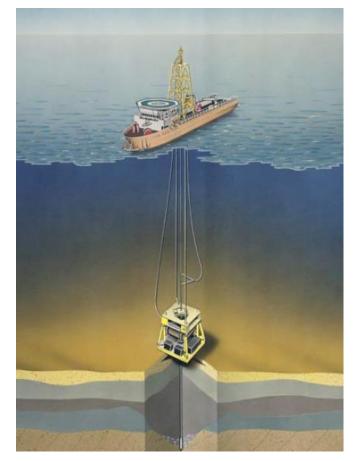
Wind farm zone Borssele Geotechnical Investigations WFS I & II 10th June 2015

Rein de Wolff– BLIX Consultancy



Scope of Work

- Generic Scope
 - Alternating Borehole / PCPT's (target depth 50m 80m)
 - Seabed PCPT's using bottom mounted PCPT unit with 20t thrust
 - Laboratory testing on relevant parameters

Deliverables

- Factual Borehole and lab testing report
- Factual Seabed PCPT results report
- Geological Ground model report
- Advanced Static and Cyclic testing report

Source: Fugro Engineers

RVO.nl team

Responsible:

Project Management:

Geotechnical advisor

Rijksdienst voor Ondernemend Nederland

BLIX

hands-on experience in wind energy

WINDSUPPORT

Offshore reps. / geotech. advisor

RPS Energy

Certification

March/April 2015:	Preparation Project Documentation/ Mobilization $ {f V} $
April/May 2015:	Execution Borehole/downhole PCPT campaign ${f V}$
April/May 2015:	Execution Seabed PCPT campaign ${f V}$
May/June 2015:	Lab testing/Reporting V
June/July 2015:	Review/Certification of report

Reports planned to be published end of July/ beginning of August, subject to certification

Advanced lab testing results will follow after provision final report

Thank you for your attention

- More information: English.rvo.nl/offshore-wind-energy
- Questions:
 - woz@rvo.nl
 - Ruud de Bruijne, RVO.nl
 - Rein de Wolff, BLIX Consultancy

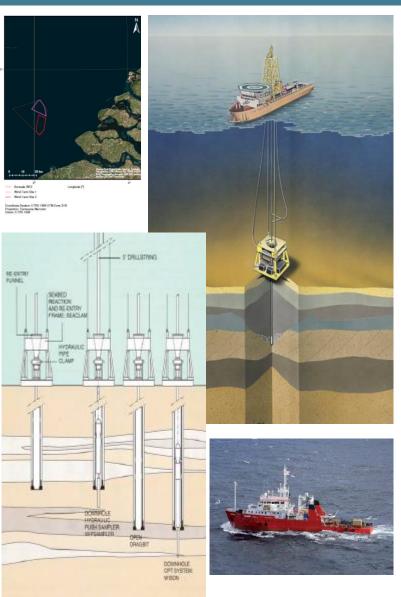
Fugro Geotechnical Investigation Campaign Borssele – WFSI&II Workshop 'Tender Borssele', 10 June 2015, Martijn Klein (Fugro)

FUGRO

- 1. Introduction
- 2. Geotechnical Site Investigation
- 3. Geological Ground Model
- 4. Geotechnical Data Examples
- 5. Considerations for Design
- 6. Concluding Remarks

Table of Contents

Geotechnical Site Investigation – Overview



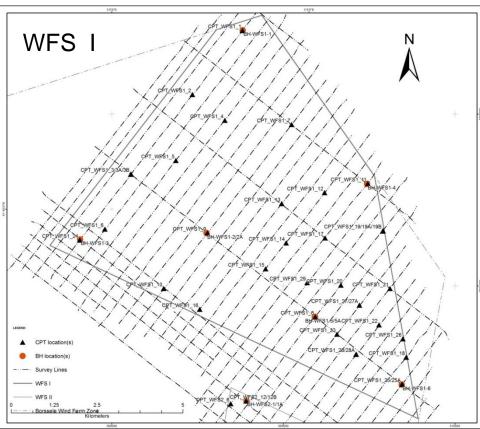
Purpose of the Geotechnical Site Investigation:

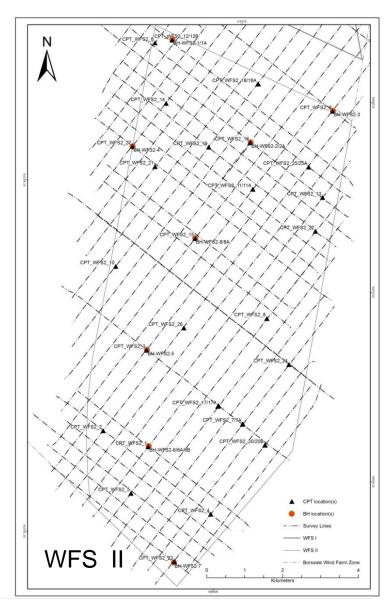
- Confirm the geological & geophysical model
- Determine vertical and lateral variation in seabed conditions
- Provide relevant geotechnical data for design, including foundations and cables
- Update geological desk study and provide geological model

Overview of Geotechnical Site Investigation:

- According to ISO 19901-8 (2014) Marine Soil Investigations
- Fieldwork campaign from 10 April to 26 May 2015 with MV Bucentaur and MV Fugro Commander
- Geotechnical borehole drilling, downhole sampling, downhole in situ testing and seafloor in situ testing
- In-office laboratory test programme completed
- Investigation Data and Geological Ground Model Reports submitted as drafts to RVO
- Advanced static and cyclic laboratory test programme ongoing

FUGRO


Geotechnical Site Investigation – Investigation Points


WFSI

- 6 borehole locations, downhole sampling and in situ testing
- 29 seafloor in situ test locations

WFSII

- 8 borehole locations, downhole sampling and in situ testing
- 27 seafloor in situ test locations

Geotechnical logs for borehole locations and seafloor Cone Penetration Test (CPT) locations

- Interpretation of soil profile, strata description and CPT derived relative density and shear strength
- Selected results of laboratory tests

Results of Piezo- and Seismic CPT and Pore Pressure Dissipation tests

- · Cone resistance (net/total), sleeve friction, pore pressure, friction ratio and pore pressure ratio
- Recorded shear waves (X&Y) and derived shear wave velocity
- Dissipation Tests, i.e. cone resistance and pore pressure versus time

On-site and in-office laboratory test programmes

- Geotechnical Index Testing
 Sample description, water content, unit weight, Particle Size Distribution, Atterberg Limits, Particle Density, Min/Max Index Unit Weight
- Geochemical Index Testing
 Carbonate content and Organic Content
- (Index) Strength Testing Pocket Penetrometer, Undrained Unconsolidated (UU) triaxial compression, Isotropically Consolidated Undrained (CIU) triaxial compression
- Compressibility Testing
 Incremental Loading and Constant Rate of Strain Oedometer tests

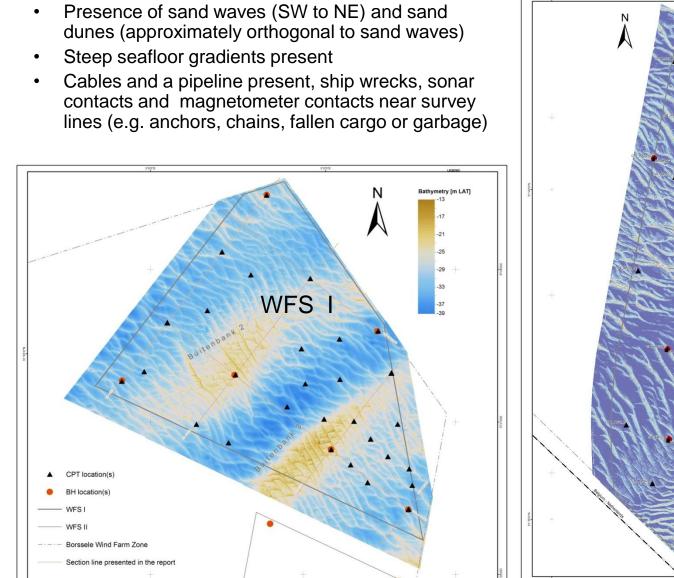
Advanced static and cyclic laboratory test programme (ongoing)

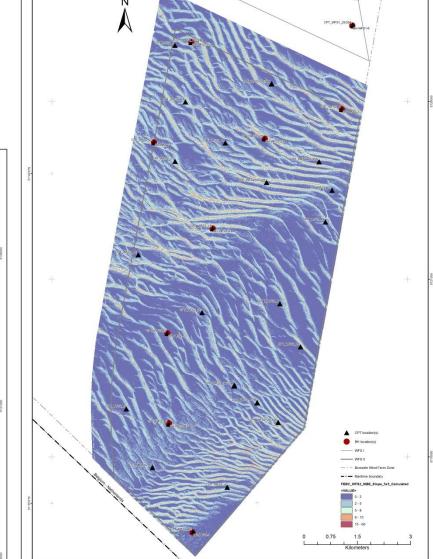
- Coarse-grained soils
 Isotropically Consolidated Undrained (CIU) triaxial compression, selected tests with Bender Element (BE), Cyclic Undrained Triaxial (CTXL)
- Fine-grained soils

Direct Simple Shear (DSS), Cyclic Simple Shear (CSS), Isotropically Consolidated Undrained (CIUc) triaxial compression, selected tests with Bender Element (BE), Isotropically Consolidated Undrained (CIUe) triaxial extension

UGRO

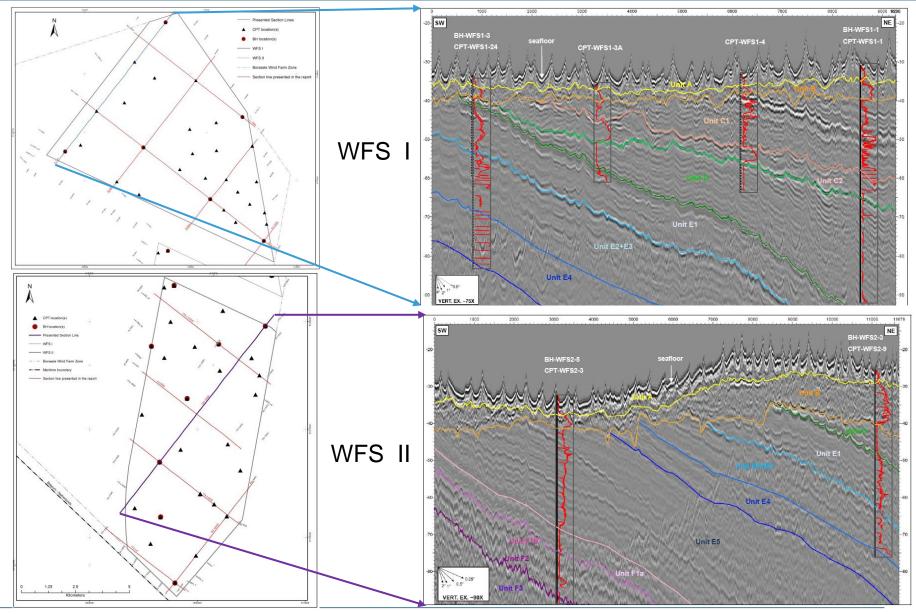
Geotechnical Site Investigation – Project Deliverables




Report Type	Investigation Data	Contents		
Geotechnical Reports – Investigation Data	 WFSI 6 borehole locations to depths of 50m to 65m bsf 4 sampling & (P)CPT 2 sampling & (S/P)CPT 	One report per site Geotechnical logs; Results of (P)CPT 		
	 WFSII 8 borehole locations to depths of 51m to 82m bsf 6 sampling & (P)CPT 2 sampling &(S/P)CPT 	 Results of SCPT Geotechnical laboratory tests 		
	WFSI 29 seafloor PCPT to depths of 7m to 37m bsf, including 6 PPDT	One report per site Interpreted PCPT logs 		
	WFSII 27 seafloor PCPT to depths of 4m to 50m bsf, including 14 PPDT	Results of PCPTResults of PPDT		
Geological Ground Model Reports	 One report per site Geological ground model Geotechnical Parameter per borehole location and per unit Assessment of suitability of selected types of structures 			
Laboratory Test Reports	Results of advanced static and cyclic laboratory tests			
Key: bsf = below seafloor PCPT = Piezo-Cone Pe	netration Test / SCPT = Seismic Cone Penetration Test / PPDT = Po	re Pressure Dissipation Test		

11 Fugro Geotechnical Investigation Campaign Borssele – WFSI&II, 10 June 2015

Geological Ground Model - Seafloor Conditions

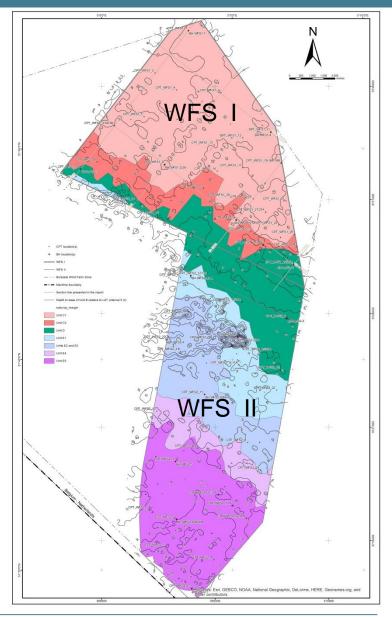


Geological Ground Model – Stratigraphic Correlation

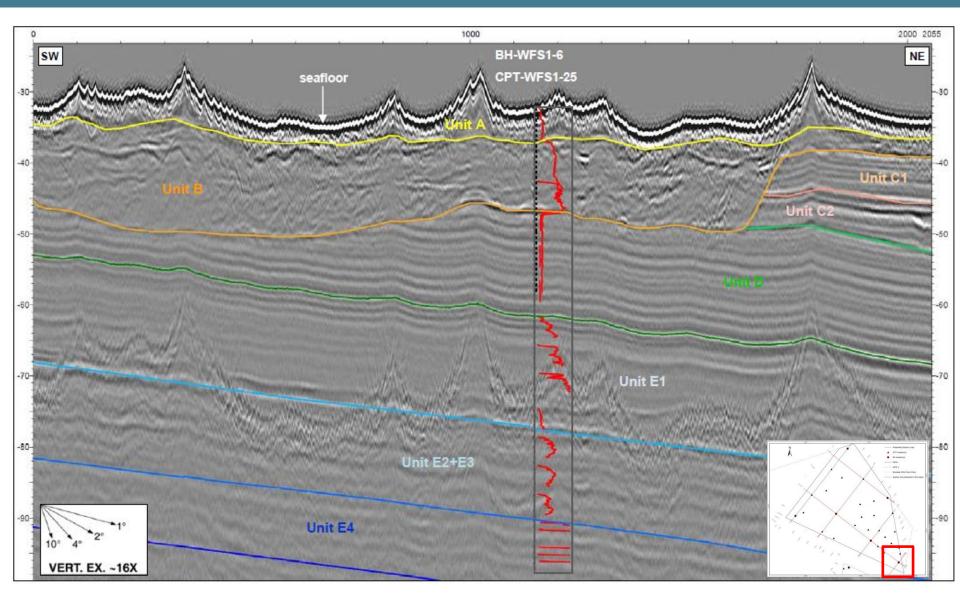
T	UGRO
	\sim
	\sim
	\sim
	\sim

	Lithostratigraphy Belgium (Vandenberghe, 2004) Unit		Belgium Netherlands andenberghe, 2004) (Rijsdijk, 2005)			Chronostratigraphy												
Unit					Seismostratigraphy	Age	r T T T	Eboca	n n n n n n n n n n n n n n n n n n n	renoa								
А			Southern	Bight Fm.	Southern Bight Fm.		Holo	cene		Ŋ								
			Kreftenheye Fm./ Eem Fm.		Kreftenheye Fm./	/Eem	Pleistocene		Quaternary									
В					Eem Fm.	Saalian/Eem ian												
C1			Westkape	lle Ground	Westkapelle Ground			ene	jene									
C2			Fm.		Fm.		Pliocene		Neogene									
D	Boom Clay	Boom Fm.	Rupel C	lay Mb.	Rupel Fm.													
E1	Ruisbroek Sand							Ruisbroek Sand			Rupelian	Early	Oligocene					
E2	Watervliet Clay		Watervliet Clay			Rup	ш	Oligo										
E3	Bassevelde Sand (Ba3)	Zelzate Fm.	ш Щ	Em.														
E4	Bassevelde Sand (Ba2)		Zelzate	Zelzate	Zelzate	Zelzate	Zelzate	Zelzate	Zelzate	Zelzate		Zelzate Fm.	Tongeren Fm.	u			- sue	Tertiary
E5a	Bassevelde Sand (Ba1)											Z	Sand	N		Priabonian	Late	
E5b	Bassevelde Sand (Ba1)											Pria			Pal			
F1a	Onderdijke		I					Eocene										
F1b	Clay Onderdijke Clay	Maldegem Fm.				lian	<u>e</u>	E										
F2	Buisputten Sand	ldege	Asse	Asse Mb.	Dongen Fm.	Bartonian	Middle											
F3	Zomergem Clay	Ma																
Notes: - Fm. = Formation																		
	-ormation Member																	

Geological Ground Model – Examples of Cross Sections

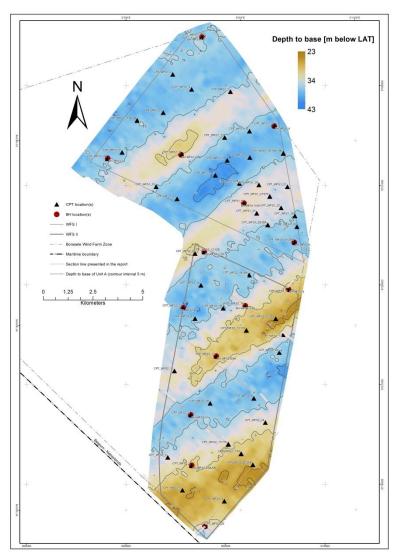


UGRO

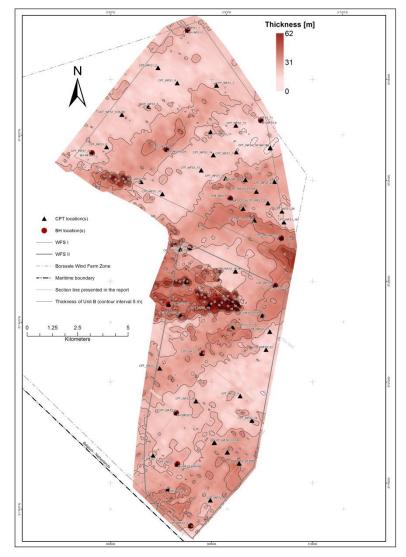


Geological Ground Model – Spatial Stratigraphy

Unit	Nethe (Rijsdijl	itigraphy rlands <, 2005) 2003)	Seismostratigra phy	Period		
А	Southern	Bight Fm.	Southern Bight Fm.	Ā		
	Kreftenh	eye Fm./	Kreftenheye Fm./			
В	Eem	Fm.	Eem Fm.	Quaternary		
C1				ne		
C2		lle Ground n.	Westkapelle Ground Fm.	Neogene		
D	Rupel C	Clay Mb.	Rupel Fm.			
E1 E2	Ruisbroek Sand Watervliet		Tongeren Fm.		Tertiary	
E3	Clay	Ë				
E4	Basseveld e Sand			Palaeogene		
E5a	e Sanu			Ľ		
E5b						
F1a						
F1b	Asse	Mb	Dongen Fm.			
F2	7356		Dongen i m.			
F3						



Geotechnical Data Example - Soil Units B and E2 / E3


-fugro

Geotechnical Data Example – Spatial Distribution Soil Unit B

Depth to Top of Unit B

Thickness Distribution of Unit B

UGRO

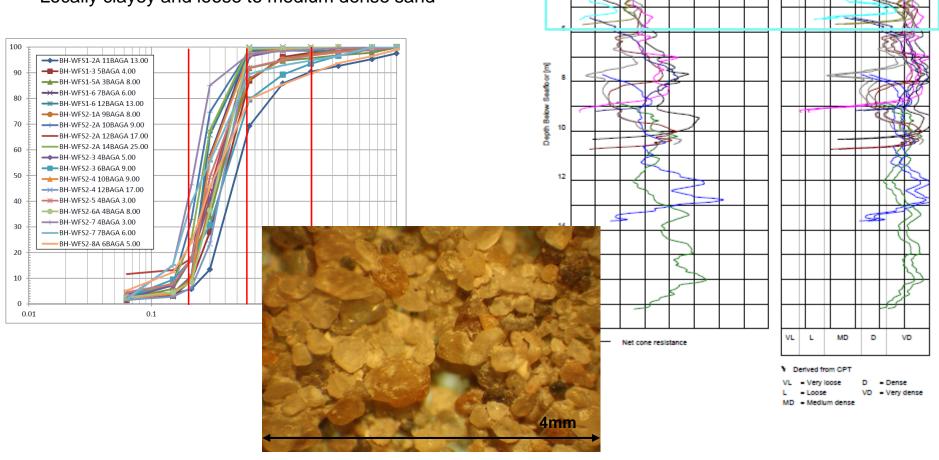
Geotechnical Data Example - Soil Unit B

Tugro

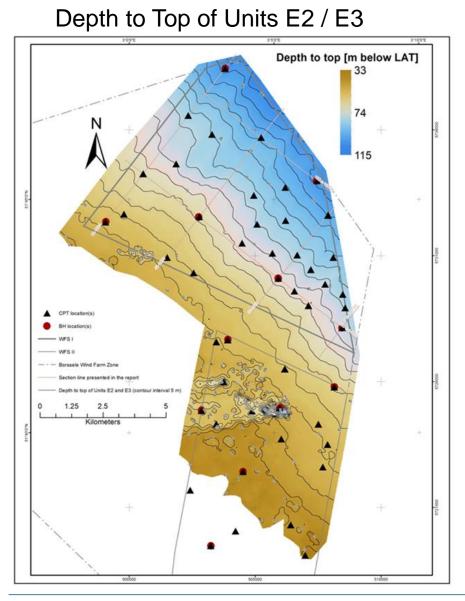
80

120

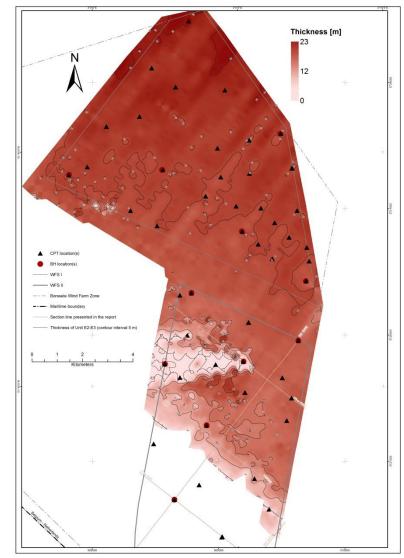
Relative Density [%]


40

80 08


Net Cone Resistance [MPa]

h


- Present across both WFSI&II
- Thickness from approximately 1m up to 16m
- Typically dense to very dense medium sand
- Limited variation across the sites
- Locally clayey and loose to medium dense sand

Geotechnical Data Example – Spatial Distribution Soil Units E2 / E3

Thickness Distribution of Unit E2 / E3

UGRO

Geotechnical Data Example – Soil Unit E2 / E3

TUGRO

80

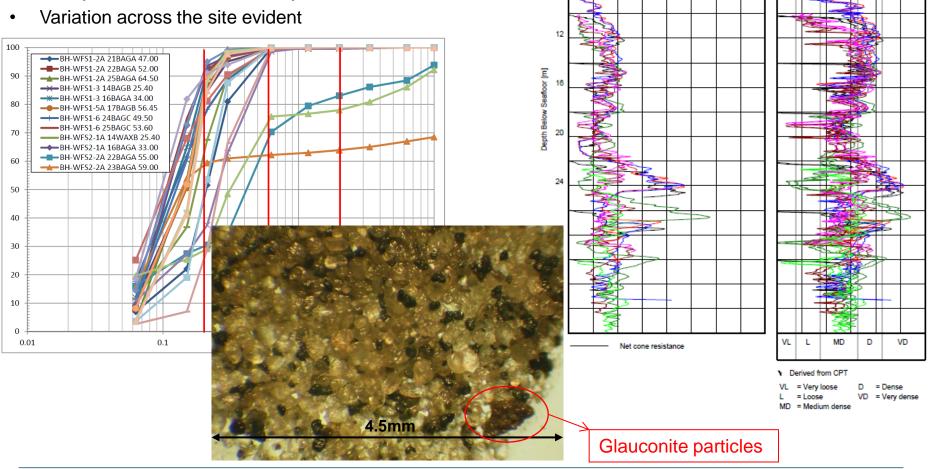
120

Relative Density [%]

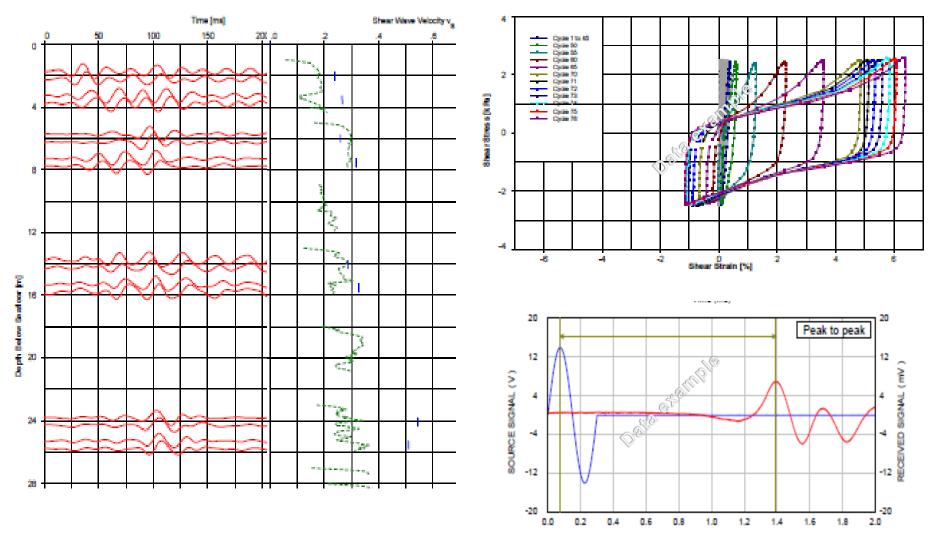
40

80 0

Net Cone Resistance [MPa]


40

60


20

Soil Unit E2 / E3

- Present across bot WFSI and part of WFSII
- Thickness from approximately 0m up to 35m
- Typically medium dense (very clayey sand with locally thin to thick beds of clay

Geotechnical Data Example – Seismic and Cyclic Testing

fugro

Potential Site-Specific Hazards Assessment

Geological Feature & Hazard Type	Occurrence Area	Constraints on Structure	PL	JU	GB	SC	СВ
Migrating bedforms / mobile seabed sediments	Entire WFS I & II	 All: exposure or burial of structure due to local, general and regional scour or sedimentation affecting structure stability, structure stiffness CB: exposure or burial of cable affecting thermal characteristics 	Н (L)	L (N)	H (N)	H (L)	L (N)
Loose to medium dense sand	Locally in Unit A	 All: cyclic loading of seabed and structure can affect structure stability and structure stiffness CB: liquefaction of sand can affect cable flotation and thermal characteristics 	H (N)	L (N)	H (N)	L (N)	L (N)
Very dense sand/ hard clay	 Unit C – very dense sands Unit D – stiff to very stiff clay Unit E – very dense sands 	 PL: early refusal of pile installed by impact driving SC: limited penetration CB: trenching difficulties 	L (N)	N (N)	N (N)	L (L)	L (N)

Key:

PL=Pile Foundation / JU=Jack-up Platform / GB=Gravity Base Foundations / SC=Suction Caisson Foundation / CB=Cables

- Letter indicated hazard probability rating; **H** = high / L = low / N = Negligible

- Hazard probability rating in bracket considers application of relevant mitigation measures

• The available geotechnical and geophysical data align well. They provide a robust basis for the geological ground model. The geological ground model fits published regional frameworks. The geotechnical data set further enhances and refines the understanding of the identified soil units.

• The geotechnical parameters indicate that spatial soil variability is limited for a majority of the soil units. Notable exceptions are soil Units C1, E1 and E3.

 Geotechnical assessment of suitability of possible foundation elements indicates that the more commonly used types are feasible, particularly multiple pile and monopile foundations

THANK YOU