆σ' _v	[kPa]	101	
Vertical stress	[kPa]	249	
Vertical strain	[%]	0.00	

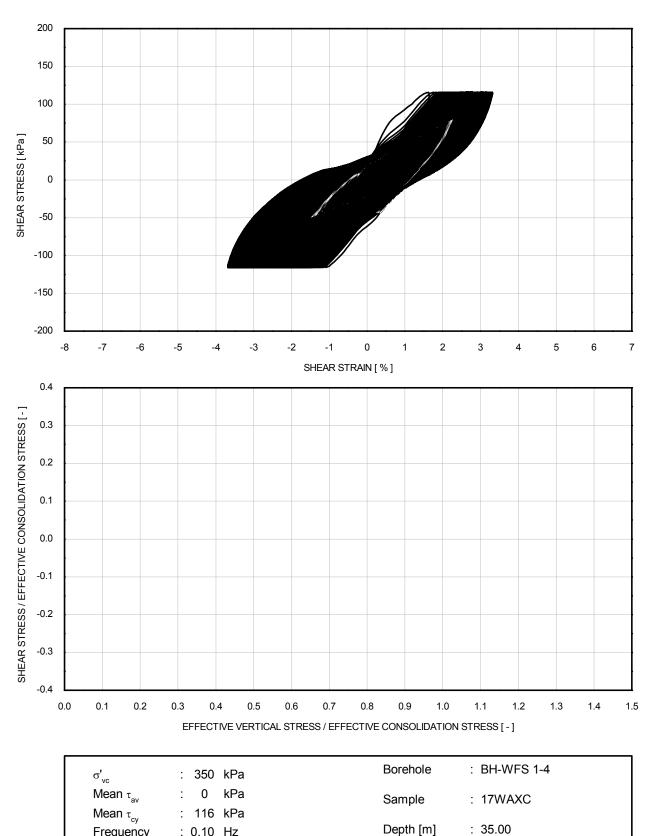

TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXC
Depth [m]	35.00
Test number	CSS01

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

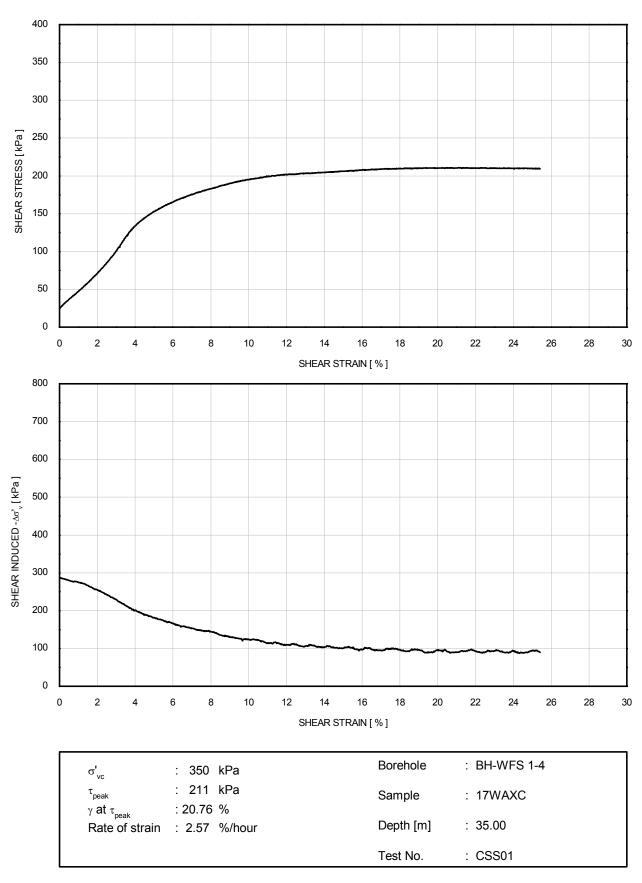

SPECIMEN PHOTOGRAPH	
'	
Photograph unavailable	

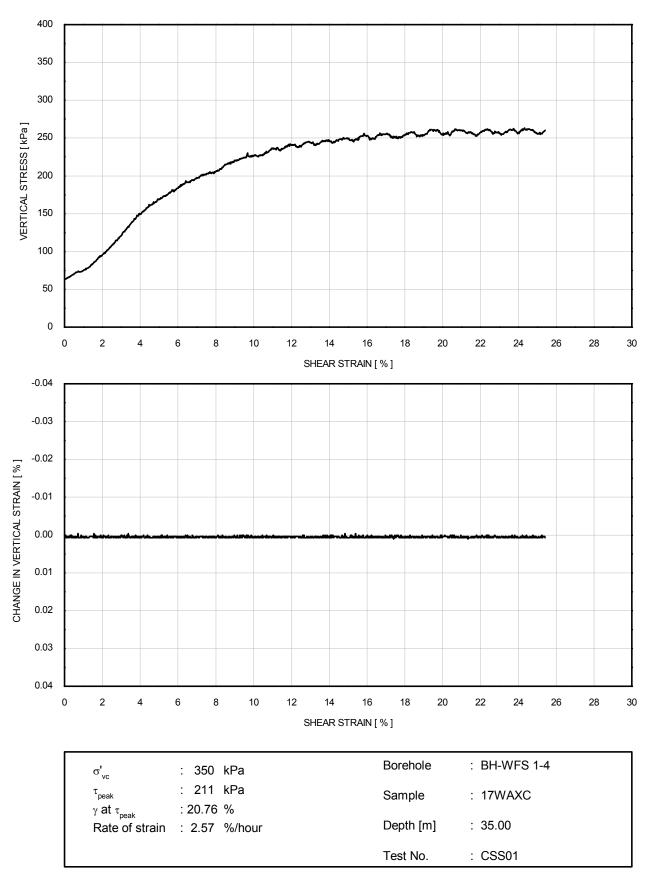

TEST IDENTIFICATION		
Borehole	BH-WFS 1-4	
Sample	17WAXC	
Depth [m]	35.00	
Test number	CSS01	

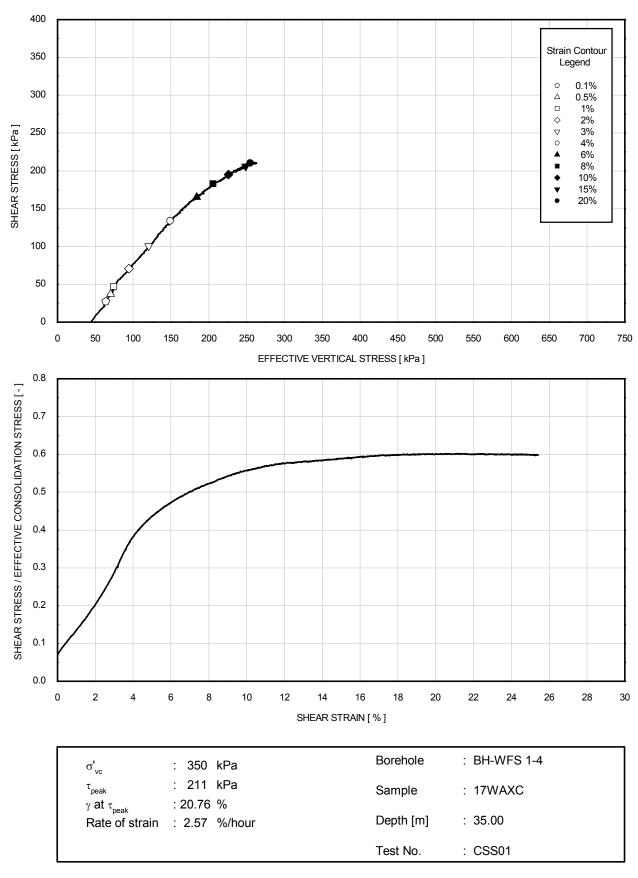

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

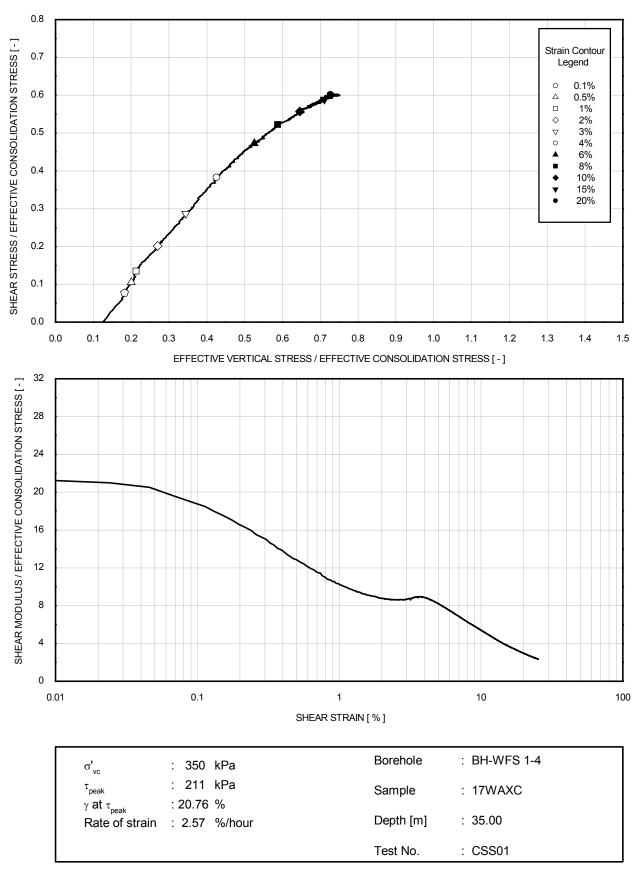


CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE






Frequency : 0.10 Hz Depth [m] : 35.00


Test No. : CSS01

CONSOLIDATED CYCLIC DSS TEST STRESS-CONTROLLED CYCLIC LOADING STAGE - CONSTANT VOLUME

VISUAL DESCRIPTION

Very high strength brown slightly sandy CLAY

GENERAL	
Date test started	16/07/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL			
Diameter	[mm]	65.9	
Length	[mm]	30.0	
Moisture content	[%]	21.1	
Bulk density	[Mg/m³]	2.03	
Dry density	[Mg/m³]	1.68	
Void ratio	[-]	0.610	
Degree of saturation	[%]	94	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	113	
Pocket penetrometer	[kPa]	150	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE	
Filename	J11286 \ BH-WFS 1-4_17C_CSS02
Template issue	1.2
Processed by	НВ
Date	20/07/2015
Checked by	PH
Date	04/08/2015
Approved by	PH
Date	12/08/2015

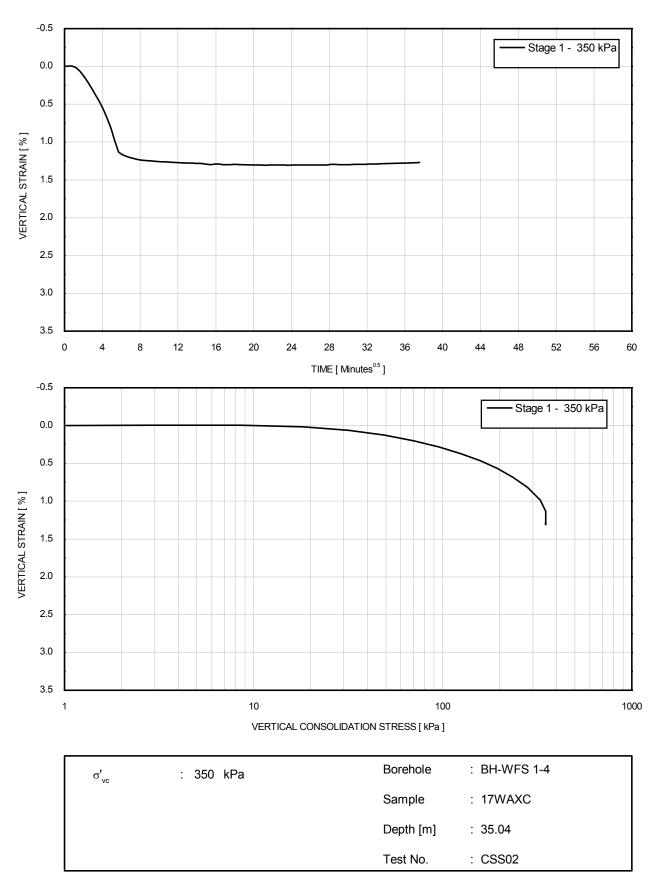
TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXC
Depth [m]	35.04
Test number	CSS02

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

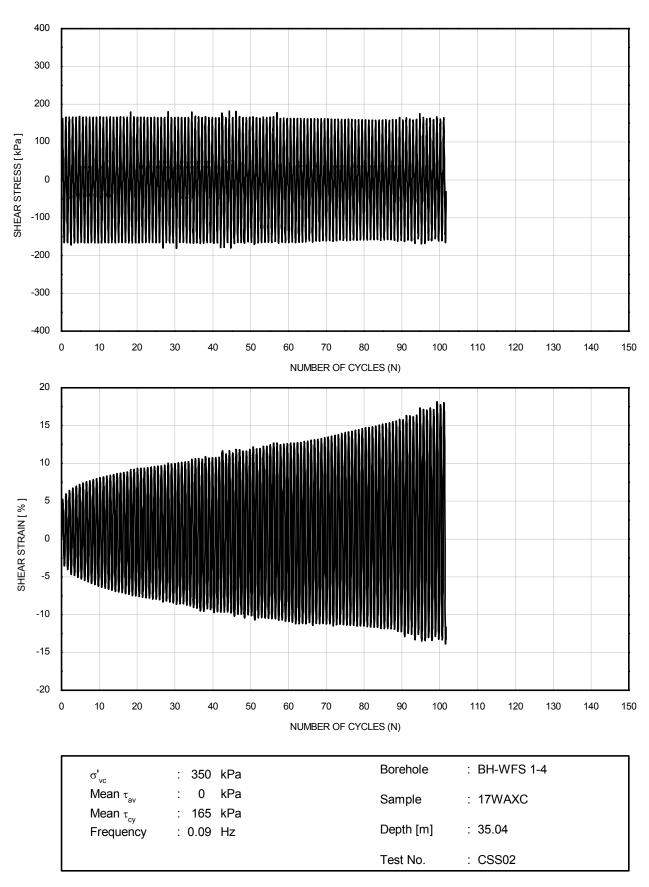
CONSOLIDATION			
σ' _{vc}	[kPa]	350	
Vertical strain	[%]	1.27	
Bulk density	[Mg/m³]	2.04	
Dry density	[Mg/m ³]	1.70	
Void ratio	[-]	0.589	
Moisture content	[%]	20.4	

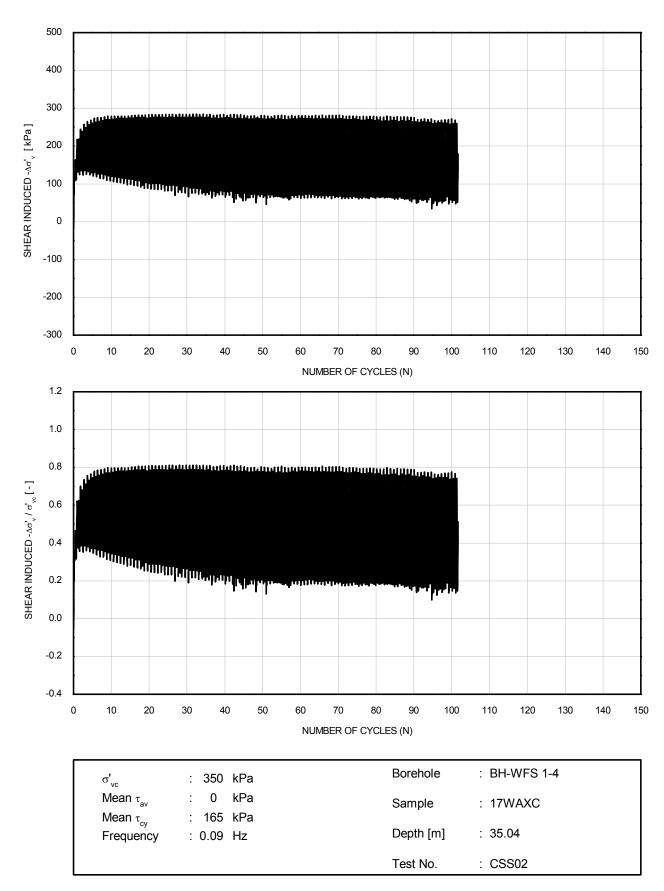
STRESS-CONTROLLED CYCLIC LOADING – CONSTANT VOLUME			
Reference stress	[kPa]	316	
Mean τ_{av}	[kPa]	0	
Mean τ_{cy}	[kPa]	165	
Frequency	[Hz]	0.09	
Number of cycles at failure (N _f)	[-]	103	
$\gamma_{\sf av}$ at ${\sf N_f}$	[%]	1.84	
$\gamma_{\sf cy}$ at ${\sf N_f}$	[%]	14.44	
Shear induced - $\Delta\sigma'_{v}$ at N _f	[kPa]	164	
Vertical strain	[%]	0.00	

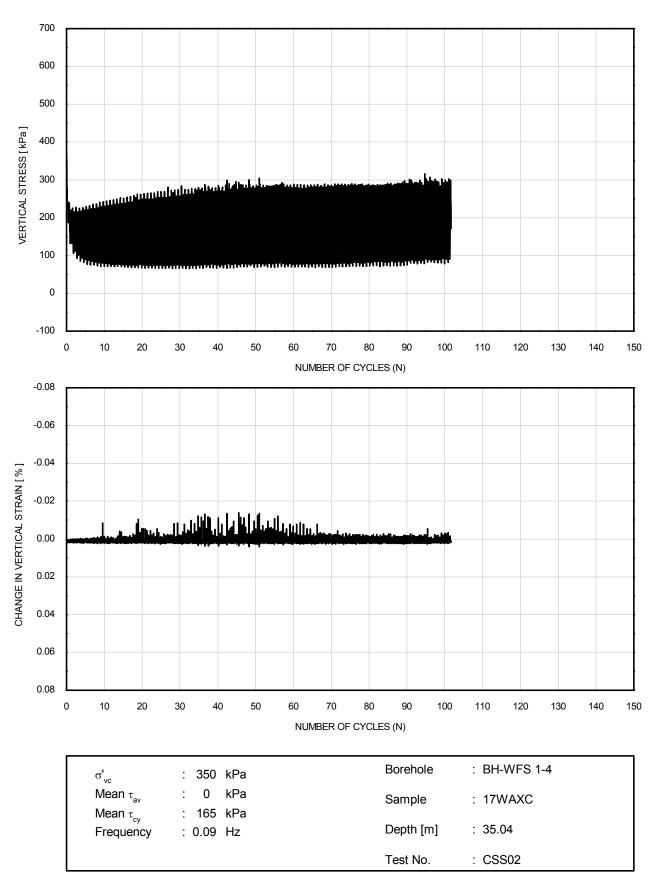
SHEARING - CONSTANT VOL	JME		
At peak shear stress			
Shear stress	[kPa]	159	
Shear strain	[%]	27.28	
Shear induced $\Delta\sigma'_{v}$	[kPa]	98	
Vertical stress	[kPa]	253	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.07	
At 15 % shear strain			
Shear stress	[kPa]	125	
Shear induced -∆σ' _v	[kPa]	157	
Vertical stress	[kPa]	193	
Vertical strain	[%]	0.00	

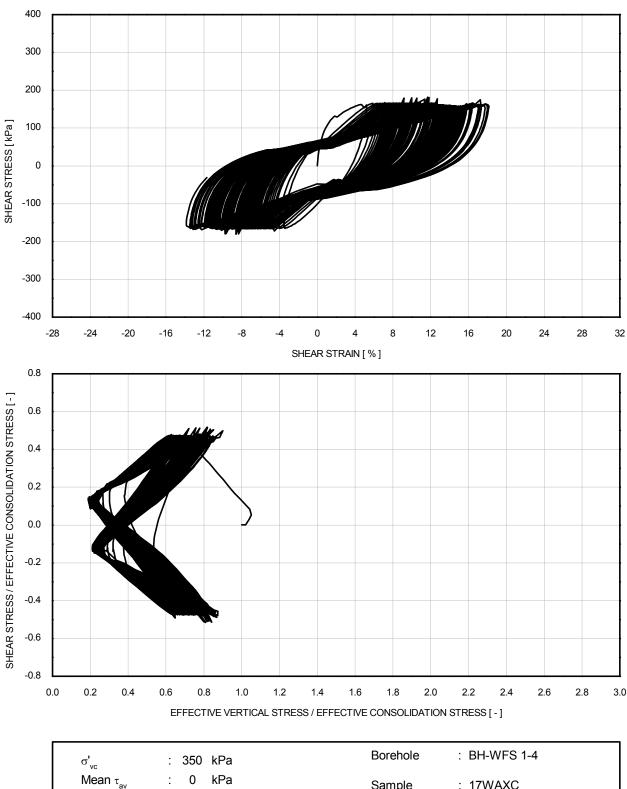

TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXC
Depth [m]	35.04
Test number	CSS02

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

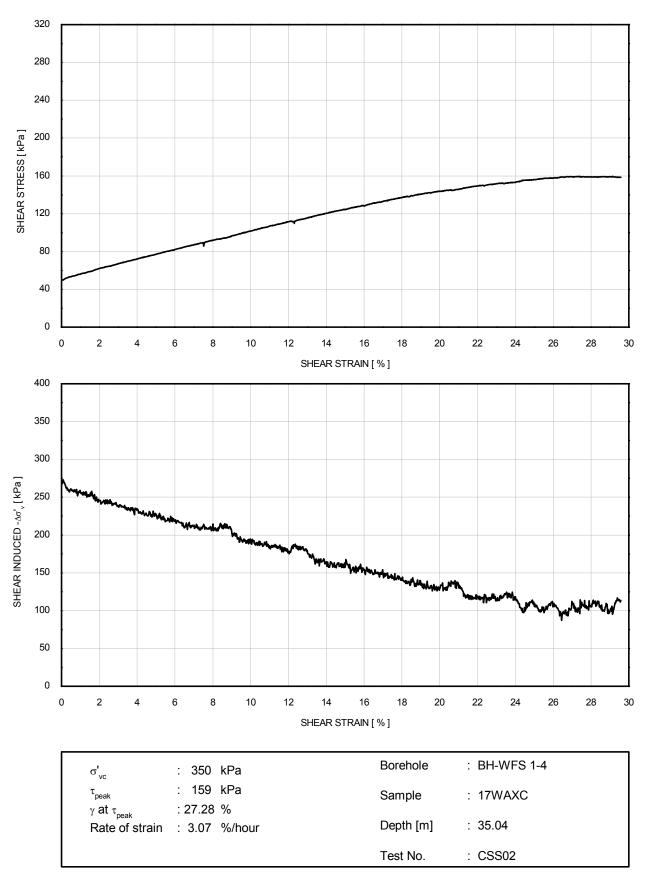

ODECIMEN DUOTOODADU		
SPECIMEN PHOTOGRAPH		
Photograph unavailable		
3 1		
	 •	

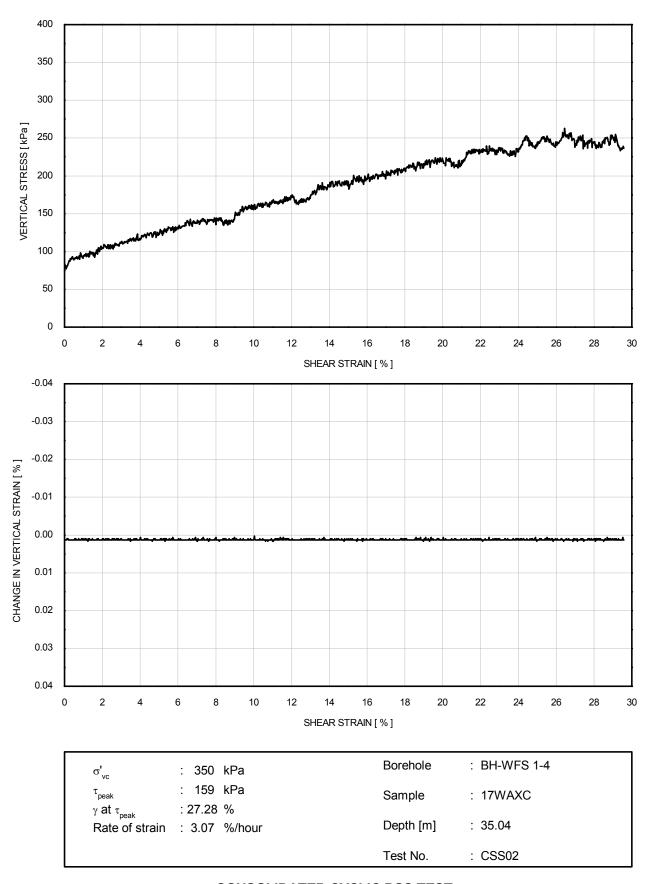

TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXC
Depth [m]	35.04
Test number	CSS02

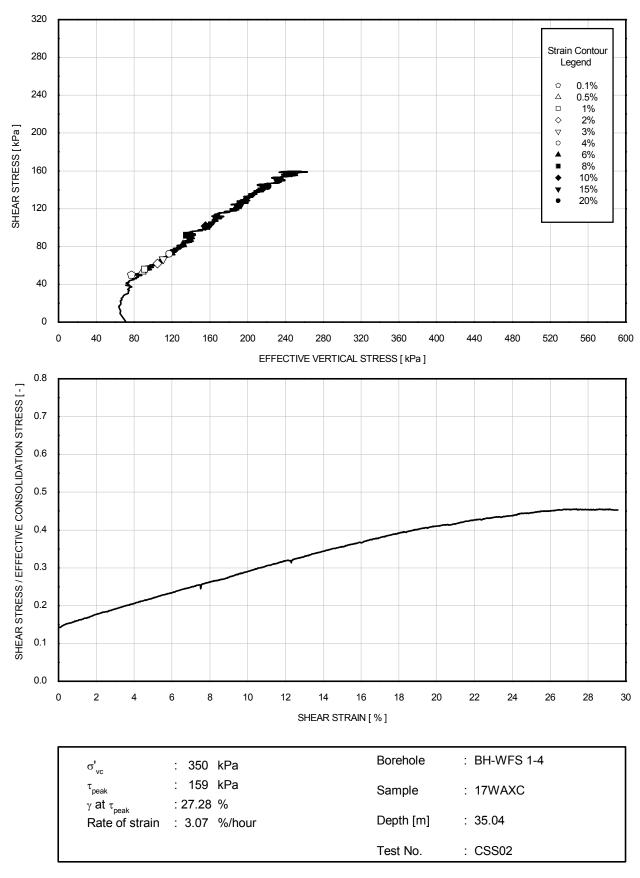

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

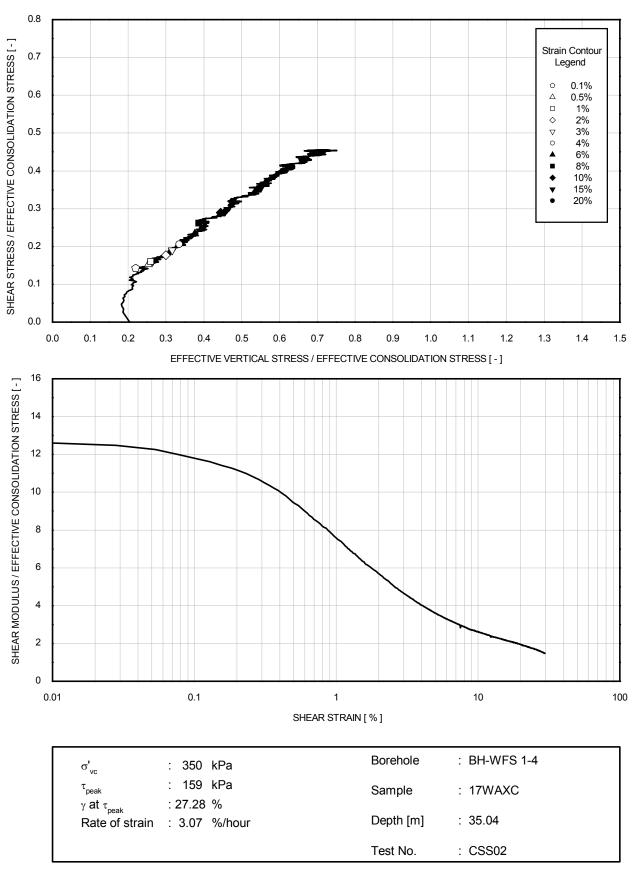


CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE








 σ'_{vc} : 350 kPa Boreliole : Bn-WFS 1-4 Mean τ_{av} : 0 kPa Sample : 17WAXC Mean τ_{cy} : 165 kPa Frequency : 0.09 Hz Depth [m] : 35.04 Test No. : CSS02

CONSOLIDATED CYCLIC DSS TEST STRESS-CONTROLLED CYCLIC LOADING STAGE - CONSTANT VOLUME

VISUAL DESCRIPTION

Dark brown CLAY with medium pyritic gravel

GENERAL	
Date test started	28/07/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL		
Diameter	[mm]	65.9
Length	[mm]	30.0
Moisture content	[%]	22.5
Bulk density	[Mg/m³]	2.04
Dry density	[Mg/m³]	1.66
Void ratio	[-]	0.625
Degree of saturation	[%]	97
Assumed particle density	[Mg/m³]	2.70
Torvane	[kPa]	-
Pocket penetrometer	[kPa]	417
Torvane 90°	[kPa]	-
Pocket penetrometer 90°	[kPa]	-

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE		
Filename	J11286 \ BH-WFS 1-4_17D_CSS03	
Template issue	1.2	
Processed by	НВ	
Date	10/08/2015	
Checked by	PH	
Date	11/08/2015	
Approved by	PH	
Date	12/08/2015	

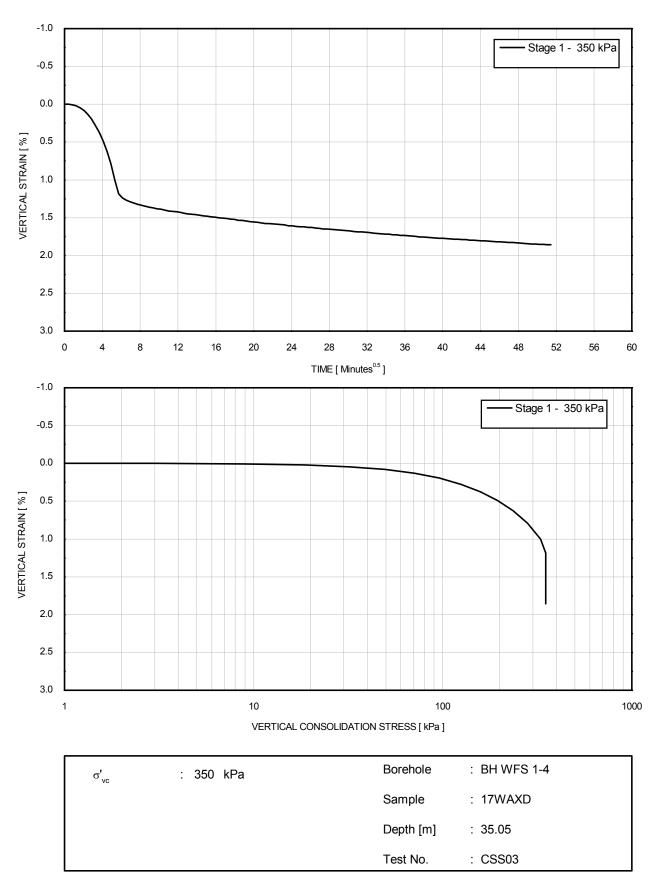
TEST IDENTIFICATION	
Borehole	BH WFS 1-4
Sample	17WAXD
Depth [m]	35.05
Test number	CSS03

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

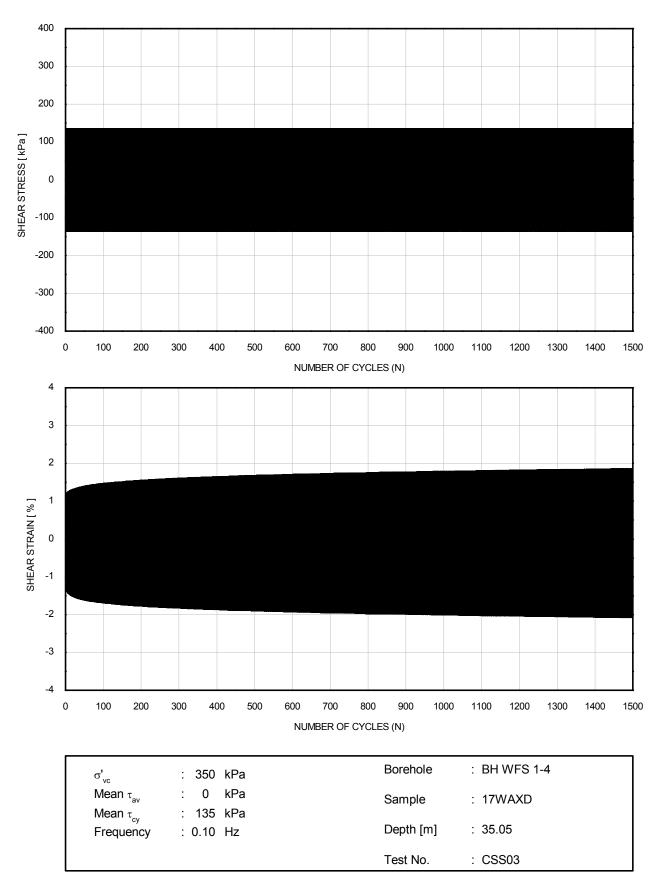
CONSOLIDATION			
σ' _{vc}	[kPa]	350	
Vertical strain	[%]	1.86	
Bulk density	[Mg/m³]	2.06	
Dry density	[Mg/m ³]	1.69	
Void ratio	[-]	0.594	
Moisture content	[%]	21.4	

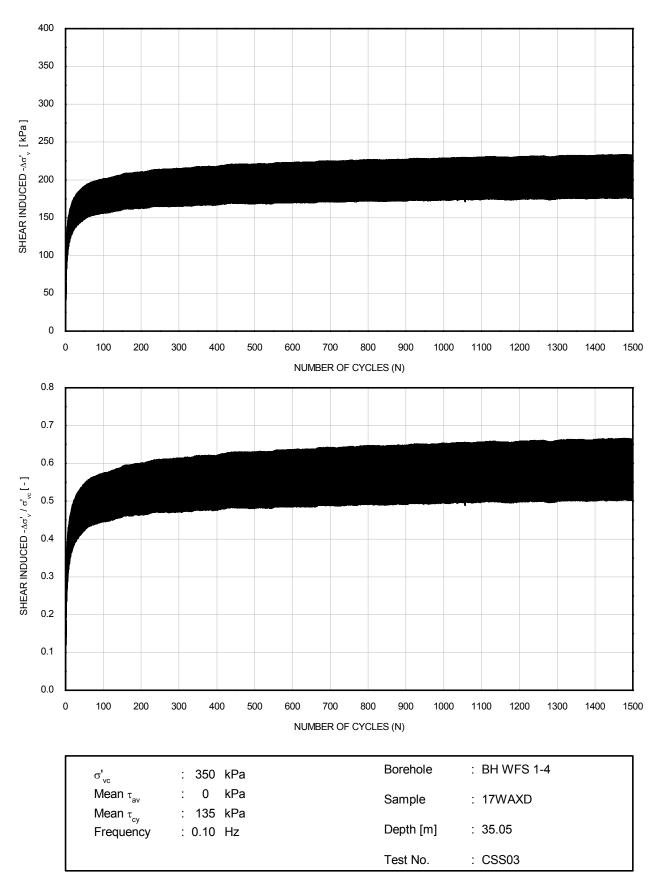
STRESS-CONTROLLED CYCLIC LOADING - CONSTANT VOLUME		
Reference stress	[kPa]	316
Mean τ _{av}	[kPa]	0
Mean τ _{cy}	[kPa]	135
Frequency	[Hz]	0.10
Number of cycles at failure (N _f)	[-]	1500
γ_{av} at N_f	[%]	-0.11
γ_{cy} at N_{f}	[%]	1.96
Shear induced - $\Delta\sigma'_{v}$ at N _f	[kPa]	204
Vertical strain	[%]	0.00

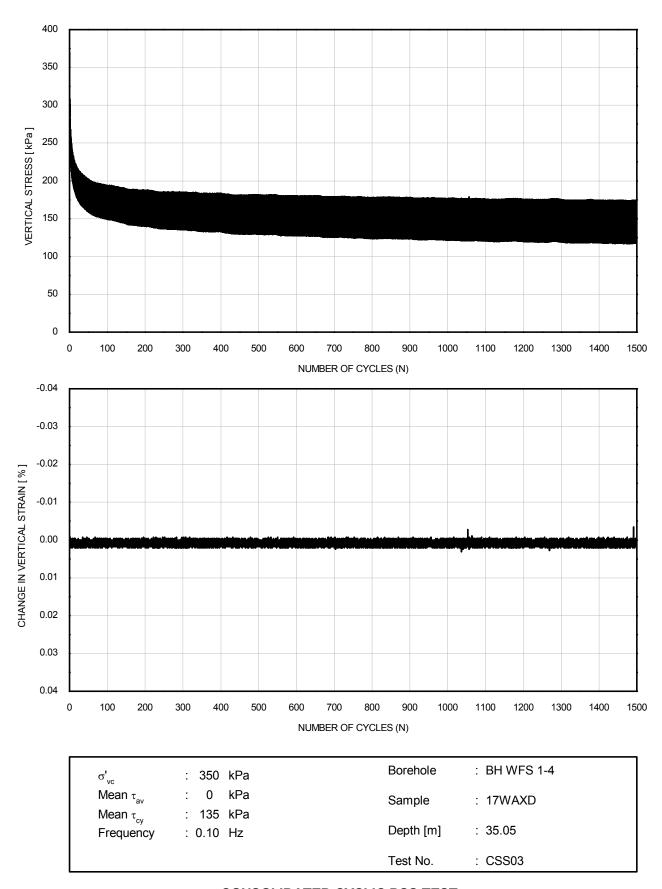
SHEARING - CONSTANT VOLUI	ME		
At peak shear stress			
Shear stress	[kPa]	325	
Shear strain	[%]	29.92	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-50	
Vertical stress	[kPa]	400	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.02	
At 15 % shear strain			
Shear stress	[kPa]	254	
Shear induced -∆σ' _v	[kPa]	57	
Vertical stress	[kPa]	294	
Vertical strain	[%]	0.00	

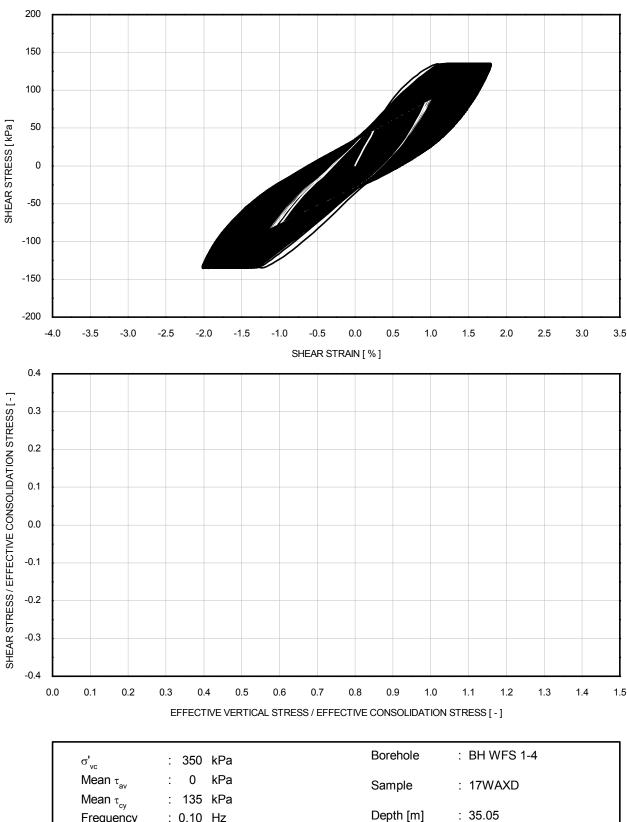

TEST IDENTIFICATION	
Borehole	BH WFS 1-4
Sample	17WAXD
Depth [m]	35.05
Test number	CSS03

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

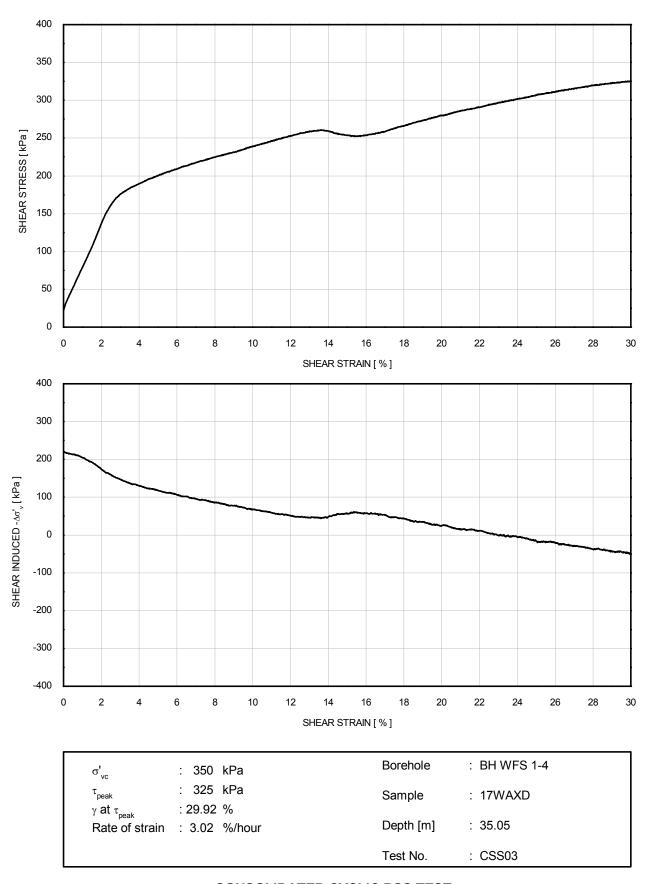


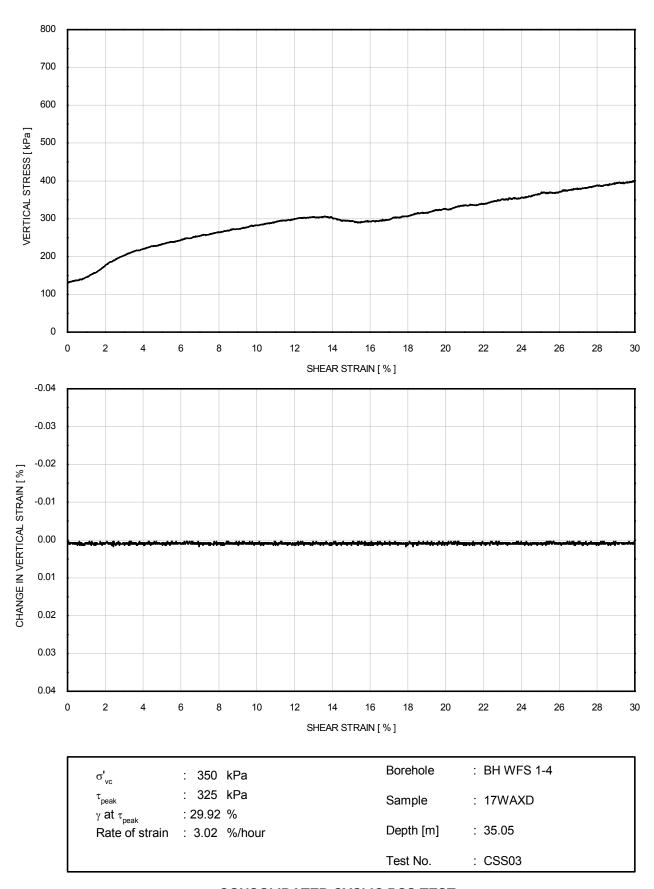

TEST IDENTIFICATION	
Borehole	BH WFS 1-4
Sample	17WAXD
Depth [m]	35.05
Test number	CSS03

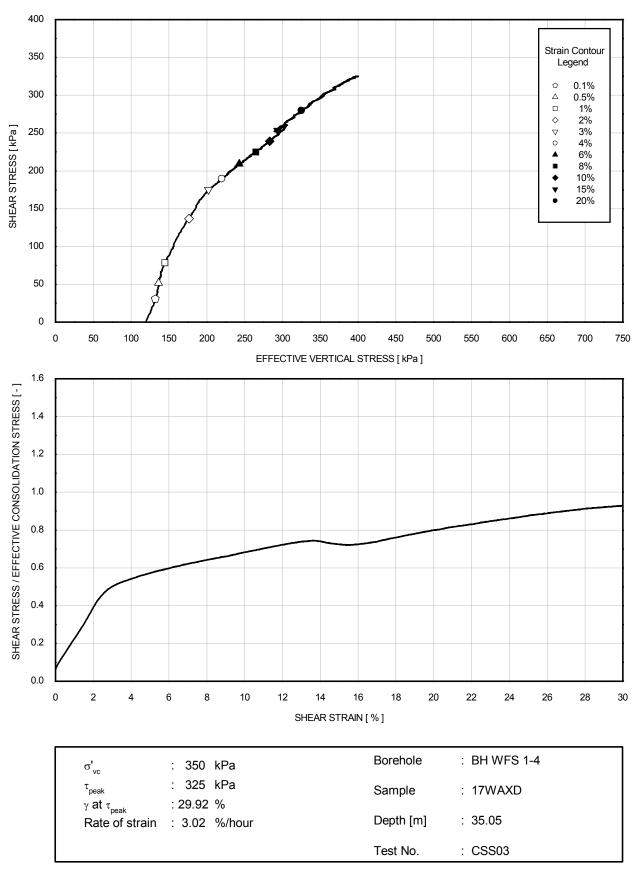

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

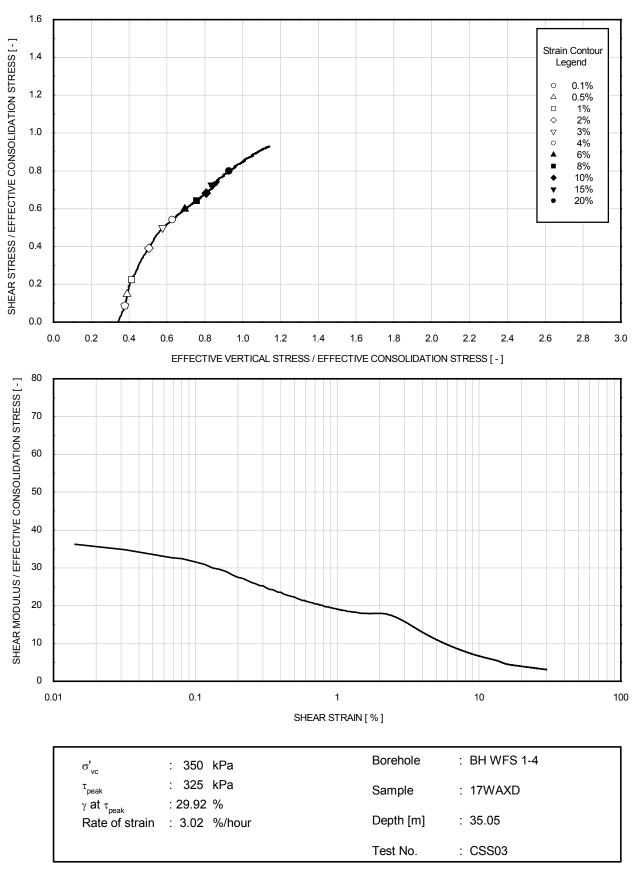


CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE








Frequency : 0.10 Hz Depth [m] : 35.05 Test No. : CSS03

CONSOLIDATED CYCLIC DSS TEST STRESS-CONTROLLED CYCLIC LOADING STAGE - CONSTANT VOLUME

VISUAL DESCRIPTION

Dark brown CLAY with medium pyritic gravel

GENERAL	
Date test started	28/07/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL		
Diameter	[mm]	65.8
Length	[mm]	30.1
Moisture content	[%]	22.5
Bulk density	[Mg/m³]	2.06
Dry density	[Mg/m³]	1.68
Void ratio	[-]	0.604
Degree of saturation	[%]	100
Assumed particle density	[Mg/m³]	2.70
Torvane	[kPa]	-
Pocket penetrometer	[kPa]	417
Torvane 90°	[kPa]	-
Pocket penetrometer 90°	[kPa]	-

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE		
Filename	J11286 \ BH-WFS 1-4_17D_CSS04	
Template issue	1.2	
Processed by	НВ	
Date	10/08/2015	
Checked by	PH	
Date	18/08/2015	
Approved by	PH	
Date	18/08/2015	

TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXD
Depth [m]	35.00
Test number	CSS04

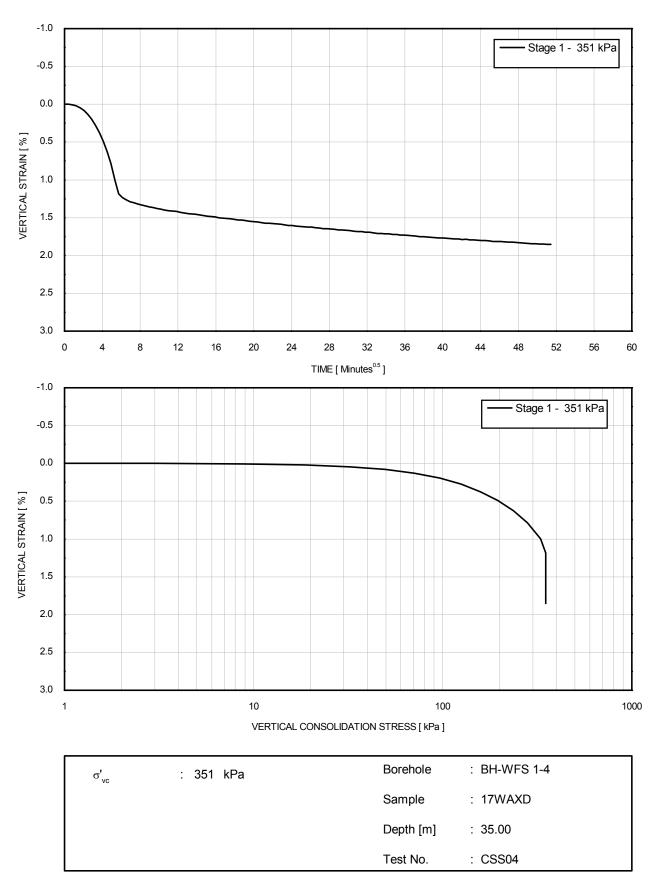
SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

CONSOLIDATION			
σ' _{vc}	[kPa]	351	
Vertical strain	[%]	1.85	
Bulk density	[Mg/m³]	2.08	
Dry density	[Mg/m³]	1.72	
Void ratio	[-]	0.574	
Moisture content	[%]	21.4	

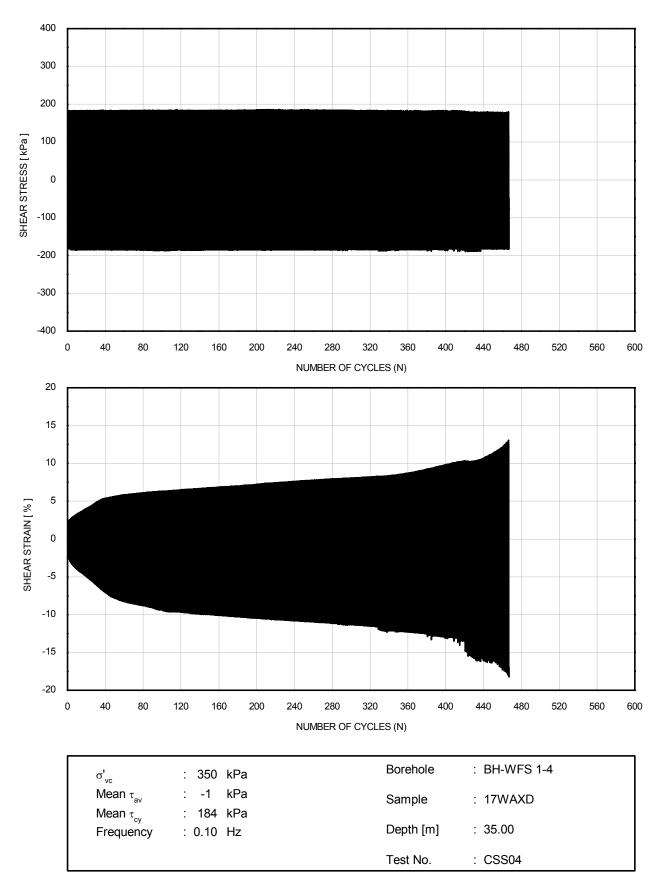
STRESS-CONTROLLED CYCLIC LOADING - CONSTANT VOLUME		
Reference stress	[kPa]	316
Mean τ_{av}	[kPa]	-1
Mean $ au_{cy}$	[kPa]	184
Frequency	[Hz]	0.10
Number of cycles at failure (N _f)	[-]	464
$\gamma_{\sf av}$ at ${\sf N_f}$	[%]	-2.50
γ_{cy} at N_{f}	[%]	15.06
Shear induced -∆σ' _ν at N _f	[kPa]	203
Vertical strain	[%]	0.00

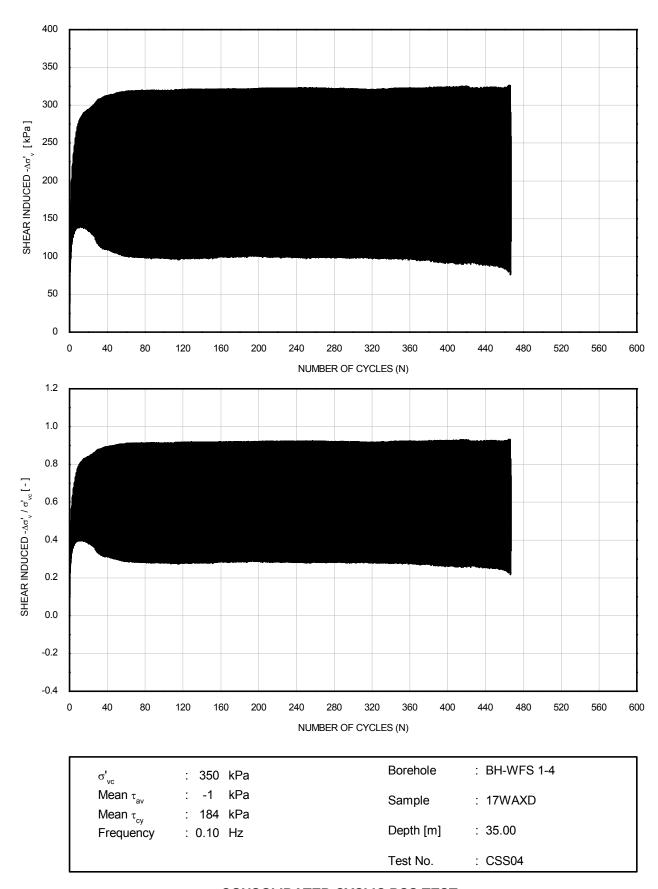
SHEARING - CONSTANT VOL	UME		
At peak shear stress			
Shear stress	[kPa]	233	
Shear strain	[%]	29.99	
Shear induced $\Delta\sigma'_{v}$	[kPa]	8	
Vertical stress	[kPa]	342	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.09	
At 15 % shear strain			
Shear stress	[kPa]	202	
Shear induced - $\Delta\sigma'_{v}$	[kPa]	69	
Vertical stress	[kPa]	281	
Vertical strain	[%]	0.00	

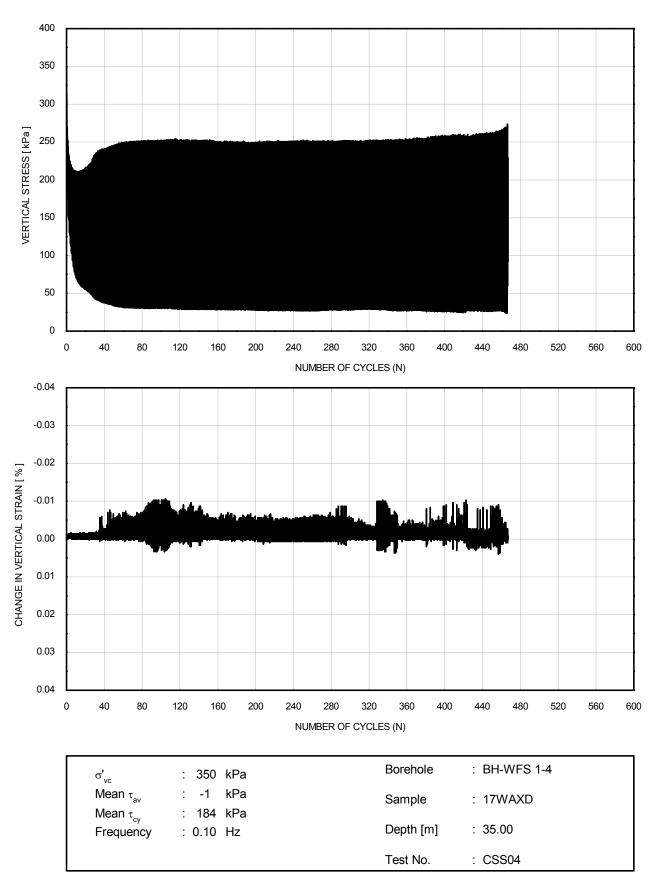
^{*} Please note that specimen failure was observed to occur along or close to the loading platen interface.

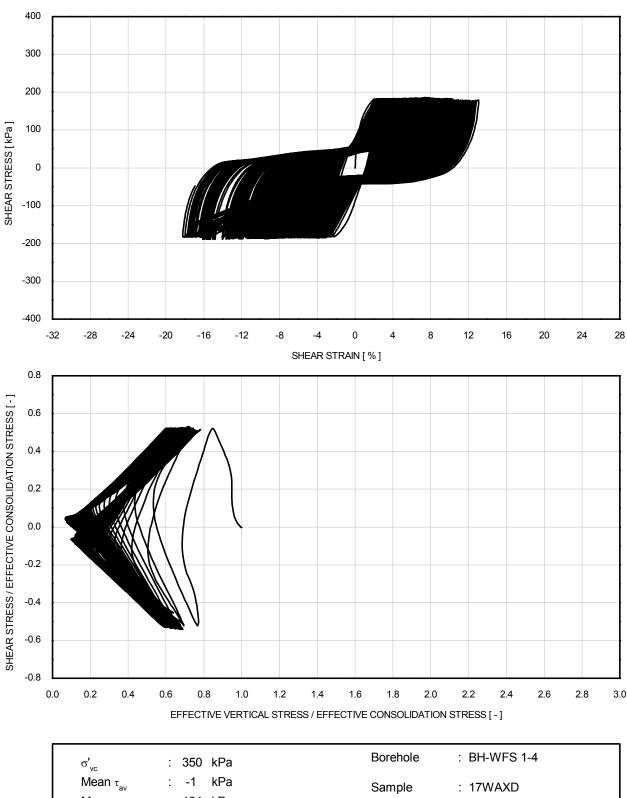

TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXD
Depth [m]	35.00
Test number	CSS04

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

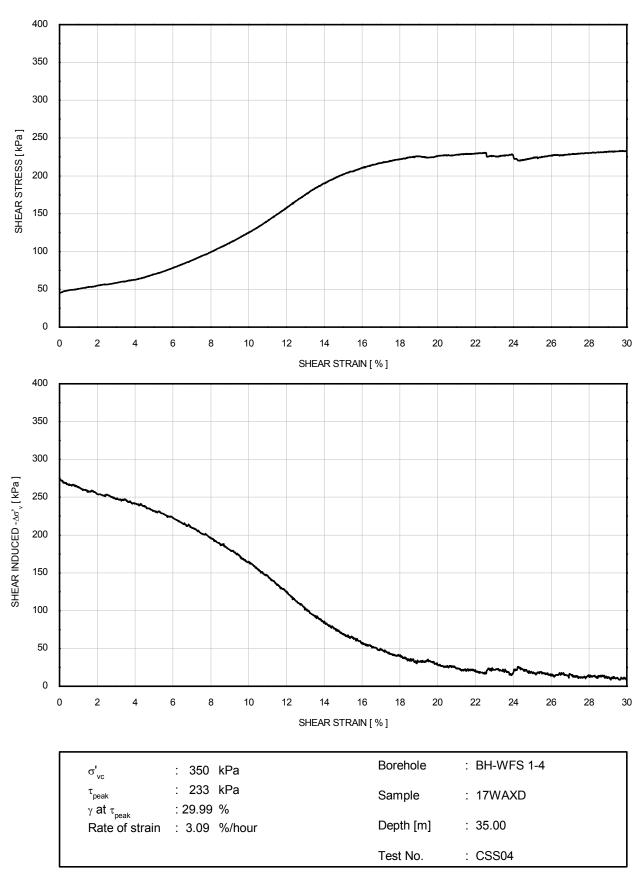


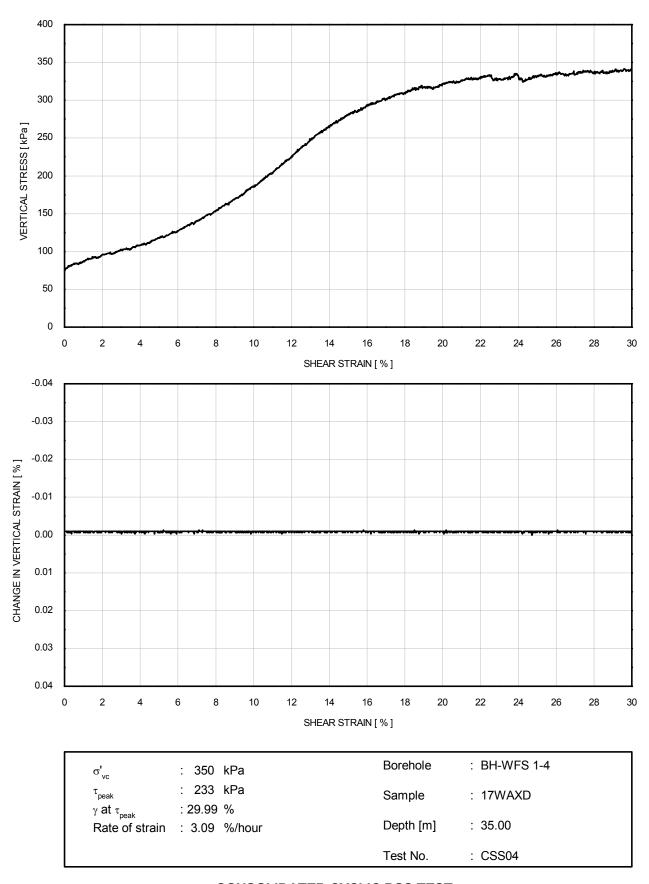

TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXD
Depth [m]	35.00
Test number	CSS04

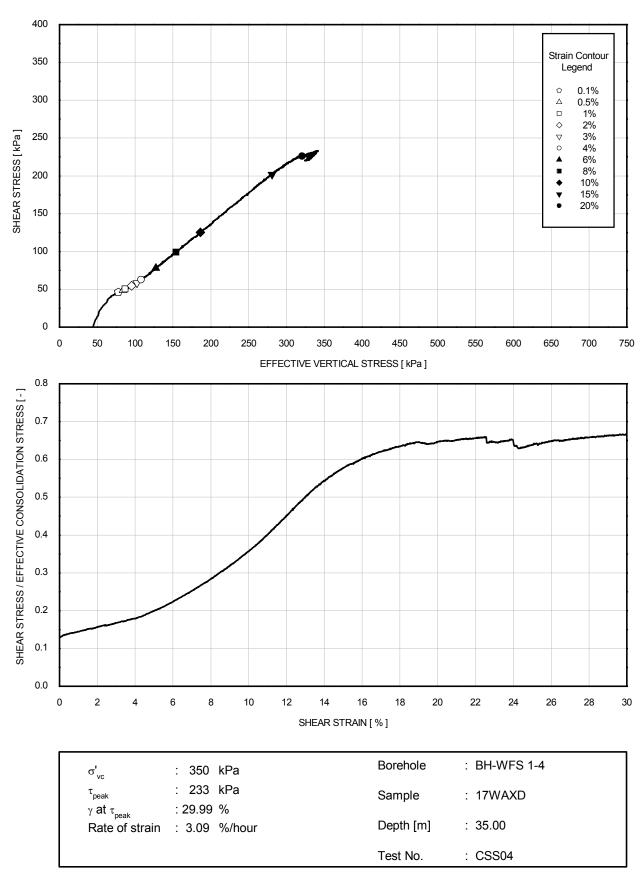

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

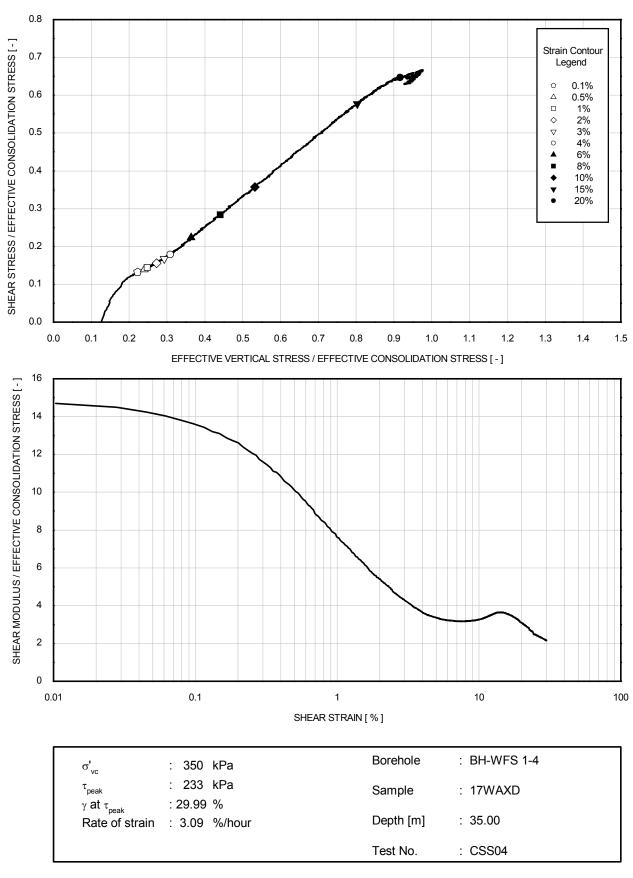


CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE








 σ'_{vc} : 350 kPa Borelole : BH-WFS 1-4 Mean τ_{av} : -1 kPa Sample : 17WAXD Mean τ_{cy} : 184 kPa Frequency : 0.10 Hz Depth [m] : 35.00

CONSOLIDATED CYCLIC DSS TEST STRESS-CONTROLLED CYCLIC LOADING STAGE - CONSTANT VOLUME

VISUAL DESCRIPTION Brown slightly sandy CLAY.

GENERAL	
Date test started	12/08/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL			
Diameter	[mm]	65.9	
Length	[mm]	30.0	
Moisture content	[%]	21.6	
Bulk density	[Mg/m³]	2.03	
Dry density	[Mg/m³]	1.67	
Void ratio	[-]	0.614	
Degree of saturation	[%]	95	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE		
Filename	J11286 \ BH-WFS 1-4_17C_CSS05	
Template issue	1.2	
Processed by	ER	
Date	17/08/2015	
Checked by	PH	
Date	18/08/2015	
Approved by	PH	
Date	18/08/2015	

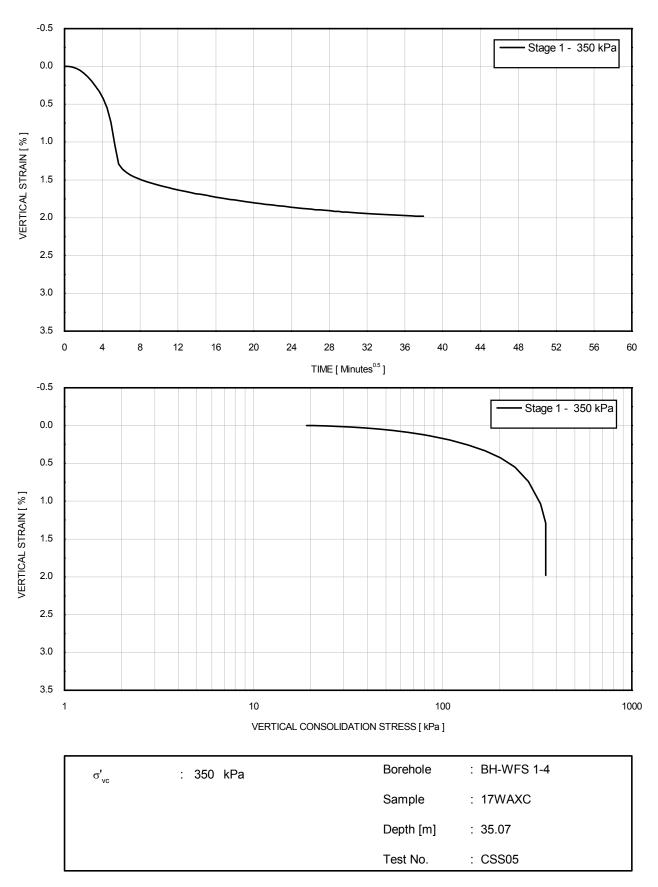
TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXC
Depth [m]	35.07
Test number	CSS05

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

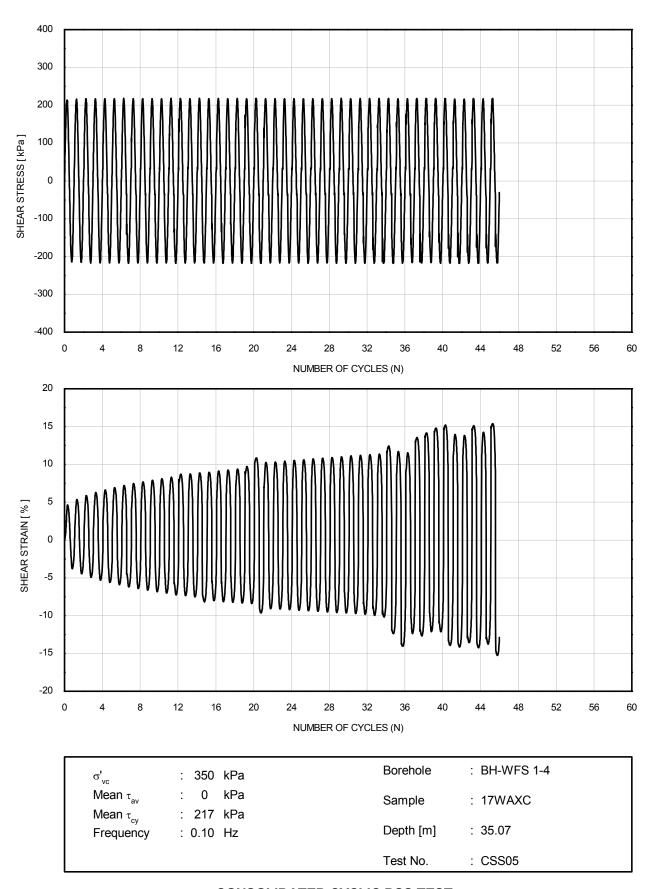
CONSOLIDATION			
σ' _{vc}	[kPa]	350	
Vertical strain	[%]	1.98	
Bulk density	[Mg/m ³]	2.05	
Dry density	[Mg/m ³]	1.71	
Void ratio	[-]	0.582	
Moisture content	[%]	20.4	

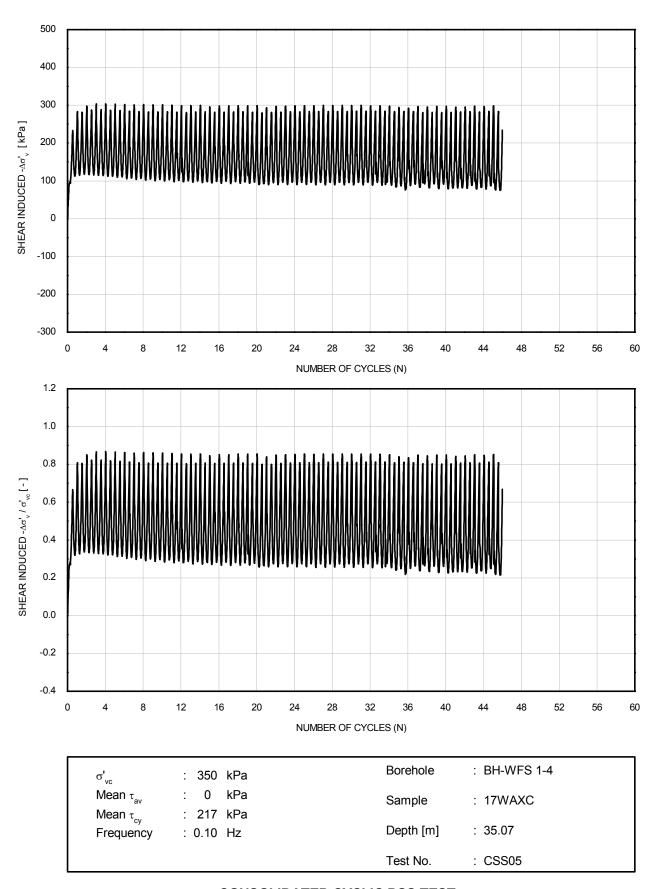
STRESS-CONTROLLED CYCLIC LOADING – CONSTANT VOLUME		
Reference stress	[kPa]	316
Mean τ_{av}	[kPa]	0
Mean τ_{cy}	[kPa]	217
Frequency	[Hz]	0.10
Number of cycles at failure (N _f)	[-]	46
γ _{av} at N _f	[%]	0.07
$\gamma_{\sf cy}$ at ${\sf N_f}$	[%]	15.33
Shear induced -Δσ' _v at N _f	[kPa]	187
Vertical strain	[%]	0.00

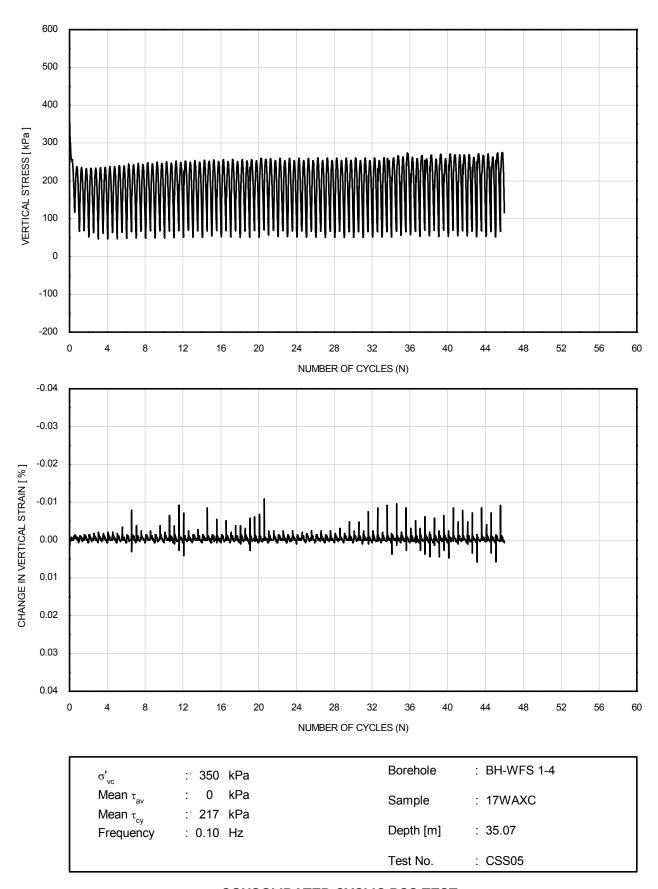
SHEARING – CONSTANT VOLUME			
At peak shear stress			
Shear stress	[kPa]	285	
Shear strain	[%]	29.88	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-4	
Vertical stress	[kPa]	354	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.05	
At 15 % shear strain			
Shear stress	[kPa]	213	
Shear induced $-\Delta\sigma'_{v}$	[kPa]	101	
Vertical stress	[kPa]	249	
Vertical strain	[%]	0.00	

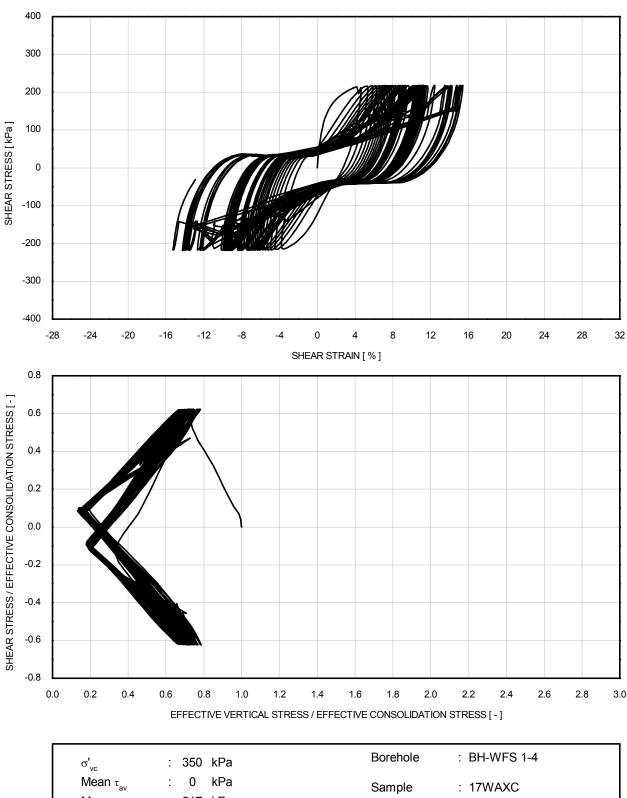

TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXC
Depth [m]	35.07
Test number	CSS05

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

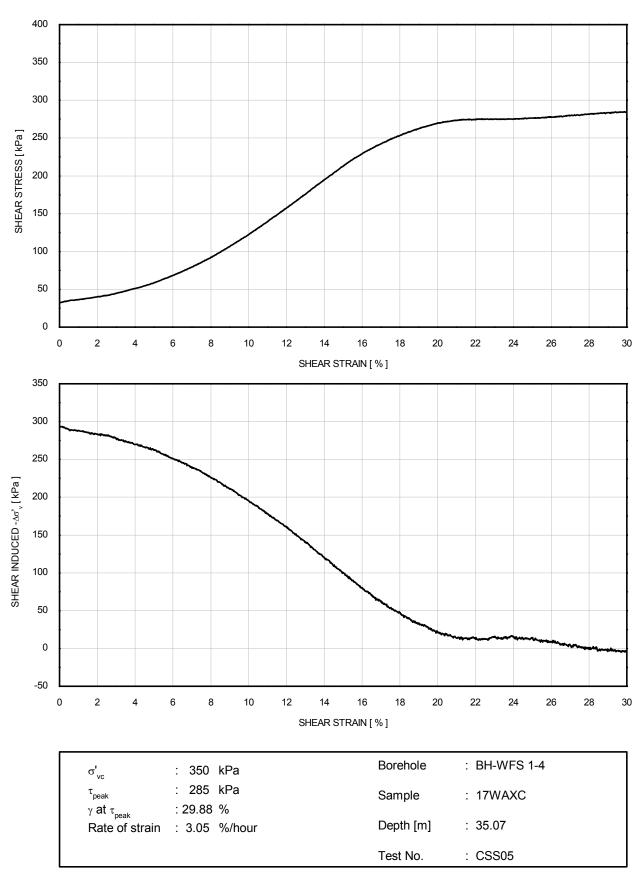


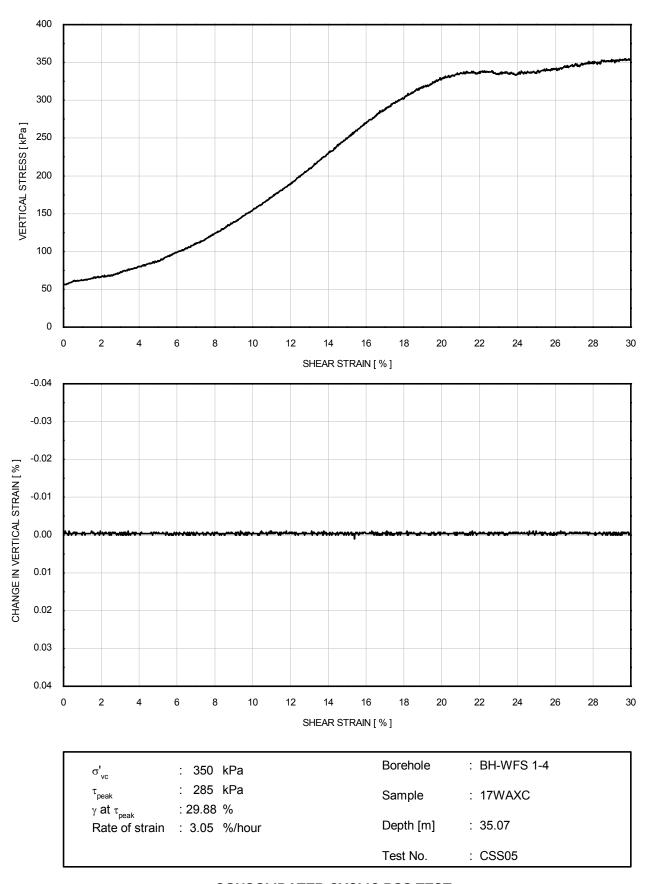

TEST IDENTIFICATION	
Borehole	BH-WFS 1-4
Sample	17WAXC
Depth [m]	35.07
Test number	CSS05

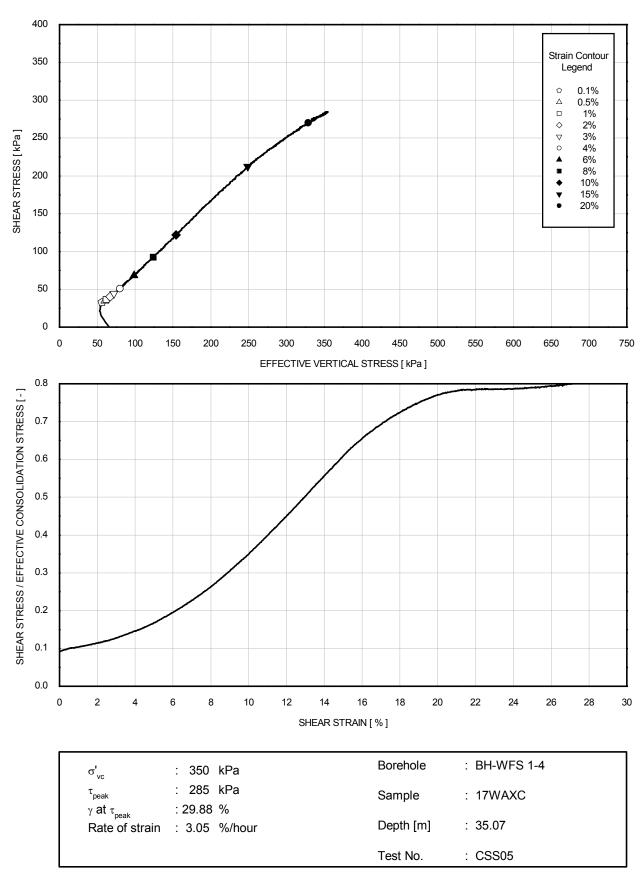

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

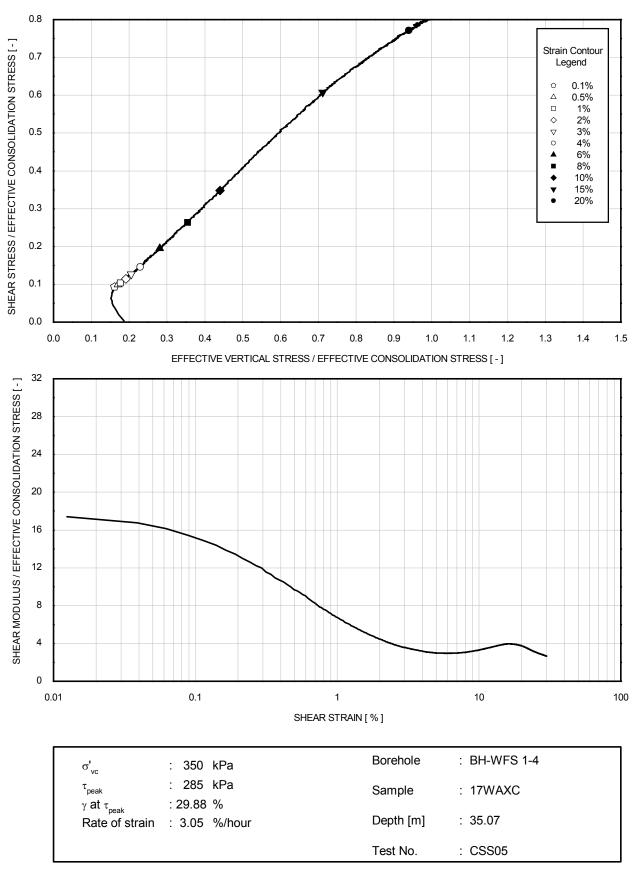


CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE








 σ'_{vc} : 350 kPa Borelole : BTPWT3 1-4 Mean τ_{av} : 0 kPa Sample : 17WAXC Mean τ_{cy} : 217 kPa Frequency : 0.10 Hz Depth [m] : 35.07

CONSOLIDATED CYCLIC DSS TEST STRESS-CONTROLLED CYCLIC LOADING STAGE - CONSTANT VOLUME

VISUAL DESCRIPTION

Very high strength dark greenish grey slightly sandy CLAY

GENERAL	
Date test started	17/07/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL		
Diameter	[mm]	65.7
Length	[mm]	30.0
Moisture content	[%]	38.9
Bulk density	[Mg/m³]	1.83
Dry density	[Mg/m³]	1.32
Void ratio	[-]	1.046
Degree of saturation	[%]	100
Assumed particle density	[Mg/m³]	2.70
Torvane	[kPa]	75
Pocket penetrometer	[kPa]	267
Torvane 90°	[kPa]	-
Pocket penetrometer 90°	[kPa]	-

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE	
Filename	J11286 \ BH-WFS 2-7_19C_CSS06
Template issue	1.2
Processed by	НВ
Date	21/07/2015
Checked by	PH
Date	04/08/2015
Approved by	PH
Date	18/08/2015

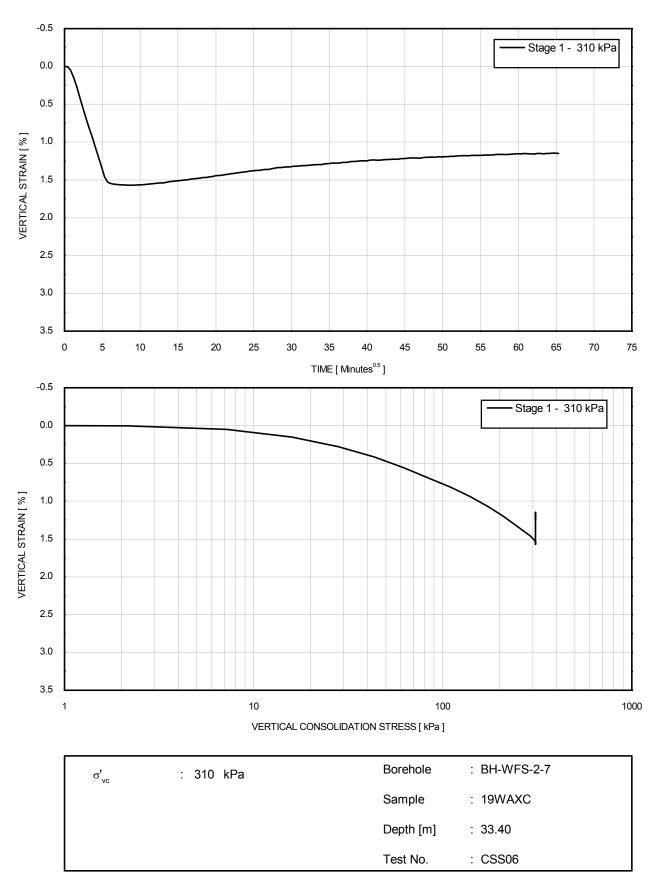
TEST IDENTIFICATION	
Borehole	BH-WFS-2-7
Sample	19WAXC
Depth [m]	33.40
Test number	CSS06

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

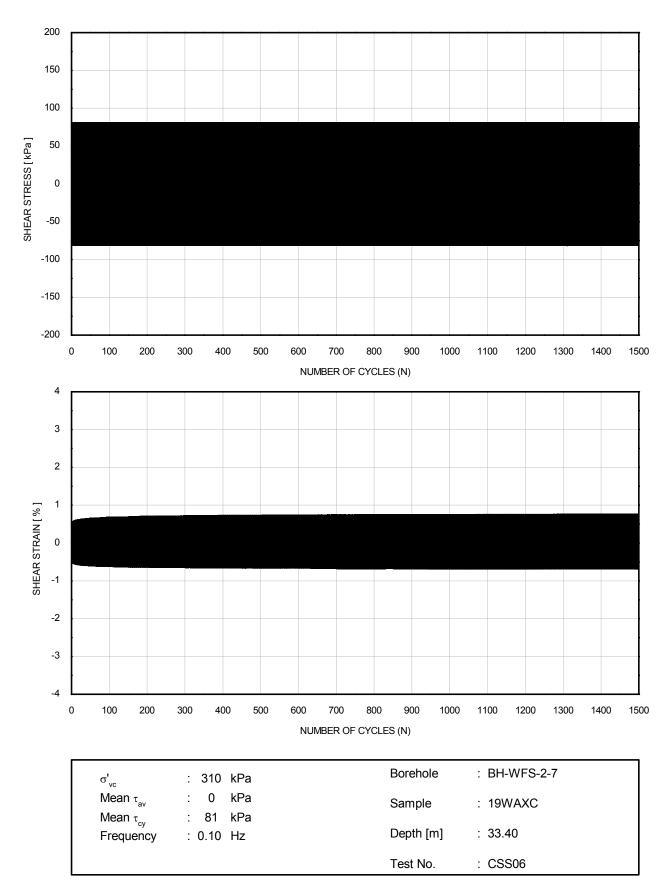
CONSOLIDATION			
σ' _{vc}	[kPa]	310	
Vertical strain	[%]	1.15	
Bulk density	[Mg/m³]	1.84	
Dry density	[Mg/m³]	1.34	
Void ratio	[-]	1.022	
Moisture content	[%]	38.1	

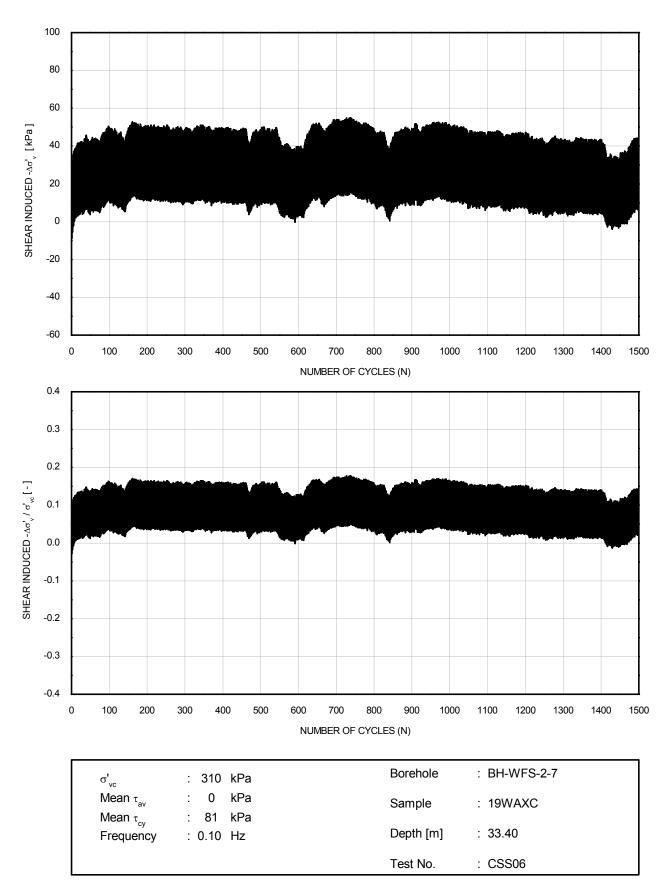
STRESS-CONTROLLED CYCLIC LOADING - CONSTANT VOLUME		
Reference stress	[kPa]	253
Mean τ _{av}	[kPa]	0
Mean τ_{cy}	[kPa]	81
Frequency	[Hz]	0.10
Number of cycles at failure (N _f)	[-]	1500
$\gamma_{\sf av}$ at ${\sf N_f}$	[%]	0.04
$\gamma_{\sf cy}$ at N $_{\sf f}$	[%]	0.72
Shear induced -∆σ' _v at N _f	[kPa]	26
Vertical strain	[%]	0.00

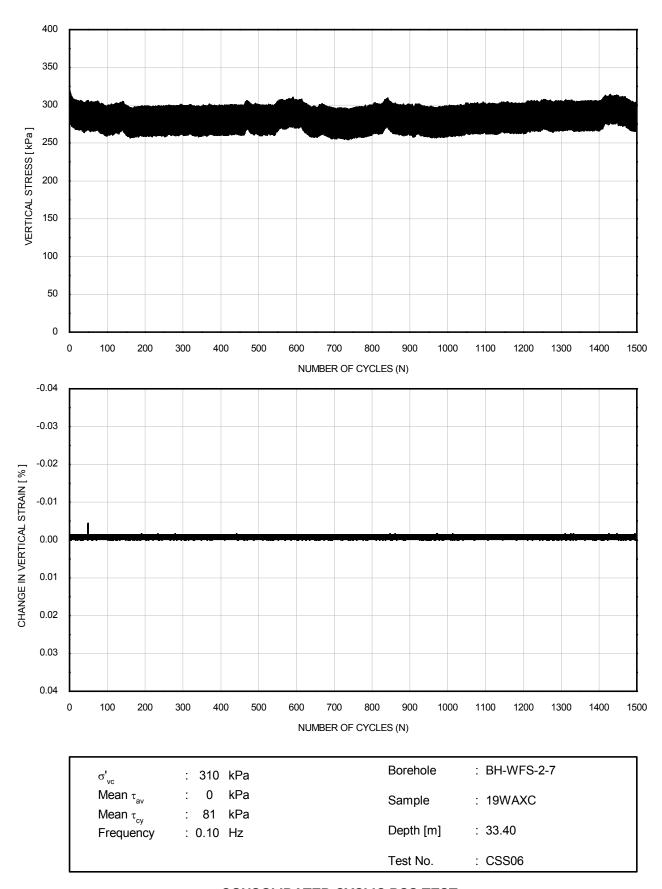
SHEARING - CONSTANT VOLUM	IE .		
At peak shear stress			
Shear stress	[kPa]	211	
Shear strain	[%]	7.16	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-80	
Vertical stress	[kPa]	390	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	2.52	
At 15 % shear strain			
Shear stress	[kPa]	200	
Shear induced - $\Delta\sigma'_{v}$	[kPa]	-163	
Vertical stress	[kPa]	473	
Vertical strain	[%]	0.00	

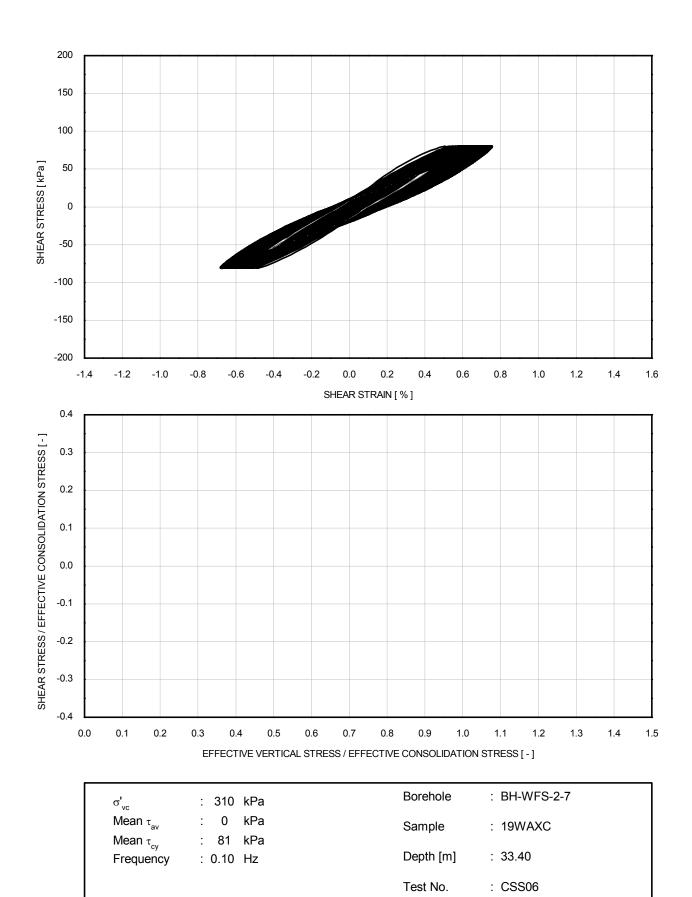

TEST IDENTIFICATION	
Borehole	BH-WFS-2-7
Sample	19WAXC
Depth [m]	33.40
Test number	CSS06

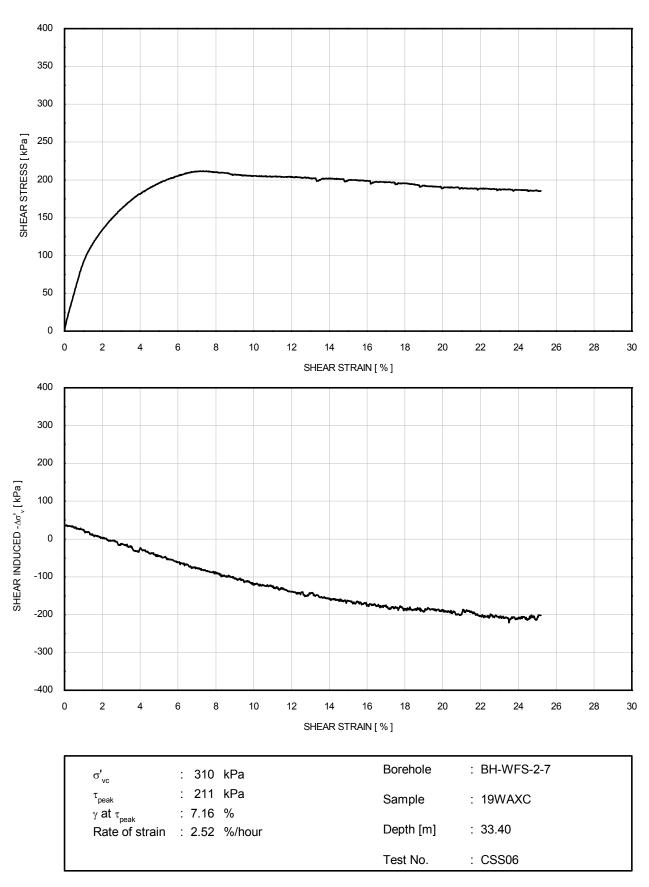
SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

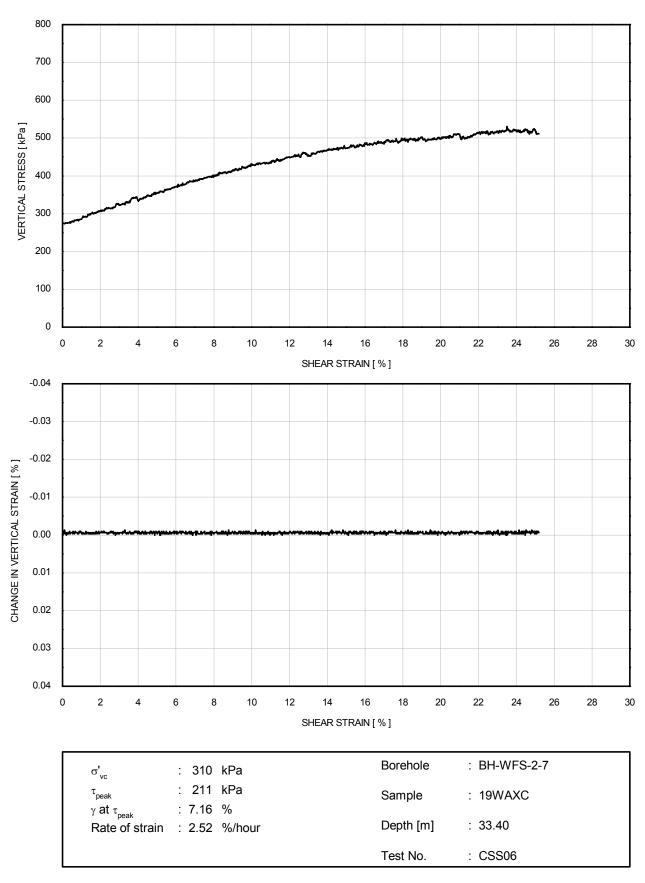

ODEOMEN DUOTO OD A DU		
SPECIMEN PHOTOGRAPH		
Photograph unavailable		
3 . 4		

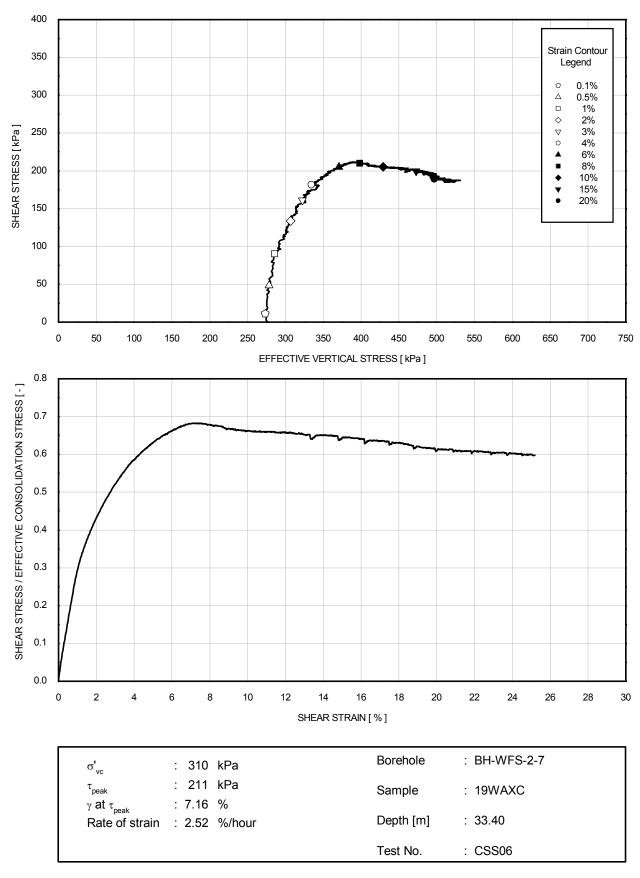

TEST IDENTIFICATION	
Borehole	BH-WFS-2-7
Sample	19WAXC
Depth [m]	33.40
Test number	CSS06

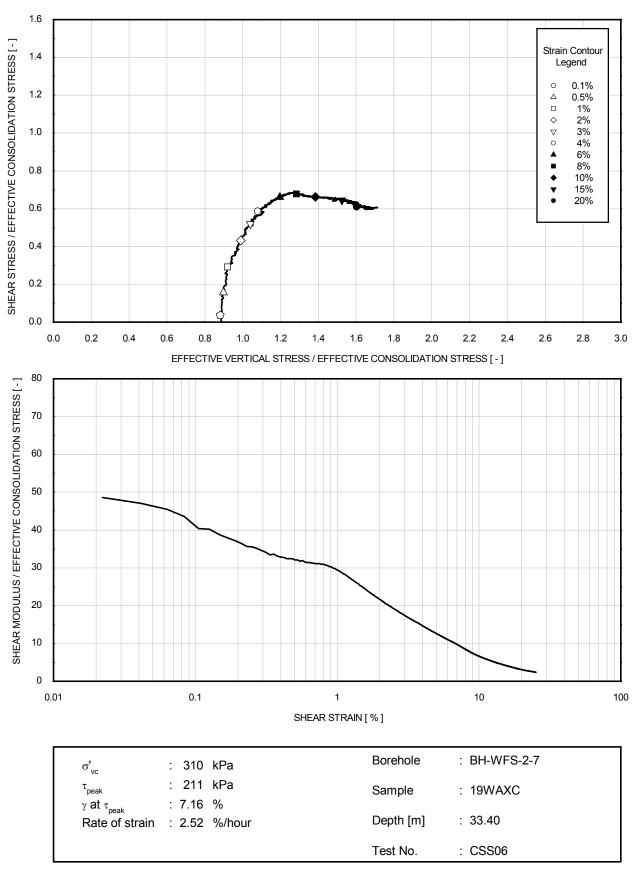

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST




CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE







VISUAL DESCRIPTION

Very high strength dark greenish grey slightly sandy CLAY

GENERAL	
Date test started	20/07/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL		
Diameter	[mm]	65.9
Length	[mm]	29.9
Moisture content	[%]	39.2
Bulk density	[Mg/m³]	1.80
Dry density	[Mg/m³]	1.29
Void ratio	[-]	1.087
Degree of saturation	[%]	97
Assumed particle density	[Mg/m³]	2.70
Torvane	[kPa]	-
Pocket penetrometer	[kPa]	-
Torvane 90°	[kPa]	-
Pocket penetrometer 90°	[kPa]	-

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE		
Filename	J11286 \ BH-WFS 2-7_19C_CSS07	
Template issue	1.2	
Processed by	НВ	
Date	22/07/2015	
Checked by	PH	
Date	04/08/2015	
Approved by	PH	
Date	18/08/2015	

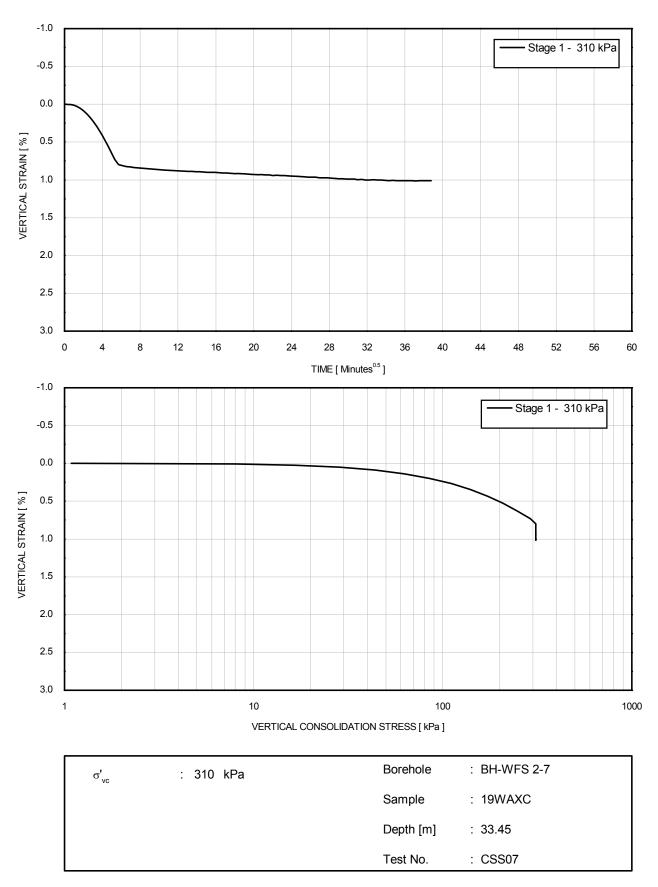
TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	19WAXC
Depth [m]	33.45
Test number	CSS07

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

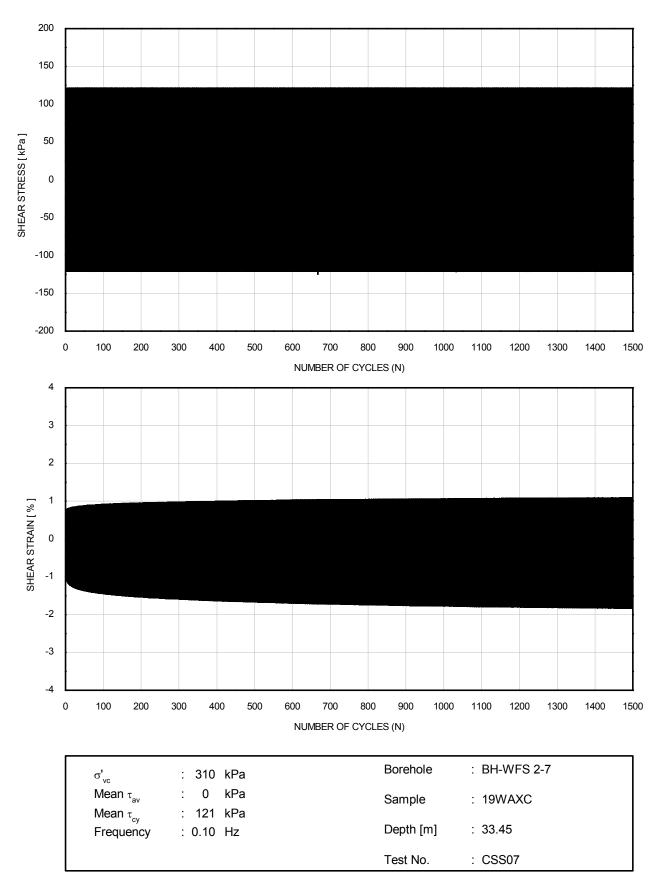
CONSOLIDATION			
σ' _{vc}	[kPa]	310	
Vertical strain	[%]	1.01	
Bulk density	[Mg/m³]	1.81	
Dry density	[Mg/m ³]	1.31	
Void ratio	[-]	1.065	
Moisture content	[%]	38.4	

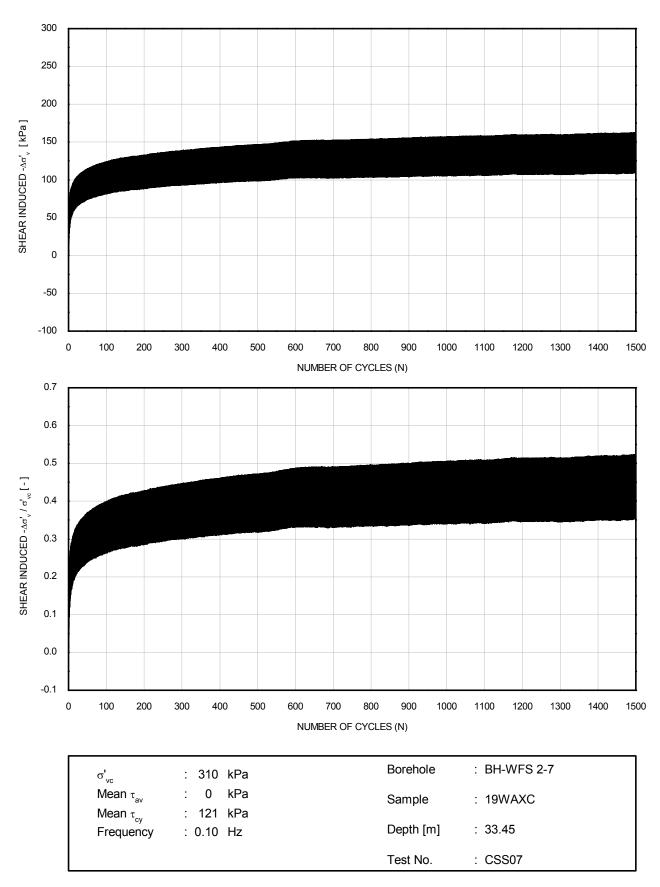
STRESS-CONTROLLED CYCLIC LOADING - CONSTANT VOLUME		
Reference stress	[kPa]	253
Mean τ _{av}	[kPa]	0
Mean τ_{cy}	[kPa]	121
Frequency	[Hz]	0.10
Number of cycles at failure (N _f)	[-]	1500
$\gamma_{\sf av}$ at ${\sf N_f}$	[%]	-0.37
$\gamma_{\sf cy}$ at N $_{\sf f}$	[%]	1.45
Shear induced -∆σ' _v at N _f	[kPa]	136
Vertical strain	[%]	0.00

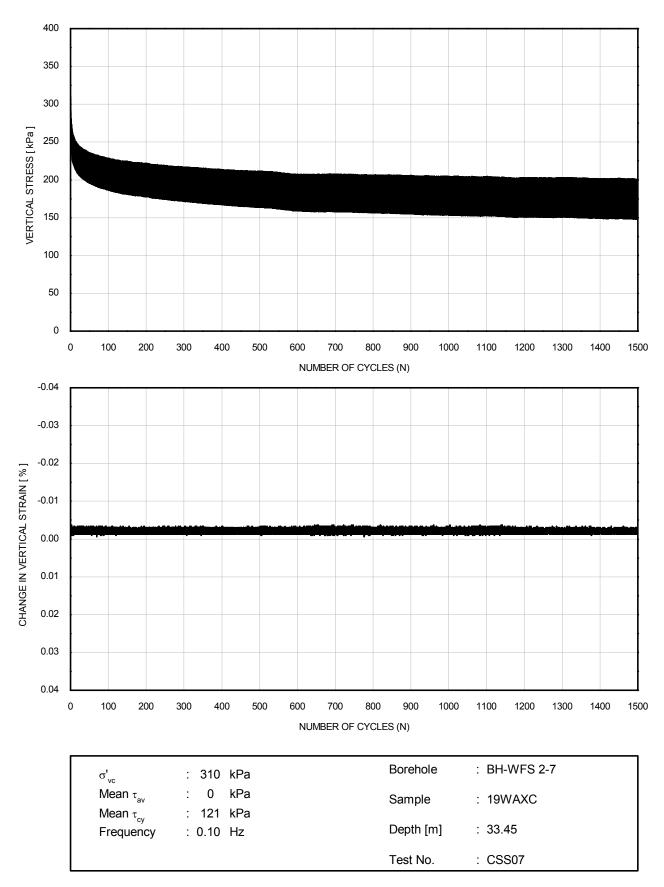
SHEARING - CONSTANT VOLUME			
At peak shear stress			
Shear stress	[kPa]	291	
Shear strain	[%]	13.15	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-119	
Vertical stress	[kPa]	429	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.02	
At 15 % shear strain			
Shear stress	[kPa]	266	
Shear induced - $\Delta\sigma'_{v}$	[kPa]	-83	
Vertical stress	[kPa]	393	
Vertical strain	[%]	0.00	

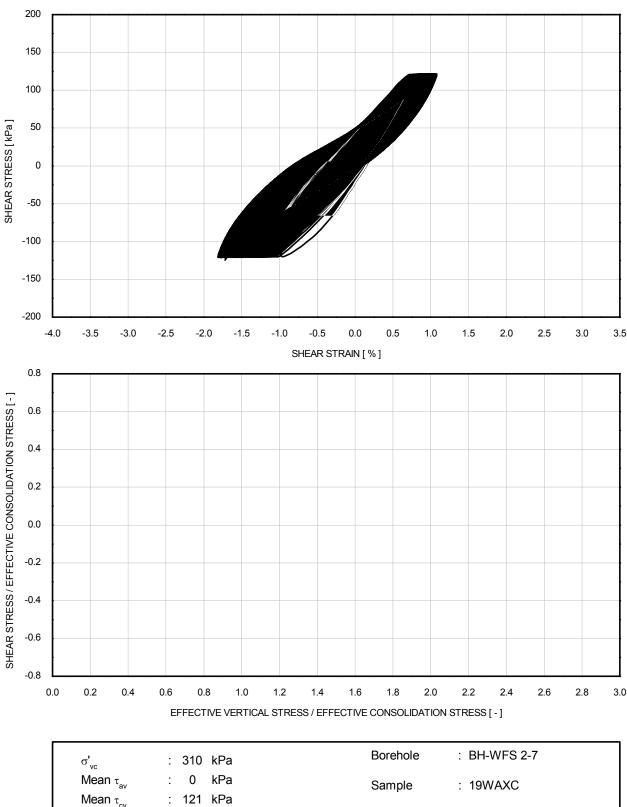

TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	19WAXC
Depth [m]	33.45
Test number	CSS07

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

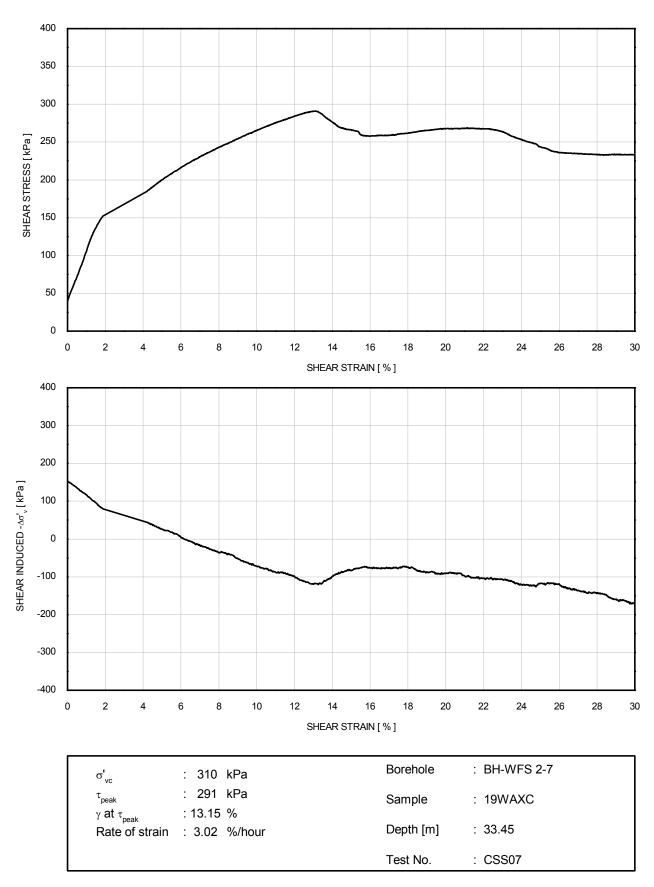


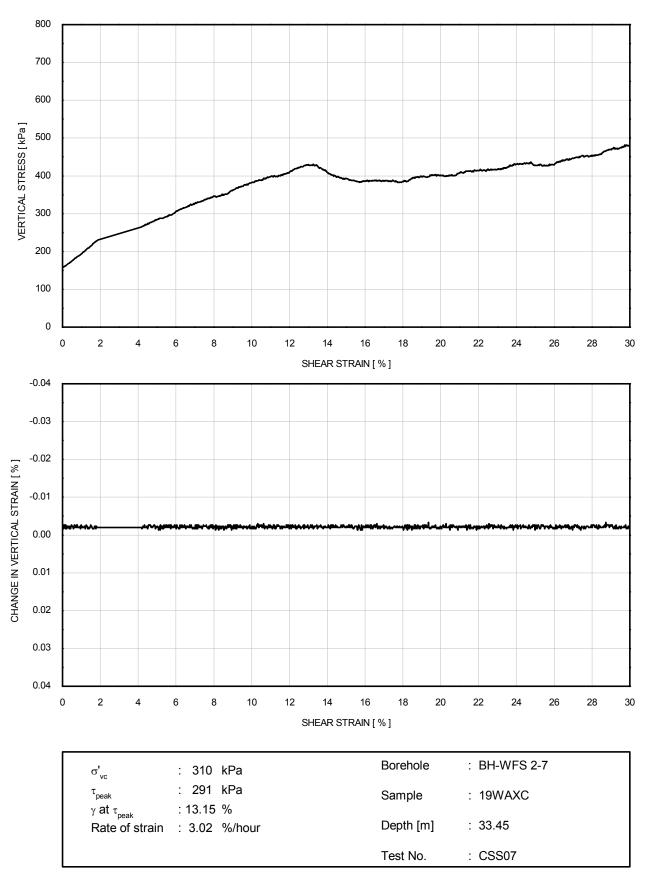

TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	19WAXC
Depth [m]	33.45
Test number	CSS07

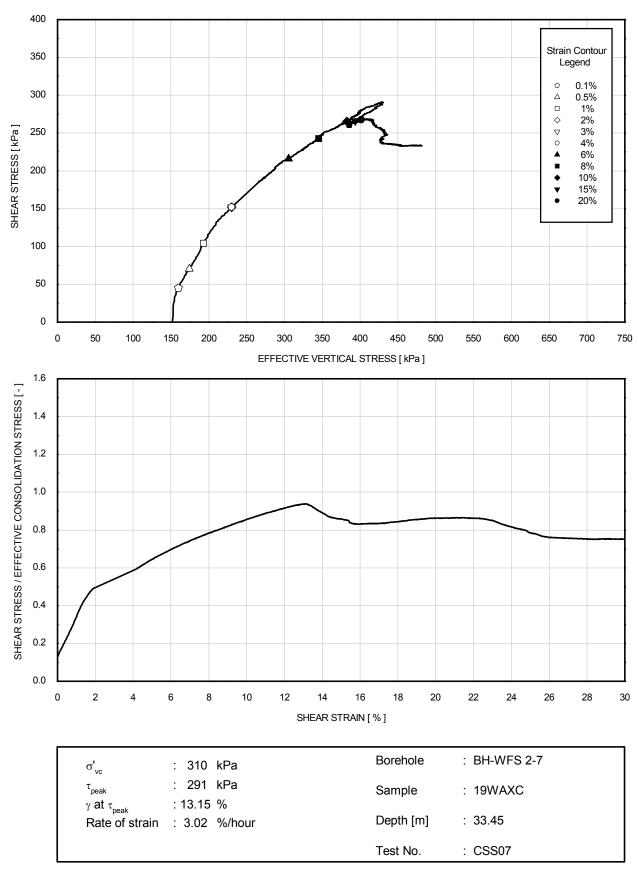

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

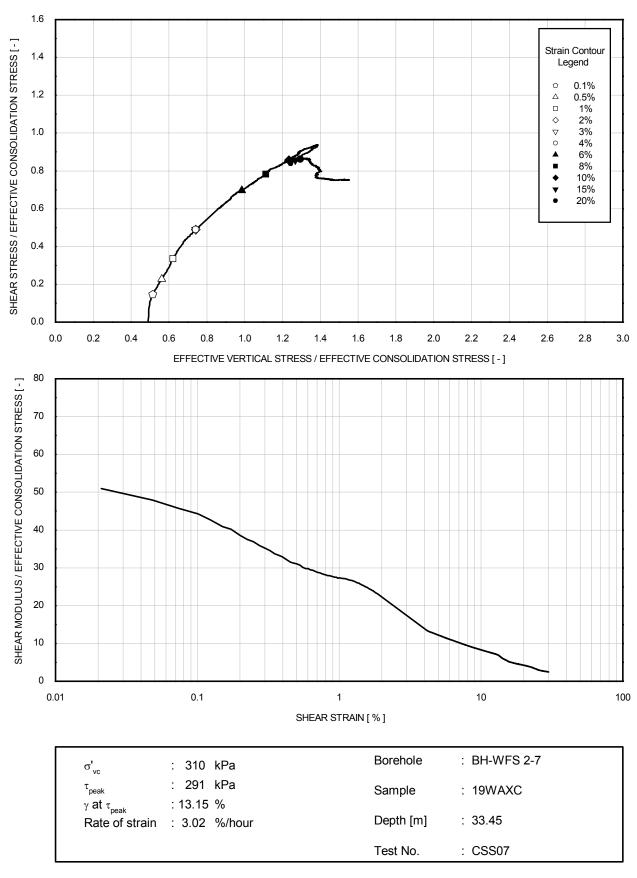


CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE








Mean τ_{av} : 0 kPa Sample : 19WAXC Mean τ_{cy} : 121 kPa Frequency : 0.10 Hz Depth [m] : 33.45

CONSOLIDATED CYCLIC DSS TEST STRESS-CONTROLLED CYCLIC LOADING STAGE - CONSTANT VOLUME

VISUAL DESCRIPTION Dark greenish grey CLAY

GENERAL	
Date test started	28/07/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL			
Diameter	[mm]	66.0	
Length	[mm]	29.9	
Moisture content	[%]	40.6	
Bulk density	[Mg/m³]	1.79	
Dry density	[Mg/m³]	1.28	
Void ratio	[-]	1.116	
Degree of saturation	[%]	98	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	163	
Pocket penetrometer	[kPa]	267	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

QUALITY ASSURANCE	
Filename	J11286 \ BH-WFS 2-7_19D_CSS08
Template issue	1.2
Processed by	НВ
Date	10/08/2015
Checked by	PH
Date	11/08/2015
Approved by	PH
Date	18/08/2015

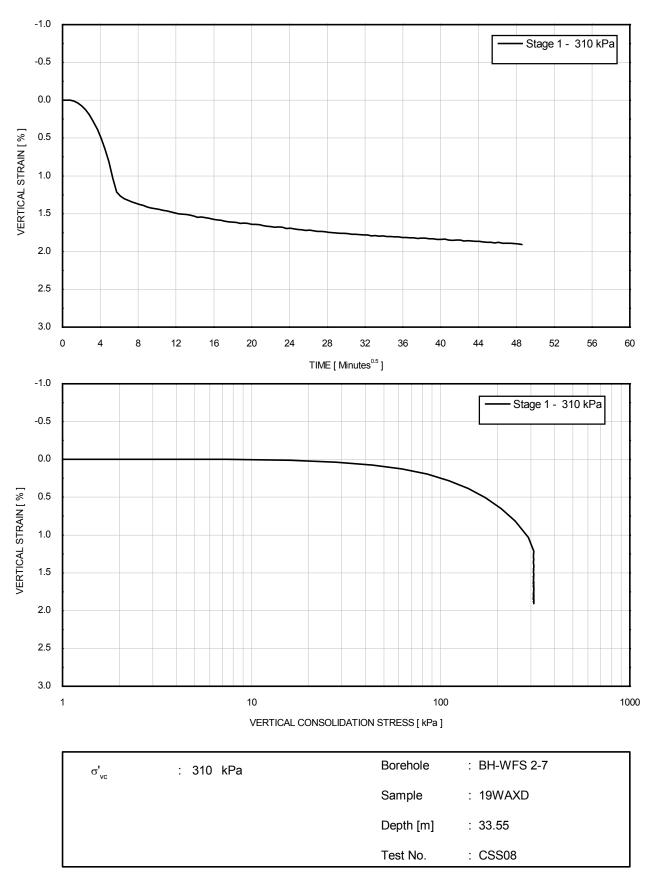
TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	19WAXD
Depth [m]	33.55
Test number	CSS08

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

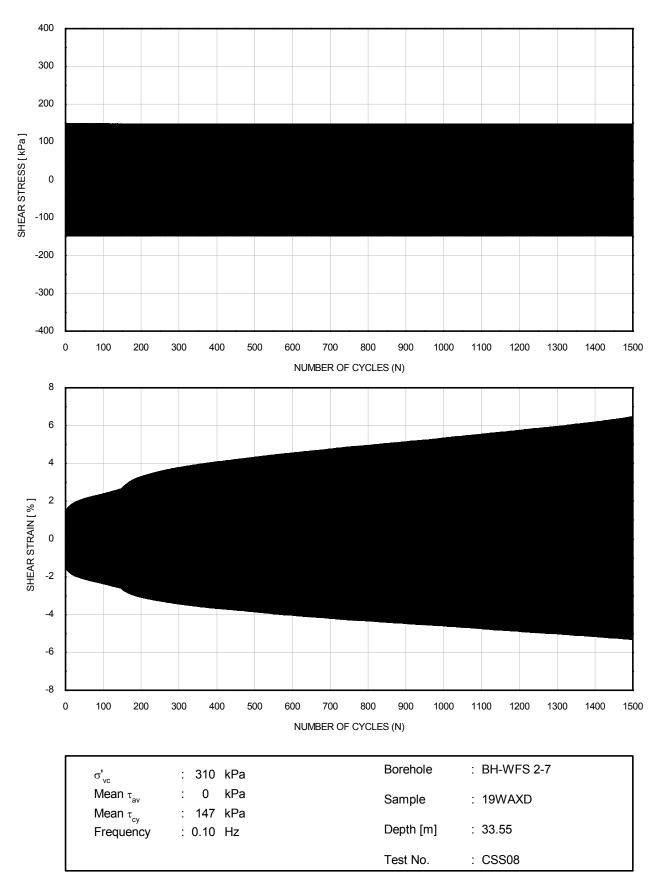
CONSOLIDATION			
σ' _{vc}	[kPa]	310	
Vertical strain	[%]	1.91	
Bulk density	[Mg/m³]	1.81	
Dry density	[Mg/m ³]	1.30	
Void ratio	[-]	1.076	
Moisture content	[%]	39.1	

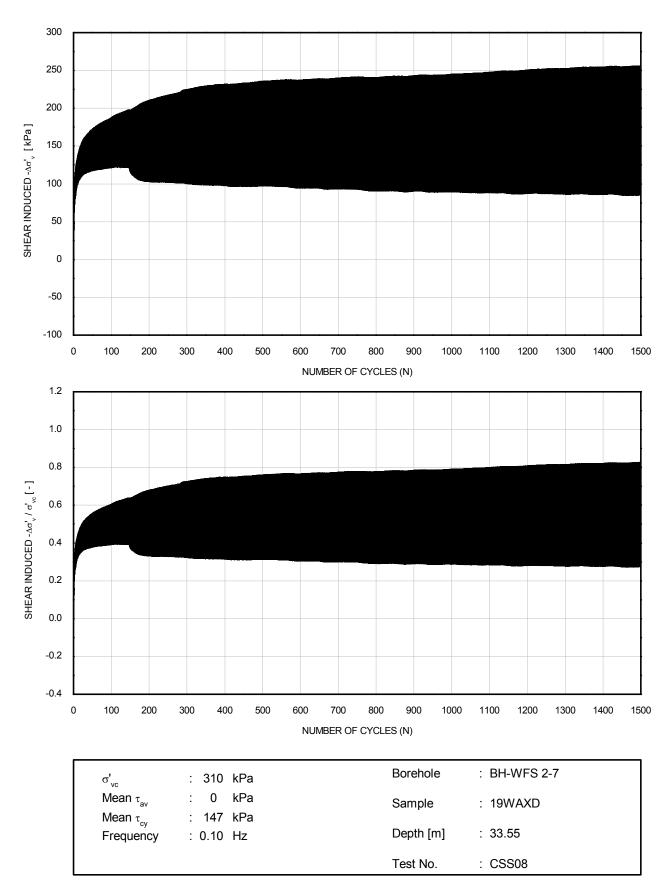
STRESS-CONTROLLED CYCLIC LOADING - CONSTANT VOLUME		
Reference stress	[kPa]	253
Mean τ_{av}	[kPa]	0
Mean τ_{cy}	[kPa]	147
Frequency	[Hz]	0.10
Number of cycles at failure (N _f)	[-]	1500
$\gamma_{\sf av}$ at ${\sf N_f}$	[%]	0.57
$\gamma_{\sf cy}$ at N $_{\sf f}$	[%]	5.88
Shear induced -∆σ' _v at N _f	[kPa]	171
Vertical strain	[%]	0.00

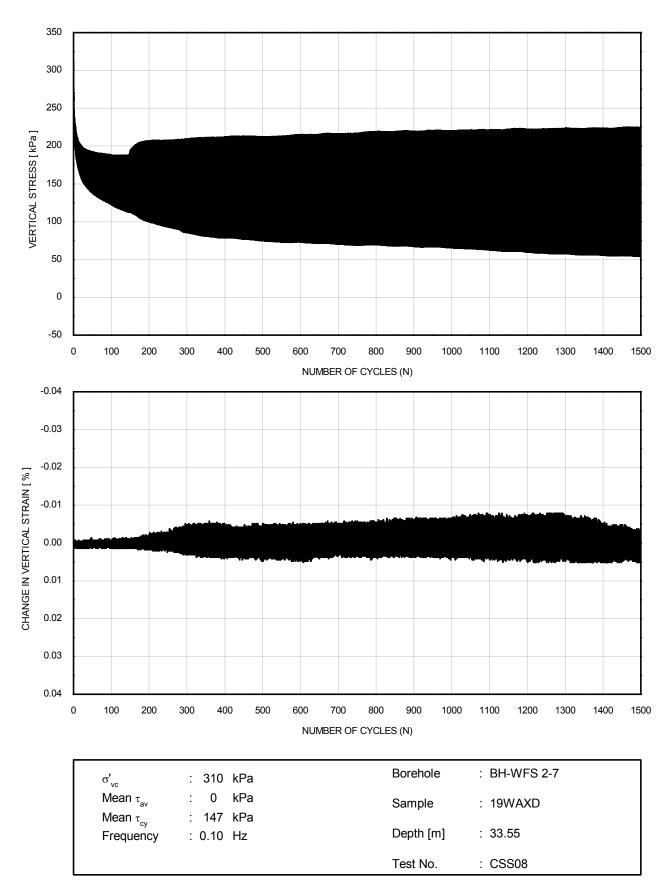
SHEARING - CONSTANT VOLU	IME		
At peak shear stress			
Shear stress	[kPa]	234	
Shear strain	[%]	15.20	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-47	
Vertical stress	[kPa]	357	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.05	
At 15 % shear strain			
Shear stress	[kPa]	234	
Shear induced - $\Delta\sigma'_{v}$	[kPa]	-42	
Vertical stress	[kPa]	352	
Vertical strain	[%]	0.00	

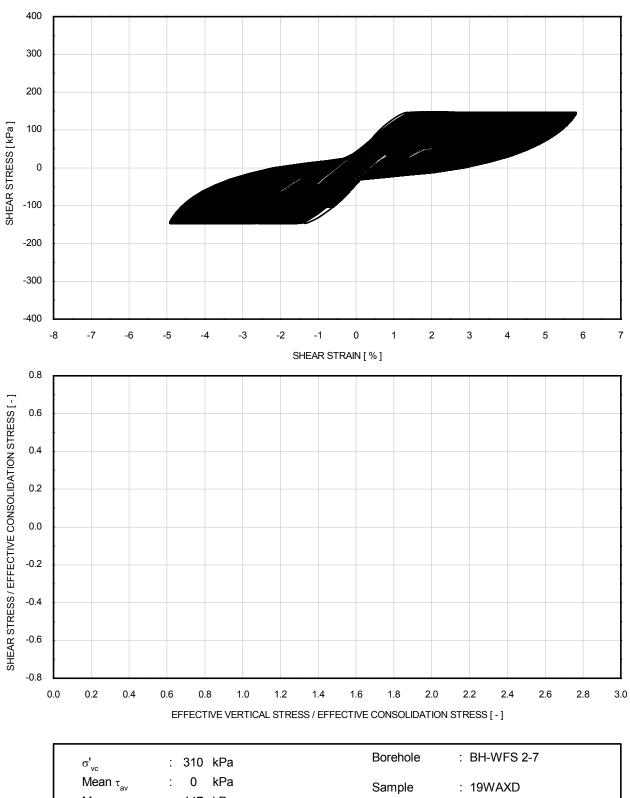

TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	19WAXD
Depth [m]	33.55
Test number	CSS08

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

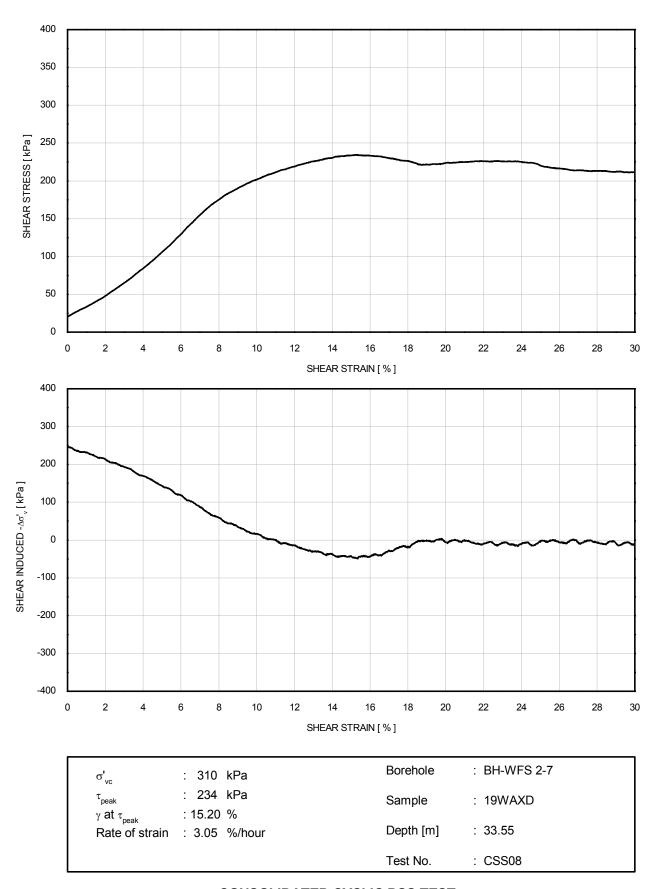


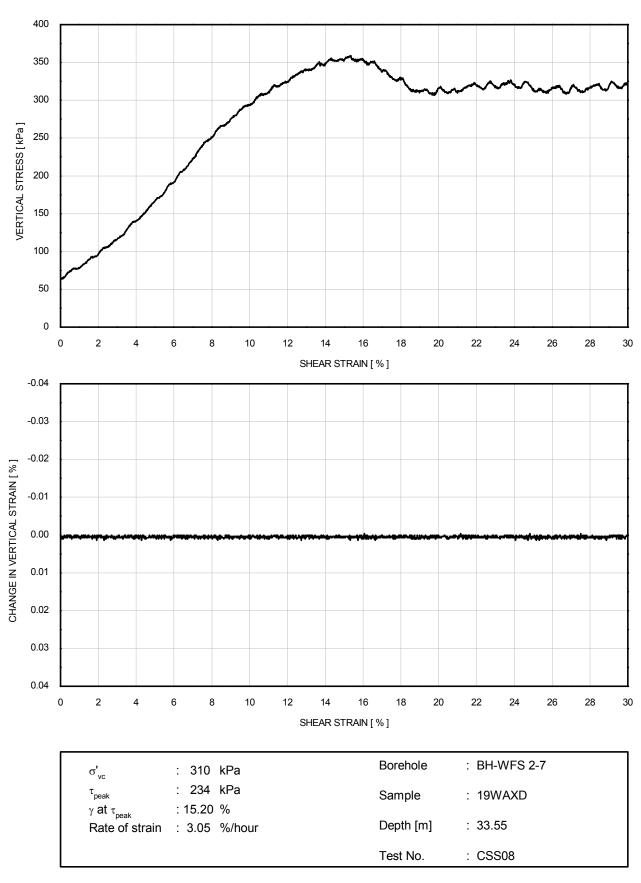

TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	19WAXD
Depth [m]	33.55
Test number	CSS08

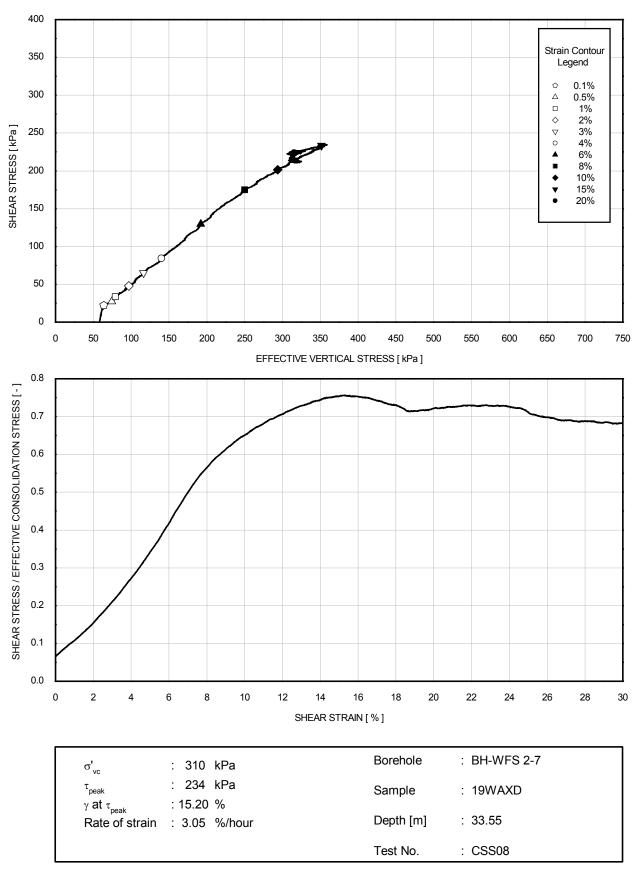

SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

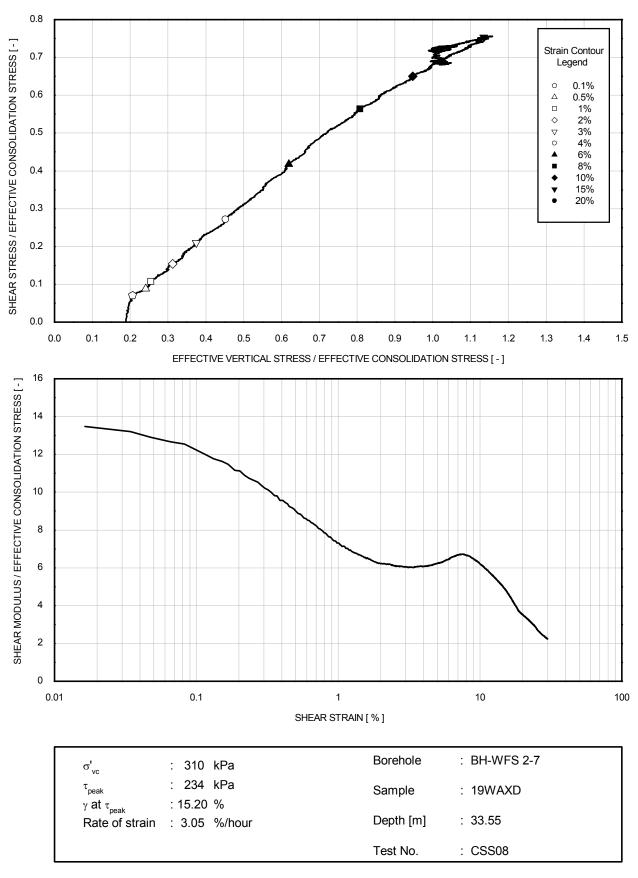


CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE









CONSOLIDATED CYCLIC DSS TEST STRESS-CONTROLLED CYCLIC LOADING STAGE - CONSTANT VOLUME

I	VISUAL DESCRIPTION
	Dark greenish grey CLAY

GENERAL	
Date test started	27/07/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

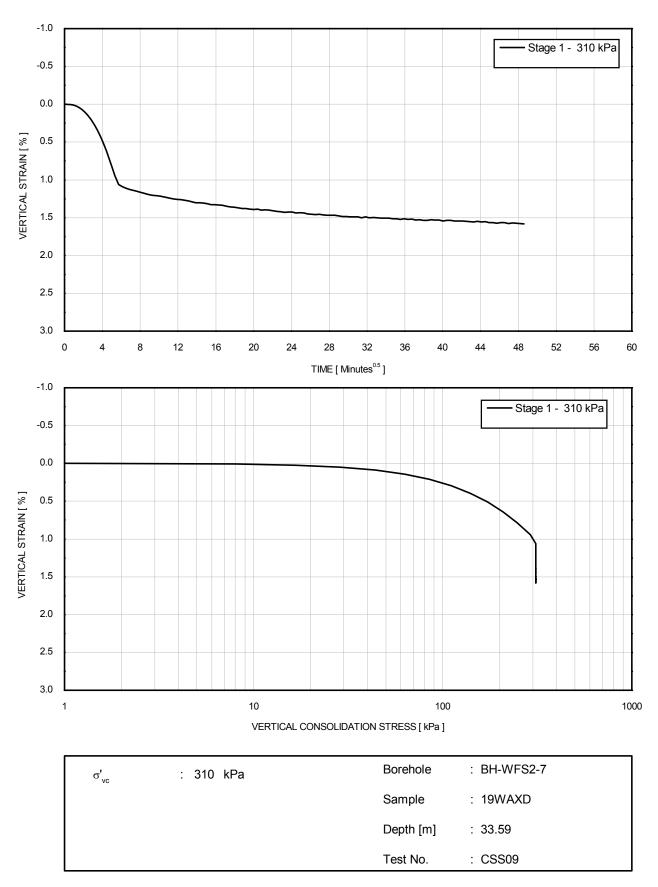
INITIAL			
Diameter	[mm]	66.0	
Length	[mm]	30.0	
Moisture content	[%]	40.6	
Bulk density	[Mg/m³]	1.80	
Dry density	[Mg/m³]	1.28	
Void ratio	[-]	1.113	
Degree of saturation	[%]	99	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	163	
Pocket penetrometer	[kPa]	267	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon reques	t .

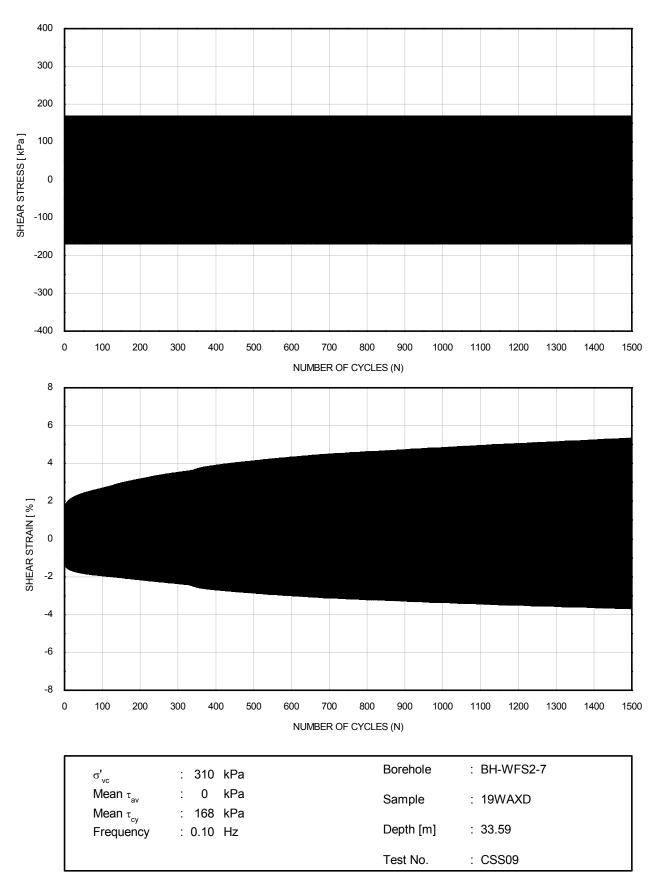
QUALITY ASSURANCE		
Filename J11286 \ BH-WFS 2-7_19D_CSS09		
Template issue	1.2	
Processed by	НВ	
Date	10/08/2015	
Checked by	PH	
Date	11/08/2015	
Approved by	PH	
Date	18/08/2015	

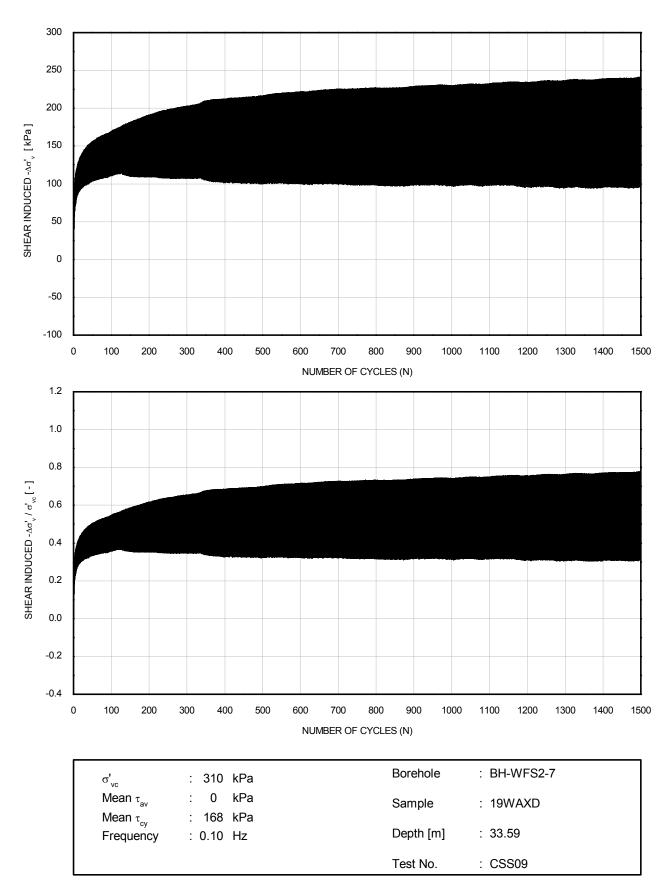
TEST IDENTIFICATION	
Borehole	BH-WFS2-7
Sample	19WAXD
Depth [m]	33.59
Test number	CSS09

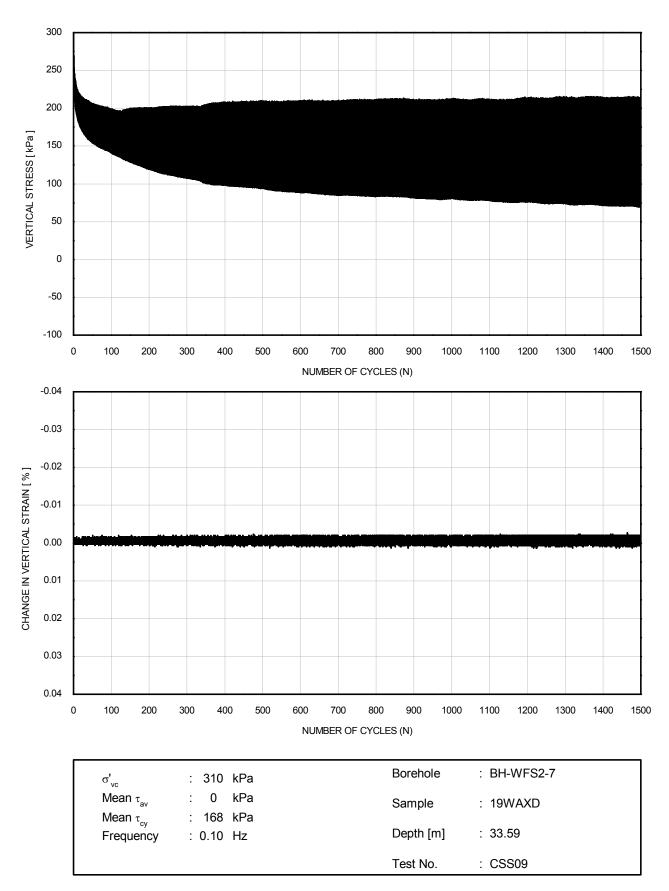
CONSOLIDATION			
σ' _{vc}	[kPa]	310	
Vertical strain	[%]	1.58	
Bulk density	[Mg/m³]	1.81	
Dry density	[Mg/m ³]	1.30	
Void ratio	[-]	1.079	
Moisture content	[%]	39.4	

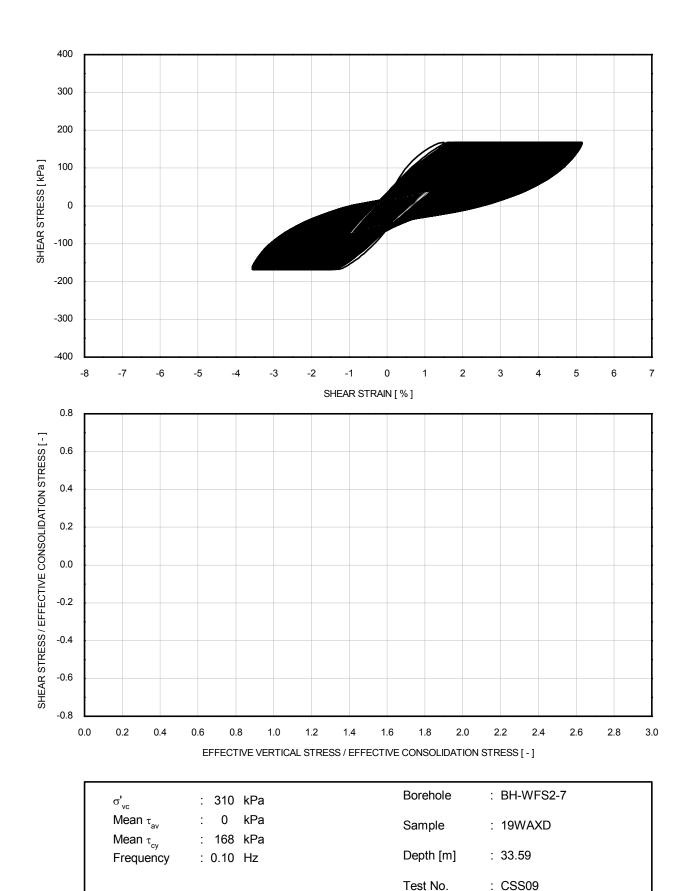

STRESS-CONTROLLED CYCLIC LOADING – CONSTANT VOLUME			
Reference stress	[kPa]	253	
Mean τ _{av}	[kPa]	0	
Mean τ_{cy}	[kPa]	168	
Frequency	[Hz]	0.10	
Number of cycles at failure (N _f)	[-]	1500	
$\gamma_{\sf av}$ at ${\sf N_f}$	[%]	0.83	
$\gamma_{\sf cy}$ at N $_{\sf f}$	[%]	4.49	
Shear induced -Δσ' _ν at N _f	[kPa]	169	
Vertical strain	[%]	0.00	

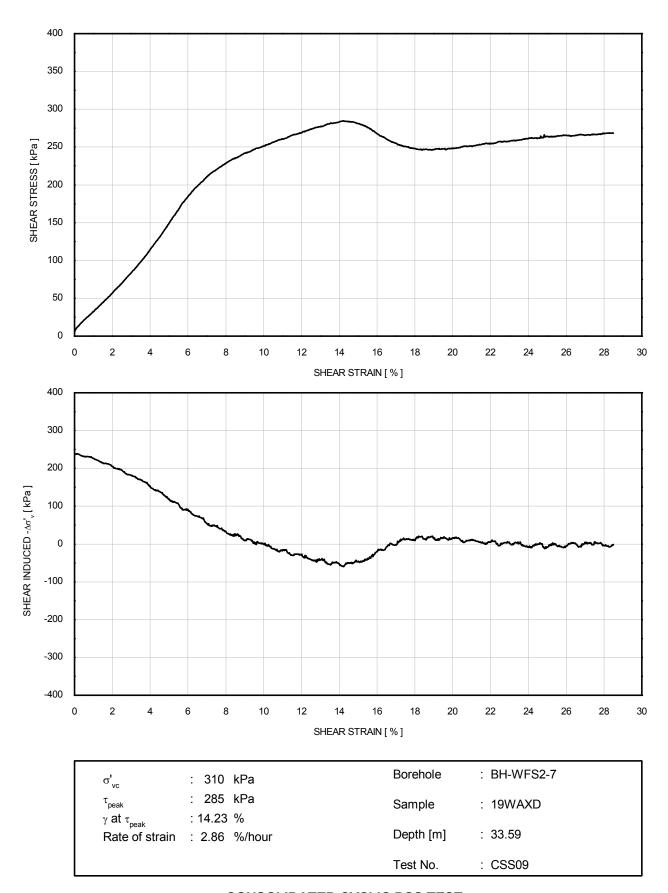
SHEARING - CONSTANT VOL	JME		
At peak shear stress			
Shear stress	[kPa]	285	
Shear strain	[%]	14.23	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-60	
Vertical stress	[kPa]	370	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	2.86	
At 15 % shear strain			
Shear stress	[kPa]	281	
Shear induced -∆σ' _v	[kPa]	-46	
Vertical stress	[kPa]	356	
Vertical strain	[%]	0.00	

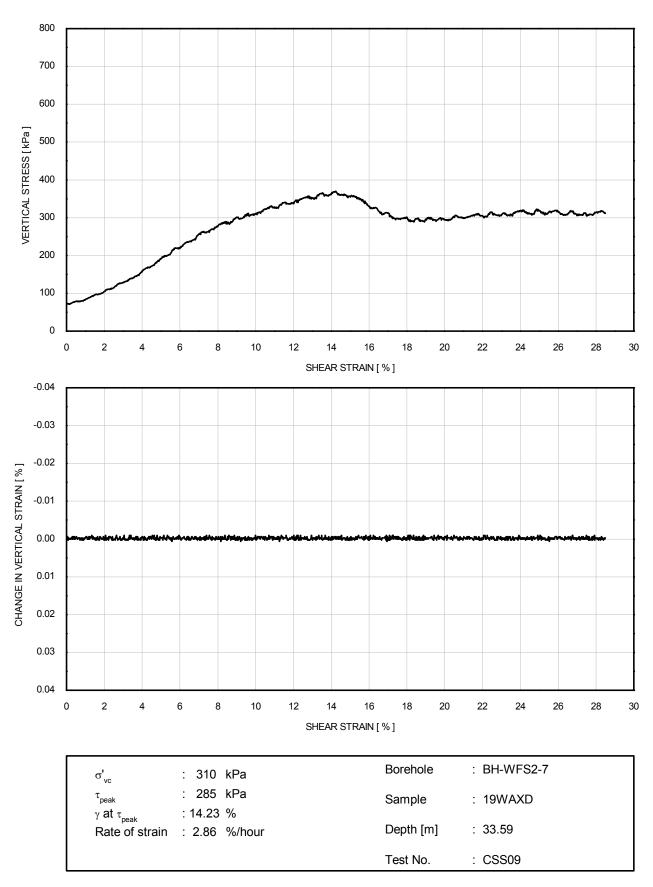

TEST IDENTIFICATION	
Borehole	BH-WFS2-7
Sample	19WAXD
Depth [m]	33.59
Test number	CSS09

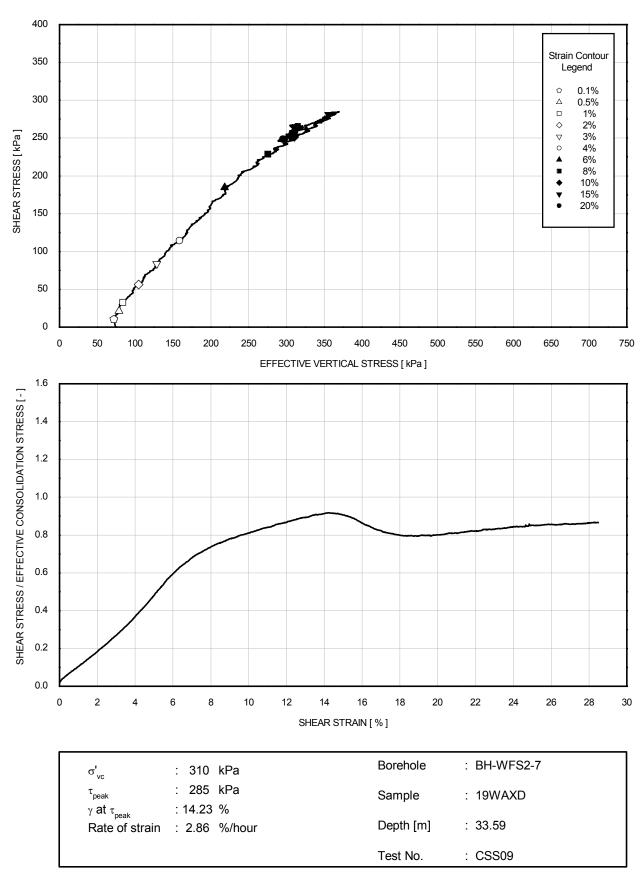


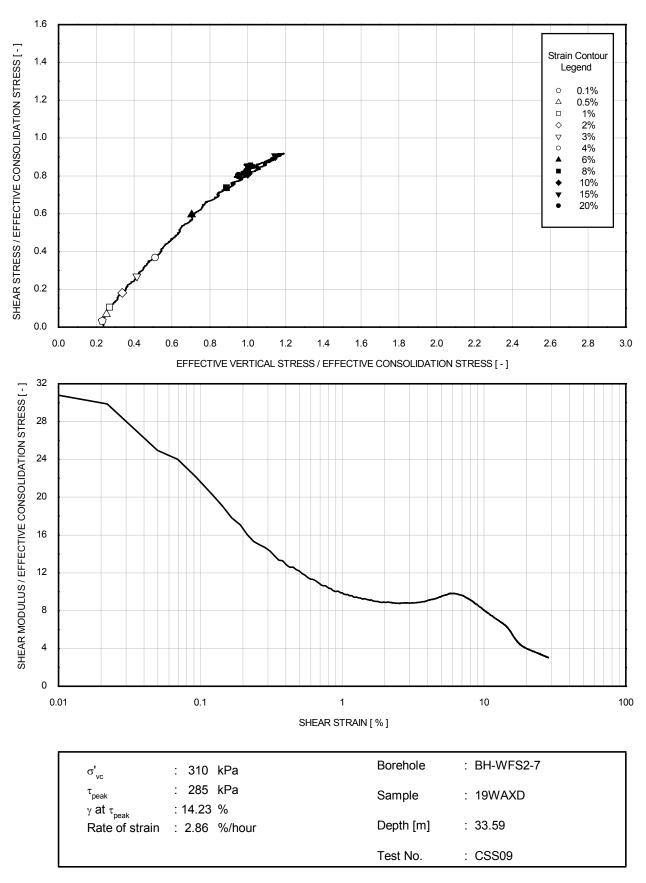

TEST IDENTIFICATION	
Borehole	BH-WFS2-7
Sample	19WAXD
Depth [m]	33.59
Test number	CSS09




CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE







VISUAL DESCRIPTION	
Dark greenish grey CLAY	

GENERAL	
Date test started	11/08/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

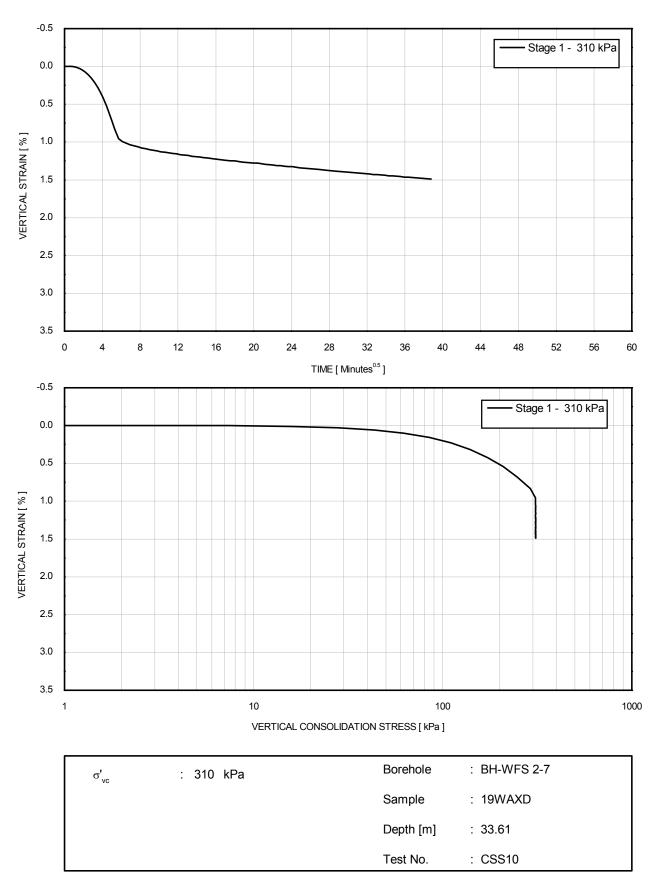
INITIAL			
Diameter	[mm]	65.9	
Length	[mm]	30.0	
Moisture content	[%]	36.7	
Bulk density	[Mg/m³]	1.81	
Dry density	[Mg/m³]	1.32	
Void ratio	[-]	1.044	
Degree of saturation	[%]	95	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	188	
Pocket penetrometer	[kPa]	267	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

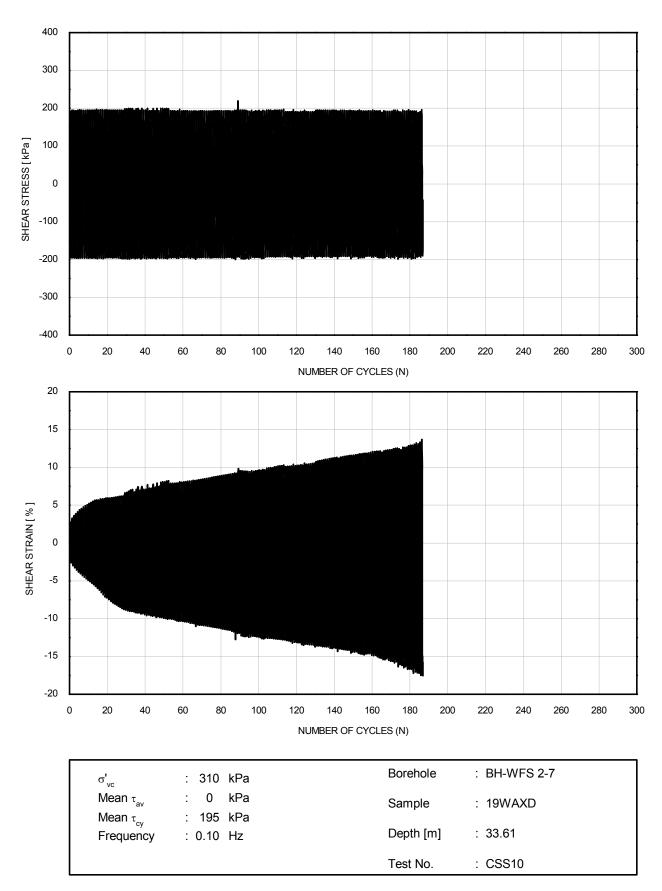
QUALITY ASSURANCE	
Filename	J11286 \ BH-WFS 2-7_19D_CSS10
Template issue	1.2
Processed by	ER
Date	13/08/2015
Checked by	PH
Date	18/08/2015
Approved by	PH
Date	18/08/2015

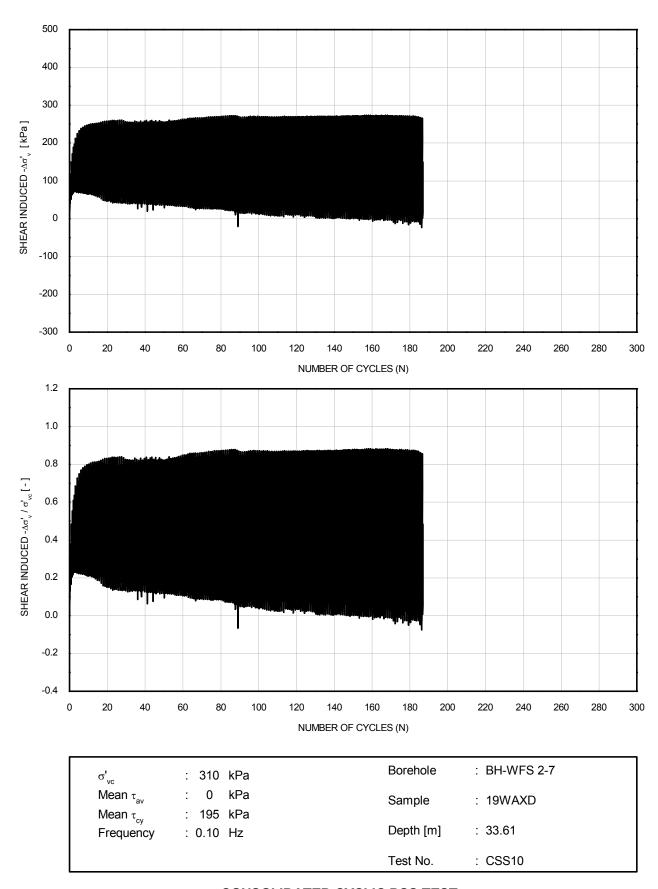
TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	19WAXD
Depth [m]	33.61
Test number	CSS10

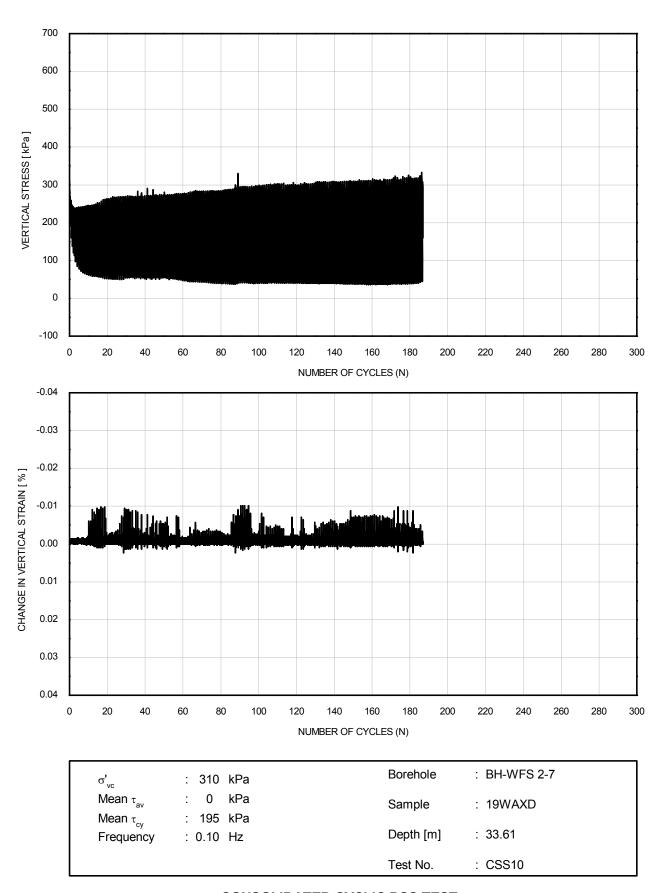
CONSOLIDATION			
σ'_{vc}	[kPa]	310	
Vertical strain	[%]	1.49	
Bulk density	[Mg/m ³]	1.82	
Dry density	[Mg/m ³]	1.34	
Void ratio	[-]	1.014	
Moisture content	[%]	35.5	

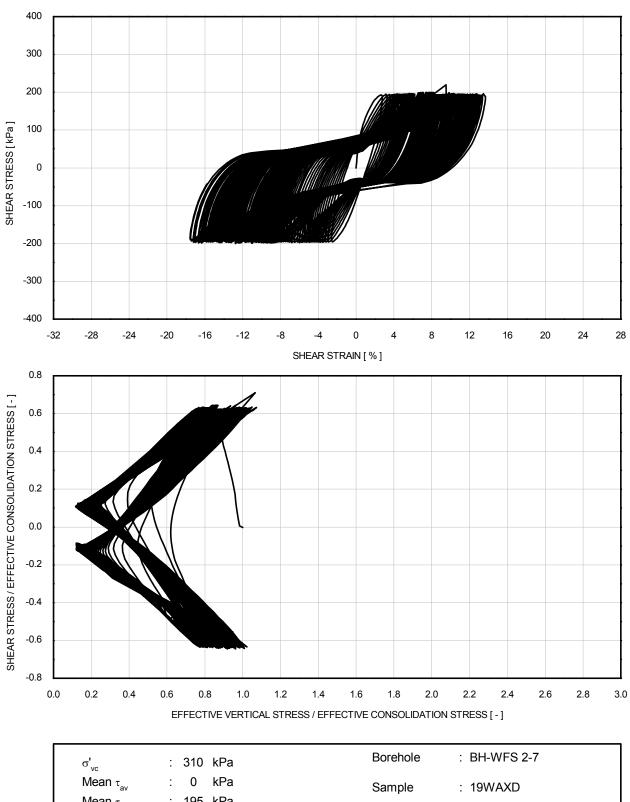

STRESS-CONTROLLED CYCLIC LOADING – CONSTANT VOLUME			
Reference stress	[kPa]	253	
Mean τ_{av}	[kPa]	0	
Mean τ_{cy}	[kPa]	195	
Frequency	[Hz]	0.10	
Number of cycles at failure (N _f)	[-]	182	
$\gamma_{\sf av}$ at ${\sf N_f}$	[%]	-2.14	
$\gamma_{\sf cv}$ at ${\sf N_f}$	[%]	15.08	
Shear induced - $\Delta\sigma'_{v}$ at N _f	[kPa]	132	
Vertical strain	[%]	0.00	

SHEARING – CONSTANT VOL	UME		
At peak shear stress			
Shear stress	[kPa]	210	
Shear strain	[%]	28.91	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-88	
Vertical stress	[kPa]	398	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.11	
At 15 % shear strain			
Shear stress	[kPa]	189	
Shear induced -∆σ' _v	[kPa]	18	
Vertical stress	[kPa]	291	
Vertical strain	[%]	0.00	


TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	19WAXD
Depth [m]	33.61
Test number	CSS10

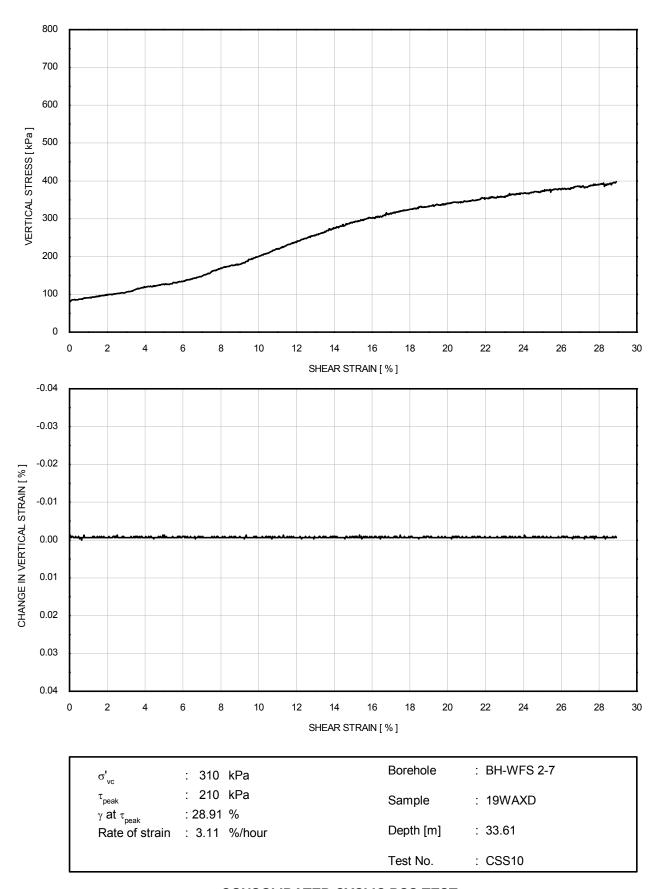


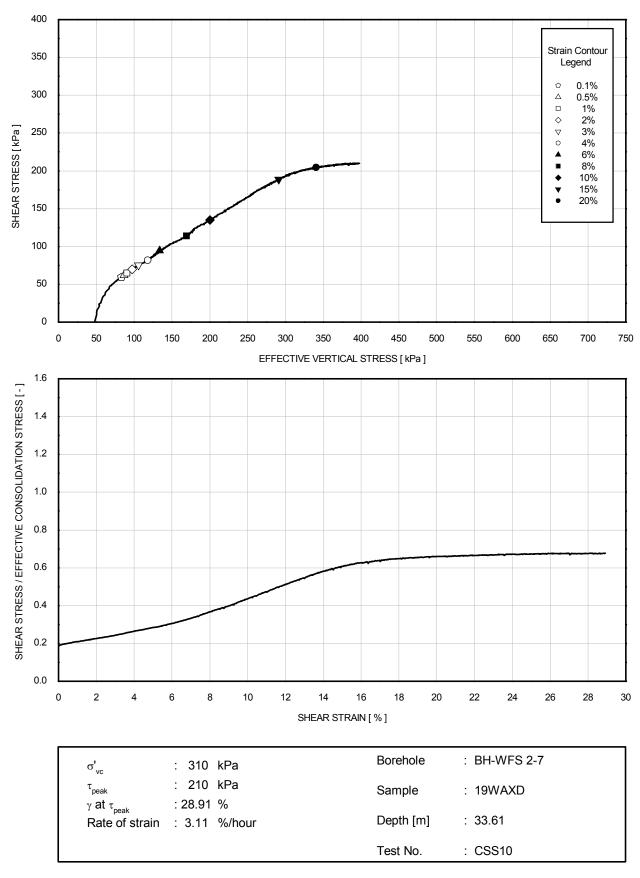

TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	19WAXD
Depth [m]	33.61
Test number	CSS10

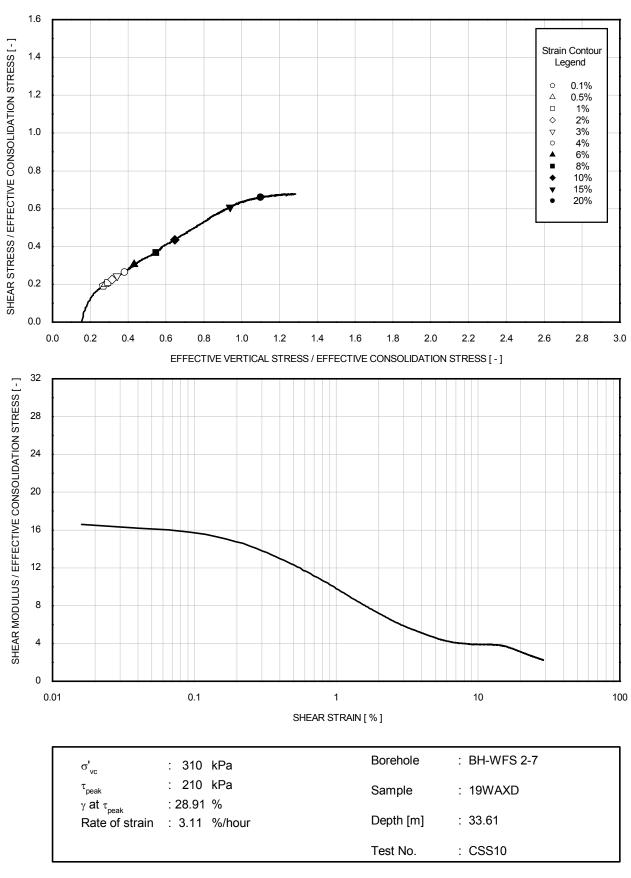


CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE








Mean τ_{av} : 0 kPa Sample : 19WAXD Mean τ_{cy} : 195 kPa Frequency : 0.10 Hz Depth [m] : 33.61

CONSOLIDATED CYCLIC DSS TEST STRESS-CONTROLLED CYCLIC LOADING STAGE - CONSTANT VOLUME

VISUAL DESCRIPTION

Dark greenish grey slightly sandy CLAY

GENERAL	
Date test started	18/08/2015
Type of sample	Undisturbed
Specimen orientation	Vertical

INITIAL			
Diameter	[mm]	66.0	
Length	[mm]	30.0	
Moisture content	[%]	42.1	
Bulk density	[Mg/m³]	1.78	
Dry density	[Mg/m³]	1.25	
Void ratio	[-]	1.156	
Degree of saturation	[%]	98	
Assumed particle density	[Mg/m³]	2.70	
Torvane	[kPa]	-	
Pocket penetrometer	[kPa]	-	
Torvane 90°	[kPa]	-	
Pocket penetrometer 90°	[kPa]	-	

TESTING PROCEDURES USED	
Specimen set-up	Fugro in house procedure
	based on ASTM D6528-07
Consolidation	Fugro in house procedure
	based on ASTM D6528-07
Shearing	Fugro in house procedure
	based on ASTM D6528-07
Note:	
Fugro testing procedures are available upon request	

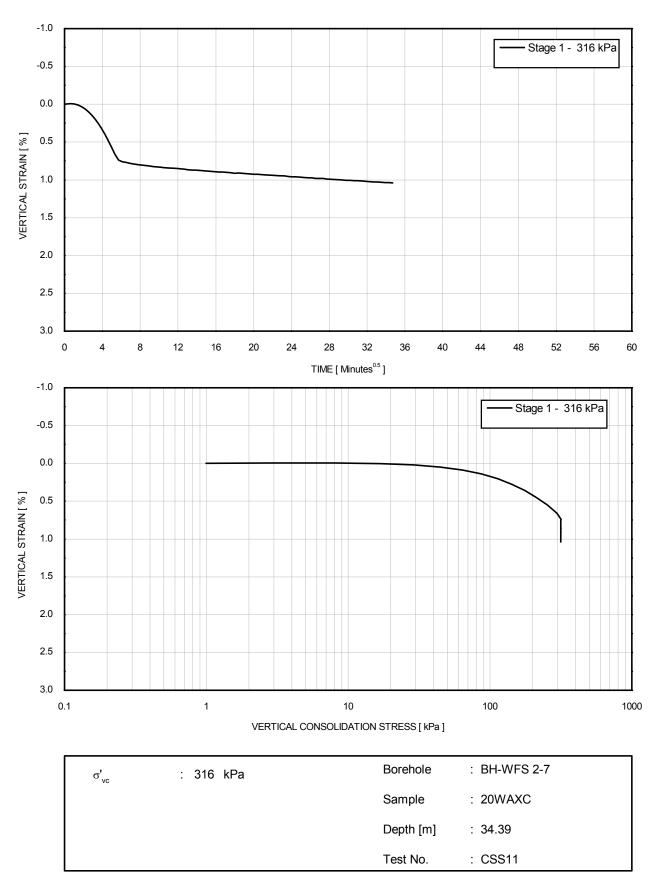
QUALITY ASSURANCE	
Filename	J11286 \ BH-WFS 2-7_20C_CSS11r
Template issue	1.2
Processed by	RN
Date	20/08/2015
Checked by	PH
Date	20/08/2015
Approved by	PH
Date	20/08/2015

TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	20WAXC
Depth [m]	34.39
Test number	CSS11

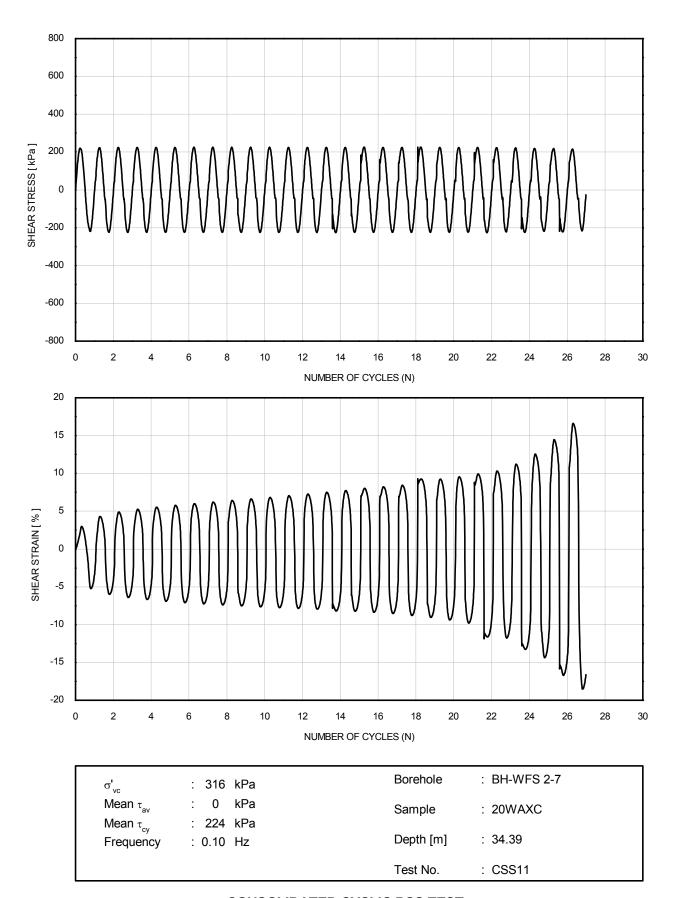
SUMMARY OF CONSOLIDATED CYCLIC DSS TEST

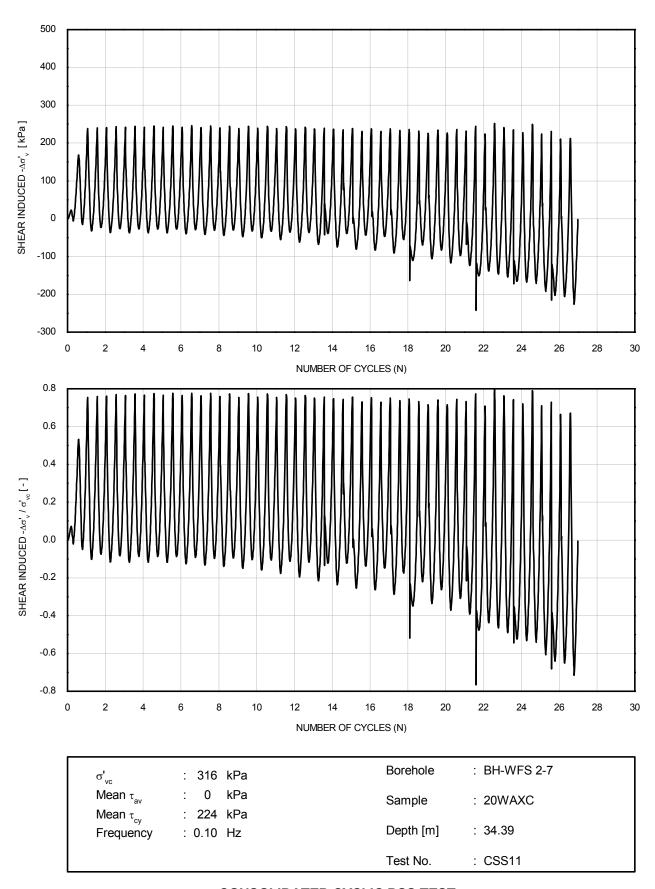
CONSOLIDATION			
σ' _{vc}	[kPa]	316	
Vertical strain	[%]	1.04	
Bulk density	[Mg/m ³]	1.79	
Dry density	[Mg/m ³]	1.27	
Void ratio	[-]	1.134	
Moisture content	[%]	41.2	

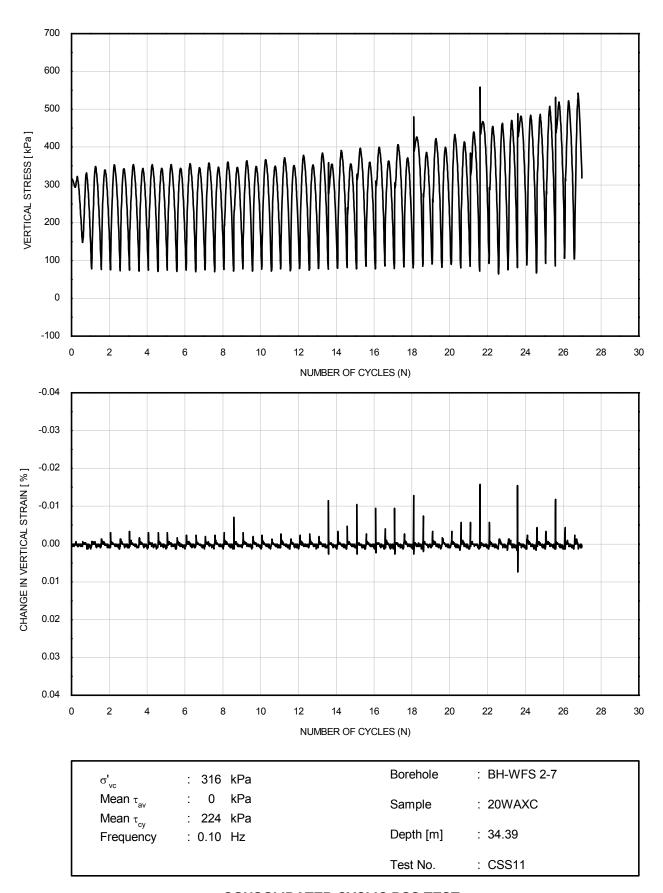
STRESS-CONTROLLED CYCLIC LOADING – CONSTANT VOLUME		
Reference stress	[kPa]	253
Mean τ_{av}	[kPa]	0
Mean τ_{cy}	[kPa]	224
Frequency	[Hz]	0.10
Number of cycles at failure (N _f)	[-]	26
$\gamma_{\sf av}$ at ${\sf N_f}$	[%]	-1.12
$\gamma_{\sf cy}$ at ${\sf N_f}$	[%]	15.57
Shear induced - $\Delta\sigma'_{v}$ at N _f	[kPa]	7
Vertical strain	[%]	0.00

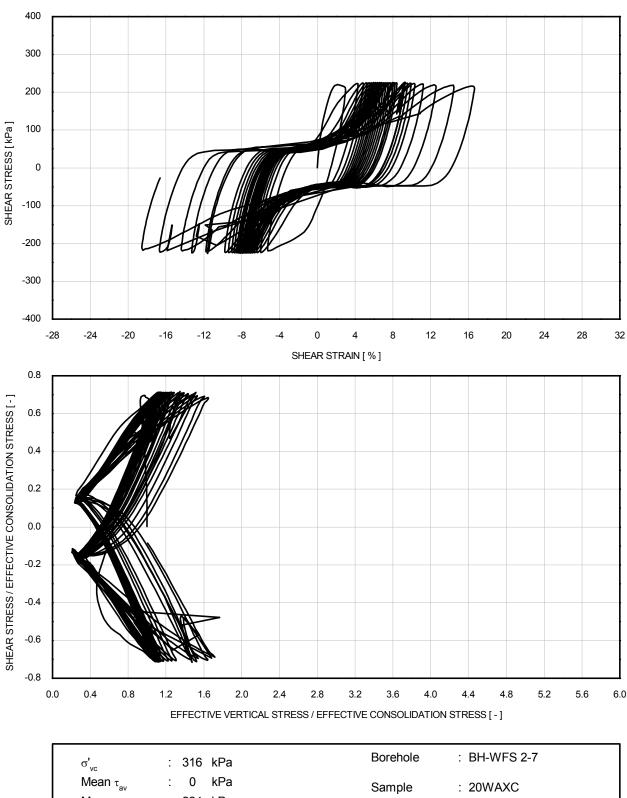

SHEARING - CONSTANT VOLU	JME		
At peak shear stress			
Shear stress	[kPa]	210	
Shear strain	[%]	29.74	
Shear induced $\Delta\sigma'_{v}$	[kPa]	-161	
Vertical stress	[kPa]	478	
Vertical strain	[%]	0.00	
Rate of strain	[%/hour]	3.07	
At 15 % shear strain			
Shear stress	[kPa]	157	
Shear induced - $\Delta\sigma'_{v}$	[kPa]	19	
Vertical stress	[kPa]	297	
Vertical strain	[%]	0.00	

^{*} Please note that specimen failure was observed to occur along or close to the loading platen interface.

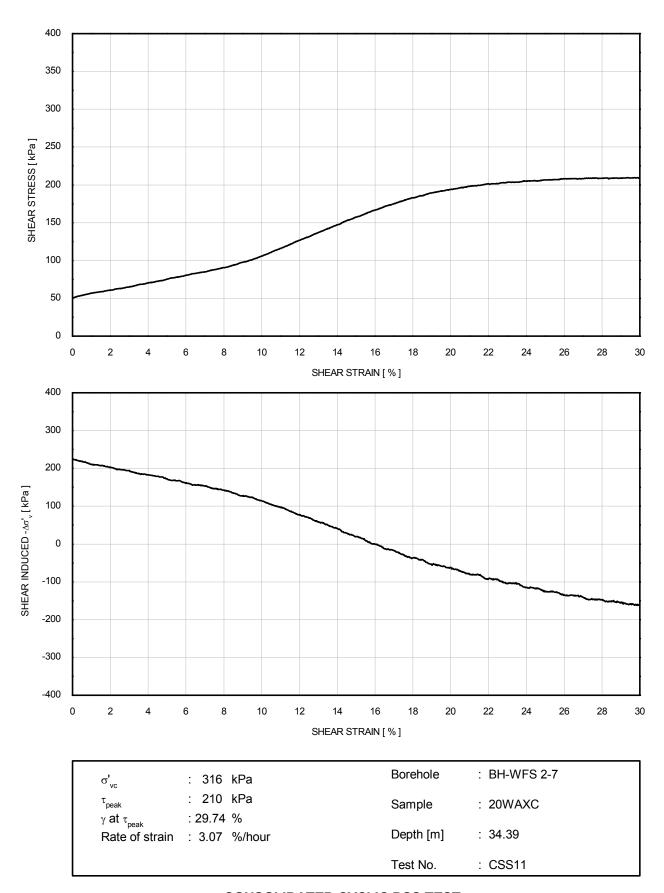

TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	20WAXC
Depth [m]	34.39
Test number	CSS11

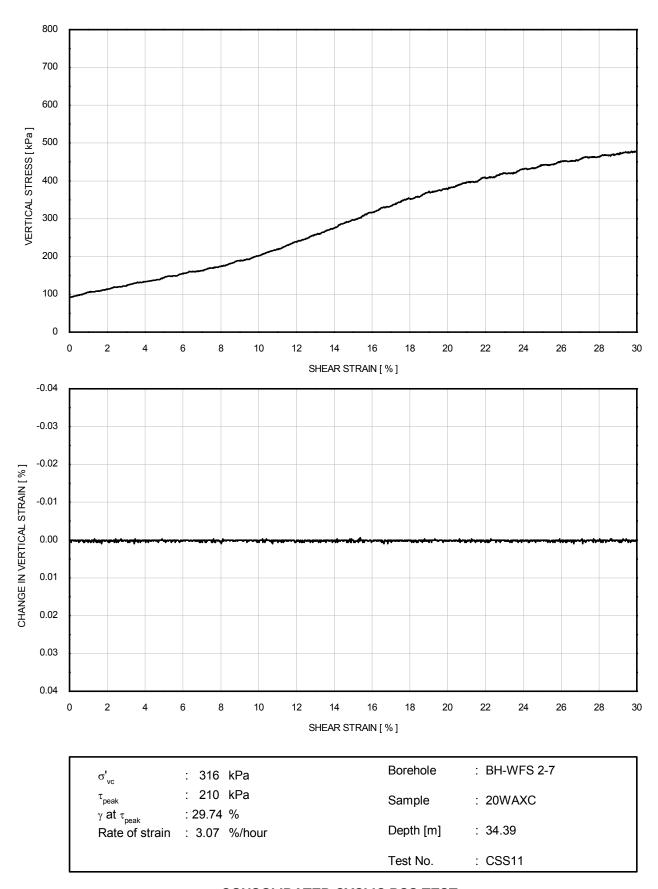


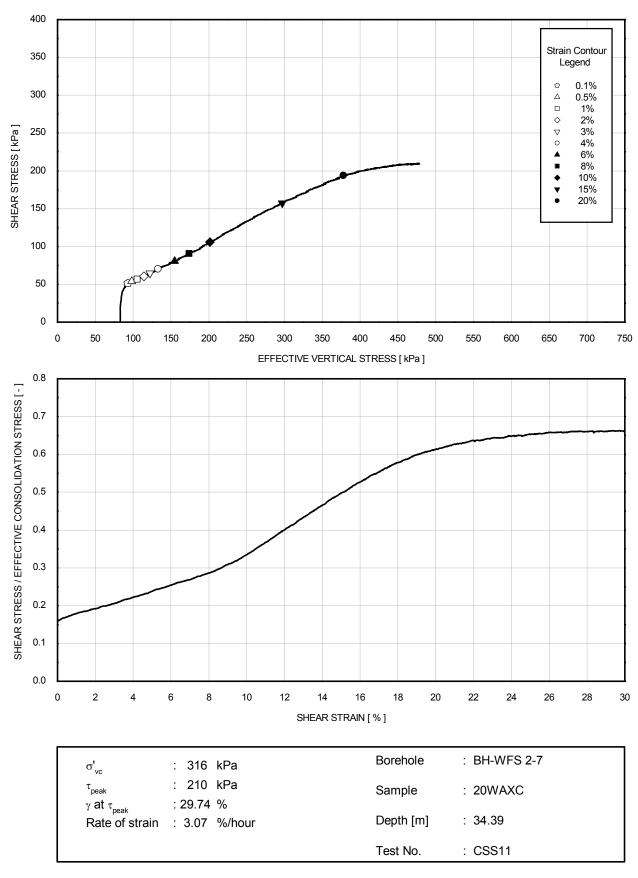

TEST IDENTIFICATION	
Borehole	BH-WFS 2-7
Sample	20WAXC
Depth [m]	34.39
Test number	CSS11

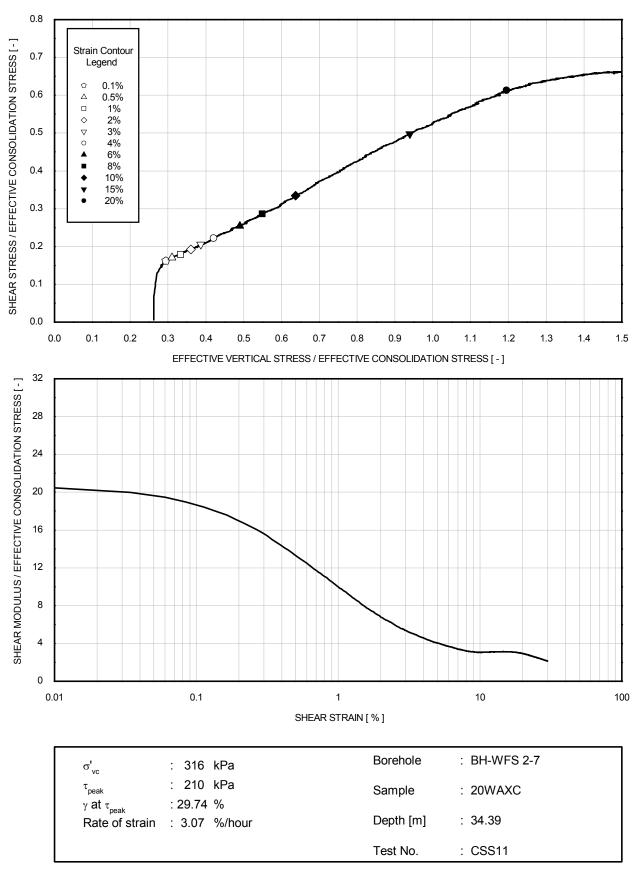


CONSOLIDATED CYCLIC DSS TEST CONSOLIDATION STAGE








 σ'_{vc} : 316 kPa Borenole : BH-WFS 2-7 Mean τ_{av} : 0 kPa Sample : 20WAXC Mean τ_{cy} : 224 kPa Frequency : 0.10 Hz Depth [m] : 34.39 Test No. : CSS11

CONSOLIDATED CYCLIC DSS TEST STRESS-CONTROLLED CYCLIC LOADING STAGE - CONSTANT VOLUME

SECTION B: GUIDELINES FOR USE OF REPORT

CONTENTS Reference

Guide for Use of Report FEBV/GEN/APP/006

GUIDE FOR USE OF REPORT

INTRODUCTION

This document provides guidelines, recommendations and limitations regarding the use of information in this report.

The cost of geotechnical data acquisition, interpretation and monitoring is a small portion of the total cost of a construction project. By contrast, the costs of correcting a wrongly designed programme or mobilising alternative construction methods are often far greater than the cost of the original investigation. Attention and adherence to the guidelines and recommendations presented in this guide and in the geotechnical report can reduce delays and cost overruns related to geotechnical factors.

This guide applies equally to the use of geotechnical and multi-disciplinary project information and advice.

REQUIREMENTS FOR QUALITY GEOTECHNICAL INVESTIGATIONS

Fugro follows ISO 9001 quality principles for project management. Project activities usually comprise part of specific phases of a construction project. The quality plan for the entire construction project must incorporate geotechnical input in every phase - from the feasibility planning stages to project completion. The parties involved must do the following.

- Provide complete and accurate information necessary to plan an appropriate geotechnical site investigation.
- Describe the purpose(s), type(s) and construction methods of planned structures in detail.
- Provide the time, financial, personnel and other resources necessary for the planning, execution and follow-up of a site investigation programme.
- Understand the limitations and degree of accuracy inherent in the geotechnical data and engineering advice based upon these data.
- During all design and construction activities, be aware of the limitations of geotechnical data and geotechnical engineering analyses/advice, and use appropriate preventative measures.
- Incorporate all geotechnical input in the design, planning, construction and other activities involving the site and structures. Provide the entire geotechnical report to parties involved in design and construction.
- Use the geotechnical data and engineering advice for only the structures, site and activities which were described to Fugro prior to and for the purpose of planning the geotechnical site investigation or geotechnical engineering analysis programme.

AUTHORITY, TIME AND RESOURCES NECESSARY FOR GEOTECHNICAL INVESTIGATIONS

To ensure compliance with these requirements, there must be adequate designation of authority and accountability for geotechnical aspects of construction projects. This way, an appropriate investigation can be performed, and the use of the results by project design and construction professionals can be optimised.

Figure 1 illustrates the importance of the initial project phases in ensuring that adequate geotechnical information is gathered for a project. The initial phases, when site investigation requirements are defined and resources are allocated, are represented by more than 50% of the Quality triangle (Figure 1). Decisions and actions made during these phases have a large impact of the outcome and thus the potential of the investigation to meet project requirements.

GUIDE FOR USE OF REPORT

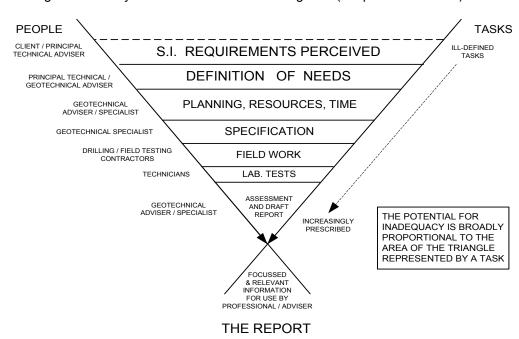


Figure 1: Quality of Geotechnical Site Investigation (adapted from SISG1).

DATA ACQUISITION AND MONITORING PROGRAMMES

Geotechnical investigations are operations of discovery. Investigation should proceed in logical stages. Planning must allow operational adjustments deemed necessary by newly available information. This observational approach permits the development of a sound engineering strategy and reduces the risk of discovering unexpected hazards during or after construction.

GEOTECHNICAL INFORMATION - DATA TYPES AND LIMITATIONS

1. RELIABILITY OF SUPPLIED INFORMATION

Geotechnical engineering can involve the use of information and physical material that is publicly available or supplied by the Client. Examples are geodetic data, geological maps, geophysical records, earthquake data, earlier borehole logs and soil samples. Fugro endeavours to identify potential anomalies, but does not independently verify the accuracy or completeness of public or Client-supplied information unless indicated otherwise. This information, therefore, can limit the accuracy of the report.

2. COMPLEXITY OF GROUND CONDITIONS

There are hazards associated with the ground. An adequate understanding of these hazards can help to minimize risks to a project and the site. The ground is a vital element of all structures which rest on or in the ground. Information about ground behaviour is necessary to achieve a safe and economical structure. Often less is known about the ground than for any other element of a structure.

3. GEOTECHNICAL INVESTIGATION - SPATIAL COVERAGE LIMITATIONS

Geotechnical investigations collect data at specific test locations. Interpretation of ground conditions away from test locations is a matter of extrapolation and judgement based on geotechnical knowledge and experience, but actual conditions in untested areas may differ from predictions. For example, the interface between ground materials may be far more gradual or abrupt than a report indicates. It is not realistic to expect a geotechnical investigation to reveal or anticipate every detail of ground conditions. Nevertheless, an investigation can reduce the residual risk associated with unforeseen conditions to a tolerable level. If ground problems do arise, it is important to have geotechnical expertise available to help reduce and mitigate safety and financial risks.

Page 2 of 3 FEBV/GEN/APP/006

¹ Site Investigation Steering Group SISG (1993), "Site Investigation in Construction 2: Planning, Procurement and Quality Management", Thomas Telford, London.

4. ROLE OF JUDGEMENT AND OPINION IN GEOTECHNICAL ENGINEERING

Geotechnical engineering is less exact than most other design disciplines, and requires extensive judgement and opinion. Therefore, a geotechnical report may contain definitive statements that identify where the responsibility of Fugro begins and ends. These are not exculpatory clauses designed to transfer liabilities to another party, but they are statements that can help all parties involved to recognise their individual responsibilities and take appropriate actions.

COMPLETE GEOTECHNICAL REPORT SHOULD BE AVAILABILE TO ALL PARTIES INVOLVED

To prevent costly construction problems, construction contractors should have access to the best available information. They should have access to the complete original report to prevent or minimize any misinterpretation of site conditions and engineering advice. To prevent errors or omissions that could lead to misinterpretation, geotechnical logs and illustrations should not be redrawn, and users of geotechnical engineering information and advice should confer with the authors when applying the report information and/or recommendations.

GEOTECHNICAL INFORMATION IS PROJECT-SPECIFIC

Fugro's investigative programmes and engineering assessments are designed and conducted specifically for the Client described project and conditions. Thus this report presents data and/or recommendations for a unique construction project. Project-specific factors for a structure include but are not limited to:

- location
- size and configuration of structure
- type and purpose or use of structure
- other facilities or structures in the area.

Any factor that changes subsequent to the preparation of this report may affect its applicability. A specialised review of the impact of changes would be necessary. Fugro is not responsible for conditions which develop after any factor in site investigation programming or report development changes.

For purposes or parties other than the original project or Client, the report may not be adequate and should not be used.

CHANGES IN SUBSURFACE CONDITIONS AFFECT THE ACCURACY / SUITABILITY OF THE DATA

Ground is complex and can be changed by natural phenomena such as earthquakes, floods, seabed scour and groundwater fluctuations. Construction operations at or near the site can also change ground conditions. This report considers conditions at the time of investigation. Construction decisions must consider any changes in site conditions, regulatory provisions, technology or economic conditions subsequent to the investigation. In general, two years after the report date, the information may be considered inaccurate or unreliable. A specialist should be consulted regarding the adequacy of this geotechnical report for use after any passage of time.

ISSUE 10

© Fugro 1996-2015

FEBV/GEN/APP/006